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Abstract Perturbation to Noether symmetries and
adiabatic invariants of discrete nonholonomic noncon-
servative mechanical systems on an uniform lattice
are investigated. Firstly, we review Noether symme-
try and conservation laws of a nonholonomic non-
conservative system. Secondly, we study continuous
Noether symmetry of a discrete nonholonomic sys-
tem, give the Noether symmetry criterion and theorem
of discrete corresponding holonomic system and non-
holonomic system. Thirdly, we study perturbation to
Noether symmetry of the discrete nonholonomic non-
conservative system, give the criterion of perturbation
to Noether symmetry for this system, and based on
the definition of adiabatic invariants, we construct the
theorem under which can lead to Noether adiabatic
invariants for this system, and the forms of discrete
Noether adiabatic invariants are given. Finally, we give
an example to illustrate our results.
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1 Introduction

Symmetries of difference equations and discrete me-
chanical systems have been extensively investigated in
recent years. There are mainly two opinions about this
research. One possibility is to consider the difference
equations on a fixed lattice and consider only trans-
formations that do not act on the lattice [1–5]. The
second possibility is to consider group transformations
acting both on the difference equations and on the lat-
tice [6, 7], and the symmetries of the original differen-
tial equation are preserved in such a way. The research
on symmetries of the discrete constraint system is also
studied. Leyendecker et al. [8–11] studied the integra-
tors and Fu and Zhang [12, 13] studied the symmetry
of discrete constrained system. However, there are few
researches on perturbation of a discrete constraint sys-
tem.

As we know, even tiny changes in symmetry, which
is called perturbation to symmetry, are of great im-
portant for physical systems. Based on the definition
of adiabatic invariants, the relationship of perturbation
to symmetry and adiabatic invariants are constructed,
which offer an opportunity for the quasiintegrability
for dynamical systems. So, perturbation to symme-
try and adiabatic invariants has become a hot subject
[14, 15] recently. In Baikov et al. [16], the notion of
approximate conservation laws is introduced with spe-
cific regard to approximate Noether symmetries; Kara
et al. [17–19] extend Baikov’s ideals. Perturbation to
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Lie symmetry and adiabatic invariants [20–26] are also
investigated.

However, studies about perturbation to symmetry,
are most considered in continuous systems. Now, the
discrete mechanics have a vigorous development and
symmetry theory that is applied to it. So, in this paper,
we will study perturbation to symmetry and adiabatic
invariants of a discrete nonholonomic nonconservative
mechanical system with the second method.

The structure of this paper will be as follows.
Firstly, we will outline the Noether symmetry of the
nonholonomic system. Secondly, we will give contin-
uous Noether symmetry of the discrete nonholonomic
system. Thirdly, we will study perturbation to symme-
try and adiabatic invariants for discrete nonholonomic
systems, and finally, we will give an example to illus-
trate the application of our results.

2 Noether symmetry and exact invariants of
nonholonomic nonconservative mechanical
systems

Since Noether unveiled the profound relations be-
tween symmetries and conservation laws, a lot of re-
searches about them were done [27–29]. It has also
been extended to the nonholonomic system [30–32].
In this section, we will review some results about
Noether symmetry of the continuous nonholonomic
system.

2.1 Equation of motion of the nonholonomic system
of Chetaev type

Suppose that the configuration of a mechanical system
is determined by n generalized coordination qs (s =
1, . . . , n), the Lagrangian of the system is L(t,q, q̇),
where q̇ = D(q), q̈ = D(q̇), D is the first-order linear
differential operator

D = ∂

∂t
+ q̇s

∂

∂qs

+ q̈s

∂

∂q̇s

+ · · · (s = 1, . . . , n) (1)

The system is subject to g ideal bilateral nonholo-
nomic constraints of Chetaev’s type

fβ(t,q, q̇) = 0 (β = 1, . . . , g) (2)

and the constraints are independent to each other. The
limitation of constraints (2) act on the virtual displace-

ment which satisfies the Appell–Chetaev condition

n∑

s=1

∂fβ

∂q̇s

δqs = 0 (3)

Based on the D’Alembert–Lagrange principle and the
Appell–Chetaev condition (3), and making use of the
Lagrange multiplier method, the motion of the equa-
tion of the system can be obtained

D
∂L

∂q̇s

− ∂L

∂qs

= Qs + λβ

∂fβ

∂q̇s

(4)

where L is Lagrangian of the system, Qs are noncon-
servative forces, and λβ are constrained multipliers.
Suppose the system is nonsingular, that is,

det

(
∂2L

∂q̇s∂q̇k

)
�= 0 (5)

We can solve λβ as function of t, q, q̇ from (2) and (4).
Then (4) can be written as

D
∂L

∂q̇s

− ∂L

∂qs

= Qs + Λs (6)

where

Λs = Λs(t,q, q̇) = λβ

∂fβ

∂q̇s

(7)

we call (6) the corresponding holonomic system to
nonholonomic system (2), (4).

2.2 Variation of Hamilton action

Hamilton action is defined as a integral of Lagrangian
L = L(t,q, q̇) between the interval of time [t1, t2],
which can be expressed as

S(γ ) =
∫ t2

t1

L(t,q, q̇) dt (8)

where γ is a curve. Let us introduce in infinitesimal
transformation

t∗ = t + �t, q∗
s = qs + �qs (s = 1,2, . . . , n)

(9)

and its expanded style is

t∗ = t + εξ00(t, qs, q̇s),

q∗
s = qs + εξs0(t, qs, q̇s) (s = 1, . . . , n)

(10)
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which constitute of the single parameter Lie group
of infinitesimal transformation, where ξ00(t, qs, q̇s),

ξs0(t, qs, q̇s) are infinitesimal transformation genera-
tors, and ε is infinitesimal parameter. Through the
transformation (9), the curve γ goes to a neighbor-
hood curve γ ∗. The corresponding Hamilton action
becomes

S(γ ∗) =
∫ t∗2

t∗1
L

(
t∗,q∗, q̇∗)dt∗ (11)

The variation of action S is the linear part to ε for the
difference of �S = S(γ ∗) − S(γ ), � is the total vari-
ation operator, so we can get

�S =
∫ t2

t1

[
�L + L(�t)·

]
dt (12)

Based on the relation formula between total variation
(�) and isochronous variation(δ)

�qs = δqs + q̇s�t,

�q̇s = δq̇s + q̈s�t
(13)

and considering the commutative relation of isochro-
nous variation that under Hölder definition

δq̇s = D(δqs) (14)

we can deduce

�S =
∫ t2

t1

[
D

(
L(�t) + ∂L

∂q̇s

δqs

)

+
(

∂L

∂qs

− D
∂L

∂q̇s

)
δqs

]
dt (15)

Note that

δqs = �qs − q̇s�t = ε(ξs0 − q̇sξ00) (16)

the (15) can be written as

�S =
∫ t2

t1

ε

[
D

(
Lξ00 + ∂L

∂q̇s

ξ̄s0

)

+
(

∂L

∂qs

− D
∂L

∂q̇s

)
ξ̄s0

]
dt (17)

where ξ̄s0 = ξs0 − q̇sξ00. Equations (15) and (17) are
the basic style of Hamilton action variation.

2.3 Noether symmetry of corresponding holonomic
system

Definition 1 If Hamilton action is invariant under the
infinitesimal group transformation, that is, the follow-
ing condition is satisfied for every infinitesimal trans-
formation

�S = −
∫ t2

t1

[
D(�G) + (Qs + Λs)δqs

]
dt (18)

where G = G(t,q, q̇), Qsδqs is the summation of vir-
tual work of the nonconservative force, Λsδqs is the
summation of virtual work of the nonholonomic con-
straint reaction; the infinitesimal transformation (9) is
called the generalized quasitransformation.

We can get the following criteria from Definitions
(18) and (9) and (10).

Criterion 1 If infinitesimal transformation (9) satis-
fies the following condition,

∂L

∂t
�t + ∂L

∂qs

�qs + ∂L

∂q̇s

�q̇s + LD�t

+ (Qs + Λs)(�qs − q̇s�t) = −D(�G) (19)

it is called the Noether quasisymmetry transformation
of the corresponding holonomic system (6).

Criterion 2 If infinitesimal transformation (10) satis-
fies the following condition,

D

(
Lξ00 + ∂L

∂q̇s

ξ̄s0

)

+
(

∂L

∂qs

− D
∂L

∂q̇s

+ Qs + Λs

)
ξ̄s0 = −DG (20)

where �G = εG, it is called the Noether quasisym-
metry transformation of the corresponding holonomic
system (6).

We can get easily Noether identity of the corre-
sponding holonomic system (6) from (19) or (20) as

∂L

∂t
ξ00 + ∂L

∂qs

ξs0 + ∂L

∂q̇s

ξ̇s0 +
(

L − ∂L

∂q̇s

q̇s

)
ξ̇00

+ (Qs + Λs)(ξs0 − q̇sξ00) = −DG (21)

which can be obtained by straight deduction.
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Theorem 1 If the infinitesimal group transformation
(10) is the Noether quasisymmetry transformation,
that is, it satisfies criterion 1 or 2, or Noether iden-
tity (21), the corresponding holonomic system (6) has
the following Noether invariants:

I00 = Lξ00 + ∂L

∂q̇s

ξ̄s0 + G = const (22)

2.4 Noether symmetry of nonholonomic system

The limitation of the nonholonomic constraint (2) acts
on infinitesimal transformation and can be expressed
as

∂fβ

∂q̇s

ξ̄s0 = 0 (23)

which can be also called the Appell–Chetaev condi-
tion.

Definition 2 If infinitesimal transformation (10) is a
Noether quasisymmetry transformation, and it satisfies
the Appell–Chetaev condition (23), the transformation
is called the Noether quasisymmetry transformation of
the nonholonomic system.

Theorem 2 For the nonholonomic system (2), (4),
if the infinitesimal transformation (10) is a Noether
quasi-symmetry transformation of the nonholonomic
system, the system has the same style invariants as
(22).

Proof Making use of the definition of the Noether
quasisymmetry of the nonholonomic system and (4),
it is easy to verify the theorem. �

3 Noether symmetry and exact invariants of
discrete nonholonomic nonconservative
mechanical systems

3.1 Discrete version of Hamilton action variation

Let us introduce total shift and linear difference oper-
ators which work as

S±h
f (t) = f (t±), D±h

=
S±h

− 1

±h±
(24)

the operators S−h
, S−h

, D,
+h

and D−h
commute in any com-

bination, whileD+h
=D−h

S+h
, D−h

=D+h
S−h

, and possess corre-

sponding finite-difference Leibniz rule

D+h
(FG) = D+h

(F )G + F D+h
(G)

+ hD+h
(F )D+h

(G)

D−h
(FG) = D−h

(F )G + F D−h
(G)

− hD−h
(F )D−h

(G)

(25)

We point out that we will use invariant lattice h in t-
direction for convenience in the following. The dis-
crete Hamilton action of the system can be defined by

Md =
∑

Ld

(
t, qs, qs

k

)
h (26)

where Ld(t, qs, qs
k) is the corresponding discrete La-

grangian and

qs
k = D+h

(
qs

) = qs+ − qs

t+ − t
= qs+ − qs

h

q
s−
k = D−h

(
qs

) = qs − qs−

t − t−
= qs − qs−

h

(27)

S+h
qs = qs+, S−h

qs = qs− (28)

Under the infinitesimal transformation (10), the dis-
crete Hamilton action becomes

M∗
d =

∑
Ld

(
t∗, qs∗, qs∗

k

)
h∗ (29)

where h∗ = (1 + D+h
(�t))h = (1 + εD+h

(ξ00))h and �

express the total variation. The discrete analogue of
Appell–Chetaev’s condition with respect to discrete
nonholonomic constraints which restrict generators of
infinitesimal transformations can be written as

n∑

s=1

∂f d
β

∂qs
k

ξ̄s0 = 0 (30)

where ξ̄s0 = ξs0 − qs
kξ00, which come from discrete

virtual displacements variation δdqs = �qs − qs
k�t =

ε[ξs0 − qs
kξ00] = εξ̄s0.

So, the discrete version of Hamilton action varia-
tion is
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�Md = M∗
d − Md

=
∑[

�Ld + Ld D+h
(�t)

]
h (31)

or

�Md =
∑

ε

[
∂Ld

∂t
ξ00 + ∂Ld

∂qs
ξs0

+ ∂Ld

∂qs
k

(
D+h

(ξs0) − qs
k D+h

(ξ00)
)

+ Ld D+h
(ξ00)

]
h (32)

3.2 Noether symmetry of discrete corresponding
holonomic system

Definition 3 If Hamilton action is generalized quasi-
invariant under the infinitesimal transformation (10),
i.e.,

�Md = −
n∑

s=1

{
D+h

(�Gd) + (
Λs

d + Qs
d

)
δdqs

}
h (33)

where Gd = Gd(t, qs, qs
k),Q

s
d = Qs

d(t, qs, qs
k) are the

discrete gauge function and discrete nonconservative

forces. Λs
d = λd

β

∂f d
β

∂qs
k

are forces corresponding to dis-

crete nonholonomic constraints (and λd
β is discrete

constraint multiplication), Λs
dδdqs are the discrete

analogue of the virtual work for the nonholonomic
constraint force. Then we call (10) the discrete ana-
logue of generalized Noether quasisymmetry transfor-
mation.

Expanding (33) and limit it to the first order of ε,
we have

∂Ld

∂t
�t + ∂Ld

∂qs
�qs + ∂Ld

∂qs
k

(
D+h

(
�qs

) − qs
k D+h

(�t)
)

+ Ld D+h
(�t) + (

Λs
d + Qs

d

)
δdqs + D+h

(�Gd) = 0

(34)

in the course of upward calculation, we have used the

relation �qs = δdqs + qs
k�t,�qs

k = δdqs
k + (q

s−
kk)�t

(where q
s−
kk = D−h

D+h
qs ) and the commute relation

D+h
(δdqs) = (δdqs

k), and the Leibniz rule of (forward)

difference as the discrete derivative.

For the infinitesimal transformation (10), (34) can
be written as

∂Ld

∂t
ξ00 + ∂Ld

∂qs
ξs0 + ∂Ld

∂qs
k

(
D+h

(ξs0) − qs
k D+h

(ξ00)
)

+ Ld D+h
(ξ00) + (

Λs
d + Qs

d

)(
ξs0 − qs

kξ00
)

+ D+h
(Gd) = 0 (35)

we have made use of �Gd = εGd .
Equation (35) can be expressed as

∂Ld

∂t
ξ00 + ∂Ld

∂qs
ξs0 + ∂Ld

∂qs
k

(
D+h

(ξs0)

− qs
k D+h

(ξ00)
) + Ld D+h

(ξ00)

+ (
Λs

d + Qs
d

)(
ξs0 − qs

kξ00
) + D+h

(Gd)

= ξ00

{
∂Ld

∂t
+ D−h

(
qs
k

∂Ld

∂qs
k

− Ld

)

− qs
k

(
Qs

d + Λs
d

)}

+ ξs0

{
∂Ld

∂qs
− D−h

(
∂Ld

∂qs
k

)
+ Λs

d + Qs
d

}

+ D+h

{
ξ00 S−h

(Ld) + (
ξs0

− S−h

(
qs
k

)
ξ00

)
S−h

(
∂Ld

∂qs
k

)
+ Gd

}
= 0 (36)

If there exists some equations,

∂Ld

∂t
+ D−h

(
qs
k

∂Ld

∂qs
k

− Ld

)
− qs

k

(
Qs

d + Λs
d

) = 0 (37)

∂Ld

∂qs
− D−h

(
∂Ld

∂qs
k

)
+ Λs

d + Qs
d = 0 (38)

which are called the generalized quasiextremal equa-
tion for this discrete system, and in fact (38) is the
difference analogues of the corresponding holonomic
system (6) and (37) is the discrete energy equation;
then this system possesses the discrete analogue of
conservation law

D+h

{
ξα

00 S−h
(Ld) + (

ξα
s0 − S−h

(
qs
k

)
ξα

00

)
S−h

(
∂Ld

∂qs
k

)
+ Gα

d

}

= 0 (39)
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namely exact invariants

I 0
d = ξα

00 S−h
(Ld) + (

ξα
s0 − (

q
s−
k

)
ξα

00

)
S−h

(
∂Ld

∂qs
k

)
+ Gα

d

= const (40)

The difference equations (39) and (40) are called the
difference analogue of Noether conservation laws as-
sociated with such a discrete corresponding holonomic
system. The difference equations (39) and (40) form
the invariant schemes on regular lattice h.

We should point out that the difference equations
(38), which are obtained in this progress, preserve the
Noether symmetry, and the (37) “disappears” in con-
tinuous limit since the operator in brackets tends to
zero as h → 0.

From Definition (33), we have the following crite-
rion.

Criterion 3 If the infinitesimal transformation (9) sat-
isfy (34), it is called the generalized Noether qua-
sisymmetry transformation.

Criterion 4 If the infinitesimal transformation (10)
satisfy (35), it is called the generalized Noether qua-
sisymmetry transformation.

We call (35) the discrete analogue of generalized
Noether-type identity for this discrete corresponding
holonomic system.

Theorem 3 If the infinitesimal transformations Lie
group (9) for the discrete system (38) on an uni-
form mesh h, are Noether quasisymmetry transforma-
tion, then the discrete corresponding holonomic sys-
tem possesses the discrete analogue of Noether con-
served quantities (40).

Theorem 4 If the infinitesimal transformations Lie
group (10) for the discrete system (38)on an uni-
form mesh h, are Noether quasisymmetry transforma-
tion, then the discrete corresponding holonomic sys-
tem possesses the discrete analogue of Noether con-
served quantities (40).

We call Theorems 3 and 4 the discrete analogue of
generalized Noether theorems associated with discrete
corresponding holonomic systems (38).

3.3 Discrete Noether symmetry of nonholonomic
system

The discrete nonholonomic constraints of Chetaev’s
type can be written as

f d
β

(
t, qs, q

s
k

) = 0 (β = 1, . . . , g) (41)

The corresponding discrete Appell–Chetaev condition
is (30).

Definition 4 If infinitesimal transformation (10) is
Noether quasisymmetry transformation, and it satis-
fies the Appell–Chetaev condition (30), the transfor-
mation is called Noether quasisymmetry transforma-
tion of discrete nonholonomic system (38), (41).

Theorem 5 For the discrete nonholonomic system
(41), (38), if the infinitesimal transformation (10)
is Noether quasisymmetry transformation of discrete
nonholonomic system, the system has the same style of
discrete Noether invariants as (40).

Proof Making use of Definition 4 of Noether qua-
sisymmetry of the nonholonomic system and (38), it
is easy to verify the theorem. �

4 Perturbation to symmetry and adiabatic
invariants of discrete nonholonomic
nonconservative mechanical systems

Suppose the systems (38) and (37) are perturbed by
small quantity εWs

d = εWs
d (t, qs, qs

d), then the equa-
tions of the discrete nonholonomic mechanical sys-
tems become

D−h

(
∂Ld

∂qs
k

)
− ∂Ld

∂qs
= Λs

d + Qs
d + εWs

d (42)

and

∂Ld

∂t
+ D−h

(
qs
k

∂Ld

∂qs
k

−Ld

)
−qs

k

(
Qs

d +Λs
d + εWs

d

) = 0

(43)

Due to the action of εWs
d , the primary symmetries

and invariants of systems (38) and (37) may vary. As-
sume the variation is a small perturbation based on the
symmetrical transformation of the initial system, then
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ξα
0 , ξα

s which denote the new generators after being
perturbed can be expressed as

ξ0 = ξ00 + εξ01 + ε2ξ02 + · · ·
ξs = ξs0 + εξs1 + ε2ξs2 + · · ·

(44)

and the new generators satisfy

∂Ld

∂t
ξ0 + ∂Ld

∂qs
ξs + ∂Ld

∂qs
k

(
D+h

(ξs) − qs
k D+h

(ξ0)
)

+ Ld D+h
(ξ0) + (

Λs
d + Qs

d

)(
ξs − qs

kξ0
)

+ εWs
d

(
ξs − qs

kξ0
) + D+h

(Gd) = 0 (45)

if we make

Gd = Gα
d0 + εGd + ε2Gd2 + · · · (46)

and substitute (44) and (46) into (45), we have

∂Ld

∂t
ξ0m + ∂Ld

∂qs
ξsm + ∂Ld

∂qs
k

(
D+h

(ξsm) − qs
k D+h

(ξ0m)
)

+ Ld D+h
(ξ0m) + (

Λs
d + Qs

d

)(
ξsm − qs

kξ0m

)

+ Ws
s

(
ξsm−1 − qs

kξ0m−1
) + D+h

(Gdm) = 0

(m = 0,1,2, . . .) (47)

when m = 0, the condition Ws
d = 0.

Correspondingly, the discrete Appell-Chetaev con-
dition becomes

n∑

s=1

∂f d
β

∂qs
k

ξ̄sm = 0 (48)

where ξ̄sm = ξsm−qs
kξ0m, and the generalized Noether-

type operators for discrete perturbed system can be
written as

X = ξ0
∂

∂t
+ ξs

∂

∂qs
+ [

D+h
(ξs) − qs

k D+h
(ξ0)

] ∂

∂qs
k

+ · · · + hD+h
(ξ0)

∂

∂h
(49)

Substituting (44) into (49), we have

X = εmXm (50)

where

Xm = ξ0m

∂

∂t
+ ξsm

∂

∂qs
+ [

D+h
(ξsm) − qs

k D+h
(ξ0m)

] ∂

∂qs
k

+ · · · + hD+h
(ξ0m)

∂

∂h
(51)

So, we can give the criterion of perturbation to Noether
symmetry of this system.

Criterion 5 For the perturbed discrete system (42),
(41), if the infinitesimal transformation generators
ξα

0m, ξα
sm satisfy (47) and (48), and there exist gauge

function Gα
dm = Gα

dm(t, qs, qs
k ), the corresponding va-

riety of Noether symmetry of the nonholonomic non-
conservative mechanical system is called perturbation
to Noether symmetry.

According the definition of adiabatic invariants in
[15], we can give the definition of discrete adiabatic
invariants as the following definition.

Definition 5 For systems (42) and (41), if a physical
quantity I z

d (t, qs, qs
d , ε) satisfies

D+h
(Iz) = O

(
εz+1) (52)

where

I z
d = I 0

d0 + εI 1
d1 + · · · + εzI z

dz (53)

I z
d is called a zth-order adiabatic invariants of the sys-

tem.

Basing on Definition 5 and criterion 5, we have the
following theorem.

Theorem 6 For the systems (42) with the nonholo-
nomic constraint (41), which is perturbed by a small
physical quantity εWs

d , if the generators ξα
0m, ξα

sm of
the infinitesimal transformations are perturbation to
Noether symmetry (i.e., satisfy (47), (48), and there ex-
ists a gauge function Gα

dm = Gα
dm(t, qs, qs

k)), then the
system has zth-order adiabatic invariants of discrete
analogue as the following forms:

I z
d =

z∑

m=0

εm

{
ξα

0m S−h
(Ld)

+ (
ξα
sm − (

q
s−
k

)
ξα

0m

)
S−h

(
∂Ld

∂qs
k

)
+ Gα

dm

}
(54)

when z = 0,Ws
d = 0 holds.
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Proof Based on Definition 5 of zth-order adiabatic
invariants, making the discrete derivative of I z

d , and
making use of (47) and the Leibniz rule, we have

D+h

(
I z
d

) = ξα
0mD−h

(Ld) + (
ξα
sm − qs

kξ
α
0m

)
D−h

(
∂Ld

∂qs
k

)

+ D−h

(
qs
k

)
ξα

0m

∂Ld

∂qs
k

− ξα
0m

∂Ld

∂t
− ξα

sm

∂Ld

∂qs

− (
Λs

d + Qs
d

)(
ξα
sm − qs

kξ
α
0m

)

− Ws
d

(
ξα
sm−1 − qs

kξ
α
0m−1

)

= ξα
0m

{
D−h

(
Ld − qs

k

∂Ld

∂qs
k

)
− ∂Ld

∂t

+ qs
k

(
Qs

d + Λs
d

)}

+ ξα
sm

{
D−h

(
∂Ld

∂qs
k

)
− ∂Ld

∂qs
− Λs

d + Qs
d

}

− Ws
d

(
ξα
sm−1 − qs

kξ
α
0m−1

)
(55)

make use of (42) and (43), after deduction, we have

D+h

(
I z
d

) =
z∑

m=0

{
εWs

d

(
ξα
sm − qs

kξ
α
0m

)

− Ws
d

(
ξα
sm−1 − qs

kξ
α
0m−1

)}

expending the above formula and making summation,
we have

D+h

(
I z
d

) = εz+1
n∑

s=1

Ws
d

(
ξα
sz − qs

kξ
α
0z

)
(56)

It shows thatD+h
(I z

d ) is in direct proportion to εz+1, so

I z
d is discrete analogue of zth-order adiabatic invari-

ants for discrete disturbed nonholonomic nonconser-
vative systems (42), (41). �

5 Illustrate example

The dynamical systems with discrete Lagrangian

L = 1

2

{(
q1
k

)2 + (
q2
k

)2 + (
q3
k

)2} − mg
q3+ + q3

2
(57)

subject to nonholonomic constraints

f = (
q1
k

)2 + (
q2
k

)2 − (
q3
k

)2 = 0 (58)

Let us study its exact invariants and adiabatic invari-
ants.

The equation of motion of system are

q
1−
kk = 2λdq1

k

q
2−
kk = 2λdq2

k

q
3−
kk + mg = −2λdq2

k

(59)

where q
s−
kk = D−h

D+h
qs . From (58) and (59), we can work

out

λd = − mg

4q3
k

(60)

so we have

Λ1 = −mgq1
k

2q3
k

, Λ2 = −mgq2
k

2q3
k

, Λ3 = mg

2

(61)

From the discrete Noether identity (44), we have

−mgξα
30 + mq1

k

(
D+h

(
ξα

10

) − q1
k D+h

(
ξα

00

))

+ mq2
k

(
D+h

(
ξα

20

) − q2
k D+h

(
ξα

00

))

+ mq3
k

(
D+h

(
ξα

30

) − q3
k D+h

(
ξα

00

))

+
{

1

2

{(
q1
k

)2 + (
q2
k

)2 + (
q3
k

)2}

− mg
q3+ + q3

2

}
D+h

(
ξα

00

) − mgq1
k

2q3
k

(
ξα

10 − q1
k ξα

00

)

− mgq2
k

2q3
k

(
ξα

20 − q2
k ξα

00

)

+ mg

2

(
ξα

30 − q3
k ξα

00

) + D+h

(
Gα

d

) = 0 (62)

It has a group of solutions such as

ξα
00 = 0, ξα

10 = ξα
20 = 0, ξα

30 = 1

Gα
d1 = 1

2
mg

t+ + t

2

(63)

ξα
00 = 1, ξα

10 = ξα
20 = ξα

30 = 0,

Gα
d2 = 0

(64)
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so, (63) and (64) are Noether symmetry for the discrete
corresponding holonomic system (38).

According to (40), we can get discrete Noether con-
served law as

Iα
d01 = mq

3−
k + 1

2
mg

t+ + t

2
= const (65)

Iα
d02 = −1

2
m

{(
q

1−
k

)2 + (
q

2−
k

)2 − (
q

3−
k

)2} − mgq
3−

= const (66)

The Appell–Chetaev condition of the discrete non-
holonomic constraints are

2q1
k

(
ξα

01 − q1
k ξα

00

) + 2q2
k

(
ξα

02 − q2
k ξα

00

)

− 2q3
k

(
ξα

03 − q3
k ξα

00

) = 0 (67)

it is easy to very (64) satisfy (67), so the (63)
is Noether symmetry for nonholonomic mechanical
(38)and (41), the corresponding conserved law is (66).

Suppose the system is perturbed by

εW 1
d = −εq1

k , εW 2
d = −εq2

k , εW 3
d = −εq3

k

(68)

Let m = 1, then (47) give

−mgξα
31 + mq1

k

(
D+h

(
ξα

11

) − q1
k D+h

(
ξα

01

))

+ mq2
k

(
D+h

(
ξα

21

) − q2
k D+h

(
ξα

01

))

+ mq3
k

(
D+h

(
ξα

31

) − q3
k D+h

(
ξα

01

))

+
{

1

2

{(
q1
k

)2 + (
q2
k

)2 + (
q3
k

)2}

− mg
q3+ + q3

2

}
D+h

(
ξα

01

) − mgq1
k

2q3
k

(
ξα

11 − q1
k ξα

01

)

− mgq2
k

2q3
k

(
ξα

21 − q2
k ξα

01

)

+ mg

2

(
ξα

31 − q3
k ξα

01

) − q1
k

(
ξα

10 − q1
k ξα

00

)

− q2
k

(
ξα

20 − q2
k ξα

00

)

− q3
k

(
ξα

30 − q3
k ξα

00

) + D+h

(
Gα

d1

) = 0 (69)

we can work out solutions as

ξα
01 = 0, ξα

11 = ξα
21 = 0, ξα

31 = 1,

Gα
d11 = 1

2
mg

t+ + t

2
− q3+q3

2

(70)

ξα
01 = 1, ξα

11 = ξα
21 = 0, ξα

31 = 0,

Gα
d12 = 0

(71)

The corresponding conserved law is

Iα
d11 = mq

3−
k + 1

2
mgt + ε

{
q

3−
k + (m − 1)

q3+ + q3

2

+ 1

2
mg

t+ + t

2

}
= const (72)

and

Iα
d12 = −1

2
m

{(
q

1−
k

)2 + (
q

2−
k

)2 − (
q

3−
k

)2} − mgq
3−

− ε

{
1

2
m

{(
q

1−
k

)2 + (
q

2−
k

)2 − (
q

3−
k

)2} − mgq
3−
}

= const (73)

The Appell–Chetaev condition of discrete per-
turbed system is

2q1
k

(
ξα

11 − q1
k ξα

01

) + 2q2
k

(
ξα

12 − q2
k ξα

01

)

− 2q3
k

(
ξα

13 − q3
k ξα

01

) = 0 (74)

It is easy to verify (71) and satisfy the above Appell–
Chetaev condition (74), so (71) is perturbation to the
Noether symmetry generator of the discrete nonholo-
nomic system, and (73) is a corresponding first-order
discrete adiabatic invariant. Furthermore, we can ob-
tain higher order adiabatic invariants.

6 Conclusion

In this paper, (1) we obtain Noether exact invariants
for the discrete nonholonomic nonconservative sys-
tems; (2) we get the theorem under which the perturba-
tion to Noether symmetry can lead to the Noether adi-
abatic invariants and the forms of the adiabatic invari-
ants for discrete nonholonomic nonconservative sys-
tems.
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