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Abstract The contribution of this work is to study the
control of unknown chaotic systems with input satu-
ration, and the backstepping-based an adaptive fuzzy
neural controller (AFNC) is proposed. In many prac-
tical dynamic systems, physical input saturation on
hardware dictates that the magnitude of the control
signal is always constrained. Saturation is a poten-
tial problem for actuators of control systems. It of-
ten severely limits system performance, giving rise to
undesirable inaccuracy or leading instability. To deal
with saturation, we construct a new system with the
same order as that of the plant. With the error between
the control input and saturation input as the input of
the constructed system, a number of signals are gen-
erated to compensate the effect of saturation. Finally,
simulation results show that the AFNC can achieve fa-
vorable tracking performances.
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1 Introduction

Chaos control is an important topic in the nonlinear
science. In essence, chaos control is guiding a chaotic
system to reach a desired goal dynamics via various
controllers. Chaotic signals are typically broadband,
noise-like, difficult to predict, and can hide informa-
tion efficiently and securely. Since chaos control prob-
lem was firstly considered by Ott et al. [1], it has been
investigated extensively by lots of authors, and many
control methods have been employed to control chaos
[2–7].

In most control engineering applications the perfor-
mance of the controller is directly related to the accu-
racy of the mathematical model obtained for the con-
trolled system. However, there are many situations in
control systems when the control engineer faces the
difficulty of incomplete or insufficient information [8].
Fuzzy control methodologies have emerged in recent
years as promising ways to approach nonlinear con-
trol problems. Fuzzy control, in particular, has an im-
pact in the control community, because it can pro-
vide a simple approach to the control of plants that
are complex, uncertain, ill-defined, and have available
heuristic knowledge from domain experts for their
controllers design [9–15]. However, neural network
(NN) adaptive control algorithms have attracted atten-
tion due to their inherently parallel and highly redun-
dant processing architecture that makes it possible to
develop parallel weight update laws. This parallelism
makes it possible to effectively update an NN online.
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Consequently, the use of the NNs for system identi-
fication and control of complex highly uncertain dy-
namical systems has become an active research field
[16–19].

Fuzzy model did not seem good under testing con-
ditions for the sake of inadequate experimental data.
The production rules cannot produce a good precision
in case of lack of information. The structure (num-
ber of fuzzy rule) also influences identification capa-
bility and accuracy [20]. Recent results show that the
fusion procedure of neural networks and fuzzy sys-
tems seems to be very effective for nonlinear system
modeling [21]. A general combination method is to
use neural training for a fuzzy model [22]. From prior
knowledge, the structure of fuzzy system can be de-
termined. After neural training, the membership func-
tions of fuzzy systems are changed to match the train-
ing data. Fuzzy neural network (FNN) possesses the
merits of the low-level learning and the computational
power of the neural network (NN), and the high-level
human knowledge representation and the thinking of
fuzzy theory. FNN has been proven to be universal ap-
proximators [23]. Recently model-free, computation-
ally intelligent techniques using either fuzzy logic or
neural networks have been investigated in order to cir-
cumvent existing difficulties. The concept of incorpo-
rating fuzzy logic into neural network has emerged and
has become a popular research area [24–29].

In many practical dynamic systems, physical input
saturation on hardware dictates that the magnitude of
the control signal is always constrained. Saturation is
a potential problem for actuators of control systems. It
often severely limits system performance, giving rise
to undesirable inaccuracy or leading instability. The
development of adaptive control schemes for systems
with input saturation has been a task of major practical
interest as well as theoretical significance. However,
the number of available results by taking saturation
into account in the design and analysis is still limited
due to the difficulty of the problem. For linear stable
systems with known parameters and input saturation,
a few control schemes have been proposed in [30–34].
When the system parameters are unknown, adaptive
control schemes have been proposed in [35–37], where
uncertain parameters must be inside a known compact
set. An adaptive force-balancing control scheme with
actuator limits for a MEMS gyroscope was also pre-
sented in [38], where the plant is a stable second-order
uncertain linear system. In [39], controlling a class of

uncertain nonlinear systems with input saturation was
proposed.

Backstepping approach is a Lyapunov-based recur-
sive design procedure. With this technique, transient
performance can be established and improved with ex-
plicit tuning of design parameters. A great deal of at-
tention has been paid to tackle both linear and nonlin-
ear systems with unknown parameters. A number of
results have been obtained as summarized in [40].

In this paper, we will address the problem of con-
trolling a class of unknown chaotic systems with input
saturation. To deal with saturation, we construct a new
system with the same order as that of the plant simi-
lar to [38, 39]. With the error between the control input
and saturation input as the input of the constructed sys-
tem, a number of signals are generated to compensate
the effect of saturation. With the proposed fuzzy neu-
ral adaptive backstepping controller, the tracking error
is shown to approach a signal generated by the con-
structed system. The tracking error is also adjustable
by an explicit choice of design parameters. Thus, our
designed backstepping scheme allows designers to ob-
tain the closed loop behavior by tuning design param-
eters in an explicit way. Finally, simulation results are
presented to demonstrate the effectiveness of the pro-
posed control scheme.

2 System description and problem statement

Consider a class of chaotic systems as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = x3
...

ẋn = f (X) + u(v)

y = x1

, (1)

where X = [x1, ẋ1, . . . , x
(n−1)
1 ]T = [x1, x2, . . . , xn]T ∈

Rn is the state vector, f (X) is unknown continuous
bounded function. y ∈ R is the output, v is the control
input, and u(v) ∈ R denotes the plant input subject to
saturation described by

u(v) = sat(v) =
{

sign(v)uM |v| ≥ uM

v |v| < uM
, (2)

where uM is the saturation bound of u.
The control objectives are to design backstepping

adaptive control law v such that the closed loop sys-
tem is globally stable in sense that all the signals in
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the system are uniformly ultimately bounded, and the
tracking error y −yr is adjustable by an explicit choice
of design parameters.

3 Description of FNN

The configuration of the FNN shown in Fig. 1 consists
of fuzzy logic and neural network. The fuzzy logic
system can be divided into two parts: some fuzzy IF-
THEN rules and a fuzzy inference engine. The fuzzy
inference engine uses the fuzzy IF-THEN rules to per-
form a mapping form an input linguistic vector XT =
[x1, x2, . . . , xn] ∈ Rn to an output linguistic variable
y ∈ R. The ith fuzzy IF-THEN rule is written as

R(i) : if x1 is Ai
1 and . . . and xn is Ai

n

then y is Bi
(3)

where Ai
1,A

i
2, . . . ,A

i
n and Bi are fuzzy sets [20, 41].

Let h be the number of the fuzzy IF-THEN rules. By
using product inference, center-average and singleton

fuzzifier, the output of the fuzzy logic system can be
expressed as

y(X) =
∑h

i=1 ȳi (
∏n

j=1 μAi
j (xj ))

∑h
i=1(

∏n
j=1 μAi

j (xj ))
= θTξ(X), (4)

where μAi
j (xj ) is the membership function value of

the fuzzy variable, h is the total number of the IF-
THEN rules, ȳi is the point at which μBi(ȳi) =
1, θT = [ȳ1, ȳ2, . . . , ȳh] is an adjustable parameter
vector, and ξT = [ξ1, ξ2, . . . , ξh] is a fuzzy basis vec-
tor, where ξ i is defined as

ξ i(X) =
∏n

j=1 μAi
j (xj )

∑h
i=1(

∏n
j=1 μAi

j (xj ))
. (5)

When the inputs are given into the FNN shown in
Fig. 1, the truth value ξ i (layer 3) of the antecedent
part of the ith implication is calculated by (5). Among
the commonly used defuzzification strategies, the out-
puts (layer 4) of the fuzzy neural system are expressed
as (4). The fuzzy logic approximator based on NN

Fig. 1 Schematic diagram
of fuzzy neural network
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can be established [42, 43]. Figure 1 shows the con-
figuration of the fuzzy neural function approximator.
The approximator has four layers. At layer 1, nodes
which are input ones stand for input linguistic vec-
tor XT = [x1, x2, . . . , xn]. At layer 2, nodes represent
the values of the membership function of total linguis-
tic variables. Each node of layer 2 performs a mem-
bership function value. At layer 3, nodes are the val-
ues of the fuzzy basis vector ξ . Each node of layer
3 performs a fuzzy rule. The links between layer 3
and layer 4 are full connected by the weighting fac-
tors, θT = [ȳ1, ȳ2, . . . , ȳh], i.e., the adjusted parame-
ters. At layer 4, the outputs stand for the values of the
output y(X).

4 Design of adaptive fuzzy neural controller

In order to compensate the effect of the saturation,
the following system is constructed to generate signals
λ = [λ1, λ2, . . . , λn]T

⎧
⎨

⎩

λ̇1 = λ2 − c1λ1

λ̇i = λi+1 − ciλi,

λ̇n = −cnλn + �u

i = 2,3, . . . , n − 1 (6)

where ci are positive constants and �u = u(v) − v.
The following change of coordinates is made.

z1 = y − yr − λ1. (7)

zi = xi − αi−1 − y(i−1)
r − λi, i = 2,3, . . . , n, (8)

where αi−1 is the virtual control at the ith step to be
determined.

Remark 1 With the error �u as the input of the con-
structed system, it has no effect on zi . Thus, it will not
affect the design of controllers. Then by following the
standard backstepping approach, the adaptive law will
ensure the boundedness of parameter estimates regard-
less of �u. On the other hand, such estimates will de-
pend on �u when standard backstepping is used with-
out using the transformed systems.

In the following, backstepping control scheme is
proposed. To illustrate the design procedures, only the
first and the last step are elaborated in details.

Step 1: Starting from the equations for the tracking
error obtained from (1) and (6)–(8), we get

ż1 = x2 − λ2 + c1λ1 − ẏr

= z2 + α1 + c1λ1. (9)

We design the virtual control law α1 as

α1 = −c1(x1 − yr), (10)

where c1 > 1/2 is a positive design parameter. A pos-
itive Lyapunov function V1 is defined as

V1 = 1

2
z2

1. (11)

Then the derivative of V1 along with (9) and (10) is
given as

V̇1 = −c1z
2
1 + z1z2

≤ −c1z
2
1 + 1

2
z2

1 + 1

2
z2

2

= −c̄1z
2
1 + 1

2
z2

2, (12)

where c̄1 = c1 − 1
2 > 0.

Step i (i = 2, . . . , n − 1): For zi = xi − αi−1 −
y

(i−1)
r − λi , we choose virtual control law αi as

αi = −ci(xi − αi−1 − y(i−1)
r )

+ α̇i−1(x1, . . . , xi−1), (13)

where ci, i = 2, . . . , n − 1 are positive design parame-
ters satisfying ci > 1. From (8) and (13), we obtain

zi żi = −ciz
2
i + zizi+1. (14)

We choose Lyapunov function as

Vi =
i∑

k=1

1

2
z2
k. (15)

Then the derivative of Vi along with (13) and (14) is
given by

V̇i ≤ −ciz
2
i + zizi+1 + 1

2
z2
i

≤ −
i∑

k=1

c̄iz
2
i + 1

2
z2
i+1, (16)

where c̄i = ci − 1 > 0.
Step n: From (1) and (8) for i = n, we get

żn = v + f (X) − α̇n−1 + cnλn − y(n)
r . (17)
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In this paper, we use FNN to identify the unknown
function f (X), and let f (X) = θTξ(X). We design
the adaptive fuzzy neural controller vc as follows:

vc = −cn

(
xn − αn−1 − y(n−1)

r

) − θ̂
T
ξ(X)

+ α̇n−1 + y(n)
r , (18)

where cn > 1/2, θ̂
T

is an estimate of θT.
Define the model error as

ε = f (X) − f̂ (X)

= θTξ(X) − θ̂
T
ξ(X), (19)

and |ε| ≤ ε̄, where ε̄ is positive constant.
The robust controller us is designed as

vs = −sgn(zn)ε̄. (20)

The synthesis controller is

v = vc + vs. (21)

The following adaptive law for adjusting the link
weight of FNN between layer 3 and layer 4 is given:

˙̂
θ = ξ(X)zn. (22)

We define a positive Lyapunov function V as

V =
n∑

i=1

1

2
z2
i + 1

2
θ̃

T
θ̃ , (23)

where θ̃ = θ − θ̂ . Then the derivative of V along with
(17)–(22) is given by

V̇ =
n∑

i=1

zi żi + θ̃
T ˙̃
θ

T

≤ −
n∑

i=1

c̄iz
2
i + θ̃

T[ξ(X)zn − ˙̂
θ]

− znsgn(zn)ε̄ + znε

≤ −
n∑

i=1

c̄iz
2
i + θ̃

T[ξ(X)zn − ˙̂
θ]

− |zn|ε̄ + |zn|ε̄

≤ −
n∑

i=1

c̄iz
2
i , (24)

where c̄n = cn − 1
2 .

This shows that V is uniformly bounded. Thus,
zi, i = 1, . . . , n and θ̂ are bounded. For chaotic sys-
tems, xi, i = 1, . . . , n are bounded and its input is
bounded. So, that the boundedness of α1, . . . , αn−1

and control signal v can be obtained from (10), (13),
and (21). Thus, �u = u(v)−v is also bounded. There-
fore, boundedness of all signals in the closed loop sys-
tem is ensured as stated in the following theorem.

Theorem 1 Consider the unknown chaotic system (1)
in the presence of input saturation. With the applica-
tion of controller (21) and the link weight of FNN up-
date law (22), the following statements hold:

The steady state tracking error satisfies

lim
t→∞[y(t) − yr(t) − λ1(t)] = 0. (25)

A bound of the transient tracking error will be given
by

‖y(t) − yr(t)‖2 ≤ 1√
c̄1

[
1

2
θ̃(0)Tθ̃(0)

]1/2

+ 1√
c0

‖�u‖2. (26)

Proof From (24), we established that V is nonincreas-
ing. Hence, zi, i = 1, . . . , n, θ̂ are bounded. By apply-
ing the LaSalle–Yoshizawa theorem to (24), it further
follows that zi(t) → 0, i = 1, . . . , n as t → ∞, which
implies that limt→∞[y(t) − yr(t) − λ1(t)] = 0.

From (24), we also have that

‖z1‖2
2 = ‖y − yr − λ1‖2

2 =
∫ ∞

0
|z1(τ )|2 dτ

≤ 1

c̄1
[V (0) − V (∞)] ≤ 1

c̄1
V (0). (27)

Thus, by setting zi(0) = 0, i = 1, . . . , n, we have

V (0) = 1

2
θ̃

T
(0)θ̃(0). (28)

This means that the bound resulting from (27) and (28)
is

‖y(t) − yr(t) − λ1(t)‖2 ≤ 1√
c̄1

[
1

2
θ̃

T
(0)θ̃(0)

]1/2

.

(29)

Now we derive the bound of λ1.
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We construct the positive Lyapunov function Vλ =
∑n

i=1
1
2λ2

i . Then the derivative of Vλ is given as

V̇λ = −c1λ
2
1 + λ1λ2 − c2λ

2
2 + λ2λ3 + · · ·

+ λn−1λn − cnλ
2
n + λn�u

≤
n∑

i=1

−c̄iλ
2
i + �u2

≤ −c0‖λ‖2 + �u2, (30)

where c̄1 = c1 − 1
2 , c̄i = ci − 1 (i = 1, . . . , n − 1),

c̄n = cn − 3
4 , c0 = min(c̄i , i = 1, . . . , n). Integrating

both sides of (30), we have

‖λ‖2
2 =

∫ ∞

0
‖λ‖2 dτ

≤ 1

c0

[

(Vλ(0) − Vλ(∞)) +
∫ ∞

0
(�u)2 dτ

]

. (31)

By setting λi(0) = 0, the initial value of the Lyapunov
function is Vλ(0) = 0. Then a bound on the state ‖λ‖2

is established as follows:

‖λ‖2 ≤ 1√
c0

‖�u‖2. (32)

Thus, from (29) and (32), it is obtained

‖y − yr‖2 ≤ 1√
c̄1

[
1

2
θ̃

T
(0)θ̃(0)

]1/2

+ 1√
c0

‖�u‖2.

(33)

This proof completed. �

Remark 2 The transient performance depends on the
initial estimate error θ̃(0) and the explicit design pa-
rameters. The closer the initial estimate θ̂(0) to the true
value θ , the better the transient performance.

Remark 3 The bound for ‖y(t)−yr(t)‖2 is an explicit
function of design parameters and thus computable.
We can decrease the effects of the initial error esti-
mate on the transient performance by increasing pa-
rameter c1.

Remark 4 The bound of ‖y(t) − yr(t)‖2 depends on
the bound of �u, the effects of which on system per-
formance can be decreased by increasing parameter
c0. If �u → 0 as t → ∞, we have λ1 → 0. Then

limt→∞[y(t)−yr(t)] = 0. This implies that if the sys-
tem has no saturation or the control signal is not satu-
rated as t → ∞, then perfect tracking is ensured.

Now we give the update laws of the Gaussian mem-
bership functions. Based on [44], the BP algorithm for
online tuning the means and variances of the Gaus-
sian membership functions is discussed. Consider the
structure of FNN is 2-6-9-1, and the Gaussian mem-
bership function is defined by

μAjk = − (xj − mjk)
2

(σjk)2
, j = 1,2; k = 1,2,3, (34)

where mjk and σjk are respectively, the mean and the
variance of the Gaussian function in the kth term of
the j th input linguistic variable xj . Let e1(t) = y(t) −
yr(t), the cost function to be minimized is defined as

J = J (t) = 1

2
(e1(t))

2. (35)

d3
l = −∂J

∂net3
l

= −∂J

∂net4
1

∂net4
1

∂net3
l

= e1 · θ l (l = 1,2, . . . ,9). (36)

d2
i = −∂J

∂net2
i

= −∂J

∂y2
i

∂y2
i

∂net2
i

= −
(

∑

p

∂J

∂net3
p

∂net3
p

∂y2
i

)

· ∂y2
i

∂net2
i

=
(∑

p

d3
p · y2

i′

)

· y2
i , (i = 1,2, . . . ,6), (37)

where the subscript p denotes the rule node in con-
nection with the ith node in Layer 2, and i′ denotes
the other node in Layer 2 which connection with the
pth node in Layer 3. Then, the adaptive rule of mjk is

�mjk = − ∂J

∂mjk

= − ∂J

∂net2
k

∂net2
k

∂mjk

= δ2
k · 2(y1

j − mjk)

σ 2
jk

, (38)

and the adaptive rule of σjk is

�σjk = − ∂J

∂σjk

= − ∂J

∂net2
k

∂net2
k

∂σjk

= δ2
k · 2(y1

j − mjk)
2

σ 3
jk

, (39)
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where j = 1,2; k = 1,2,3. The parameters of the
Gaussian membership functions can be modified as

mjk(t + 1) = mjk(t) + η�mjk(t), (40)

and

σjk(t + 1) = σjk(t) + η�σjk(t), (41)

where η is learning rate.
Note that netLq and yL

q denote the summed net input
of qth node and the output of qth node, respectively,
and the superscript denotes the layer number.

5 Computer simulations

In this section, we apply the proposed AFNC to con-
trol the Duffing chaotic system [45]
⎧
⎨

⎩

ẋ1 = x2

ẋ2 = −0.1x2 − x3
1 + 12 cos(t)

y = x1

. (42)

It can be shown that without control, the system is
chaotic. The chaotic motion of the Duffing system is
shown in Fig. 2.

Let f (X) = −0.1x2 − x3
1 + 12 cos(t), we now use

the AFNC to control the output y to track the refer-
ence trajectory yr = sin(t). We choose c1 = c2 = 10,
and ε̄ = 0.5. In this paper, we use a FNN to represent
the approximation of unknown function f (X). The

structure of FNN is 2-6-9-1. The initial FNN param-
eters are selected randomly, i.e., θ ∈ [−12,12],m ∈
[−2,2],σ ∈ [0,1]. Here, θ represent the link weigh
vector, and m represents the mean vector of the Gaus-
sian membership functions, and σ represents the vari-
ance vectors of the Gaussian membership functions.
We choose the initial system states X(0) = [−2,−2].
The simulation results are shown in Figs. 3–4.

6 Conclusions

In this paper, we have developed an adaptive backstep-
ping fuzzy neural control scheme for a class of un-
known chaotic systems in the presence of input satu-
ration. To design the AFNC, no exact knowledge of
system is needed. In addition, the online tuning pa-
rameters include the weighting factors in the conse-
quent part, and the means and variances of the Gaus-
sian membership functions in the antecedent part of
fuzzy implications. Besides showing global stability,
we also give an explicit bound on the performance of
the tracking error in terms of design parameters. Fi-
nally, this method has been applied to control the Duff-
ing chaotic system to track a reference trajectory. Next,
we will study the control of uncertain chaotic systems
with input saturation, and the total states of the chaotic
systems are not assumed to be available for measure-
ment.

The computer simulation results show that the
AFNC can perform successful control and achieved
desired performance.

Fig. 2 The chaotic
attractor of Duffing system
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Fig. 3 Trajectories of y, yr and the tracking error

Fig. 4 The control input
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