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Abstract This paper deals with the problem of the
global stabilization for a class of cascade nonlinear
control systems. It is well known that, in general,
the global asymptotic stability of the cascaded sub-
systems does not imply the global asymptotic stabil-
ity of the composite closed-loop system. In this pa-
per, we give additional sufficient conditions for the
global stabilization of a cascade nonlinear system. In
particular, we consider a class of Takagi–Sugeno (TS)
fuzzy cascaded systems. Using the so-called parallel
distributed compensation (PDC) controller, we prove
that this class of systems can be globally asymptoti-
cally stable. An illustrative example is given to show
the applicability of the main result.
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1 Introduction

This work studies the problem of the global stabiliza-
tion of nonlinear cascaded systems of the form

{
ẋ1 = f (x1, x2)

ẋ2 = g(x1, x2, u)
(1.1)

where x1 ∈ R
n, x2 ∈ R

q and u ∈ R
m. The functions

f and g are supposed C∞ and to satisfy f (0,0) = 0,

g(0,0,0) = 0.

Let

ẋ1 = f (x1, x2). (1.2)

It is well known that if the differential equation

ẋ1 = f (x1,0) (1.3)

has x1 = 0 as an equilibrium point globally asymptot-
ically stable, if the system

ẋ2 = g(x1, x2, u) (1.4)

is globally asymptotically stabilized at the origin, uni-
formly on x1 by a feedback law u(x1, x2), and if all
the orbits of the closed-loop system

{
ẋ1 = f (x1, x2)

ẋ2 = g(x1, x2, u(x1, x2))

are bounded, then (x1, x2) = (0,0) is an equilibrium
point globally asymptotically stable for (1.1) [13, 15].
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As a first step, we need to note that, due to the
regularity of f , it is always possible to decompose
f (x1, x2) into the form

f (x1, x2) = f (x1,0) + ψ(x1, x2)x2

where ϕ(x1, x2) = ψ(x1, x2)x2 is called the intercon-
nection term.

However, it is not easy to determine a priori that
every solution to (1.2) is bounded or not, and in ad-
dition the key problem remains to be solved: what
conditions can ensure the boundedness of solutions
of (1.2). Therefore, studying global boundedness of a
cascaded system (1.2) is a challenging problem, and
this problem is of its own interest as well as of sig-
nificance in the research on global asymptotic stabil-
ity and global stabilization of cascaded systems in the
literature [1, 4, 5, 14, 17, 18]. One way to solve this
problem is to use the now well known property of
input-to-state-stability (ISS) introduced by [19]: the
system (1.2) is input-to-state-stable (ISS) if there ex-
ist functions β ∈ K L and α ∈ K such that for each
bounded input x2(.) and each initial condition x1(0),

the solution x1(t) exists for all t ≥ 0 and is bounded
by

∥∥x1(t)
∥∥ ≤ β

(‖x1(0)‖, t) + α
(

sup
0≤τ≤t

∥∥x2(τ )
∥∥)

.

In a recent result given in [2], the ISS property is char-
acterized by the existence of an ISS-Lyapunov func-
tion introduced in [3], in the sense that the system (1.2)
is ISS if and only if there exists a C1 positive definite
radially unbounded function V such that

‖x1‖ ≥ α1
(‖x2‖

) =⇒ ∂V

∂x1
f (x1, x2) ≤ −α2

(‖x1‖
)
,

(1.5)

where α1 and α2 are two class K functions. Such a V

is called an ISS Lyapunov function.
Therefore, under the stated assumptions, if the sys-

tem (1.2), with x2 as input, is input-to-state-stable and
the origin of (1.4) is globally asymptotically stabi-
lized, uniformly on x1, by a feedback law u(x1, x2),

then the origin of the cascade system (1.1) is globally
asymptotically stable.

However, if the input-state-stability property is not
assumed for (1.2), the situation is complicated. For ex-
ample, let us consider the following nonlinear planar

cascade system:

{
ẋ1 = −x1 + x1 log(x2

1)x2

ẋ2 = sin(x1)x2 + u.
(1.6)

We can see that the interconnection term ψ(x1, x2)x2

= x1 log(x2
1)x2 has a nonlinear growth faster than the

linear one in x1. Otherwise, the destabilizing perturba-
tion x1 log(x2

1)x2 dominates the stabilizing term −x1.

Then the system ẋ1 = −x1 + x1 log(x2
1)x2 is not ISS.

Therefore, in order to prove that all solutions re-
main bounded under the cascade interconnection, one
remarkable result was given in [14], where the inter-
connection term satisfies the linear growth condition
in x1, i.e., there exist two class K functions γ1 and γ2,
differentiable at x2 = 0, such that
∥∥ψ(x1, x2)x2

∥∥ ≤ γ1
(‖x2‖

)‖x1‖ + γ2
(‖x2‖

)
,

which is restrictive in general. This can be viewed in
example (1.6) where the interconnection term does not
satisfy the linear growth condition in x1. For these rea-
sons, we consider in particular a class of nonlinear dy-
namical TS fuzzy cascaded systems. Indeed, TS fuzzy
models [10, 16, 22] are nonlinear systems described
by a set of if-then rules which give local linear repre-
sentations of an underlying system. Such models can
approximate a wide class of nonlinear systems. They
can even describe exactly certain nonlinear systems
[11, 20]. A recent work on the output control prob-
lem of a class of uncertain SISO nonlinear systems is
investigated based on an indirect adaptive fuzzy ap-
proach is [24].

In this paper, by using the idea of the sector nonlin-
earity given in [21], we suppose that we can represent
exactly (1.1) into a TS fuzzy cascaded system which
has the following ith rule local model

{
ẋ1 = Aix1 + ψi(x1, x2)x2

ẋ2 = Cix2 + Biu

where Ai ∈ R
n×n, Ci ∈ R

q×q and Bi ∈ R
q×m, we call

ϕi(x1, x2) = ψi(x1, x2)x2

the ith interconnection term. By means of the con-
cept of the parallel distributed compensation (PDC)
approaches, which was proposed in [8], we prove that
the TS fuzzy cascaded system (1.1) can be globally
asymptotically stable. In addition, this method of sta-
bilization is conceptually simple and straightforward
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because the linear feedback control techniques can be
utilized. Various non-parallel distribution compensa-
tion (PDC) fuzzy controllers, which can better utilize
the characteristic of the Parameter Dependent Lya-
punov Function (PDLF), are proposed by [7] to close
the feedback loop.

Note that the design problem of stabilization can be
transformed into a convex problem [9], which is effi-
ciently solved by linear matrix inequalities optimiza-
tion. If the solution is feasible, meaning that the stabi-
lization constraints are met, then local state feedback
gains are obtained.

2 Global stabilization and boundedness of
solutions

Consider the fuzzy dynamic cascade model of TS de-
scribed by the following fuzzy if-then rules:

If z1 is Fi1 and . . . and zp is Fip

then

{
ẋ1 = Aix1 + ψi(x1, x2)x2

ẋ2 = Cix2 + Biu

where Fij (j = 1, . . . , p) is the fuzzy set and r is the
number of model rules (if-then), r ≥ 2. x1 ∈ R

n and
x2 ∈ R

q are the state vectors, u ∈ R
m is the input vec-

tor. The matrices Ai, Bi and Ci are of appropriate di-
mension and z1 ∼ zp are the premise variables which
are measurable and depend on x1. We will use z to de-
note the vector containing all the individual elements
z1, . . . , zp. By using the fuzzy inference method with
a singleton fuzzifier, product inference, and center av-
erage defuzzifier, the global fuzzy cascaded model can
be expressed as

{
ẋ1 = ∑r

i=1 hi(z)Aix1 + ∑r
i=1 hi(z)ψi(x1, x2)x2

ẋ2 = ∑r
i=1 hi(z)(Cix2 + Biu)

(2.1)

where

hi(z) = Wi(z)∑r
i=1 Wi(z)

,

and

Wi(z) =
p∏

j=1

Fij (zj ), for all i = 1, . . . , r.

It is assumed that hi(z) > 0, for all i = 1, . . . , r and∑r
i=1 hi(z) = 1, for all t ≥ 0.

Let

ẋ1 =
r∑

i=1

hi(z)Aix1, (2.2)

ẋ1 =
r∑

i=1

hi(z)Aix1 +
r∑

i=1

hi(z)ψi(x1, x2)x2, (2.3)

and

ẋ2 =
r∑

i=1

hi(z)(Cix2 + Biu). (2.4)

Let us consider the following assumptions.

(A1) The pairs (Ci,Bi) are controllable, for all i =
1, . . . , r.

Many published results, concerning the con-
trol of the fuzzy system, are based on the par-
allel distributed compensation (PDC) principle
[6, 9, 23]. In our case, the fuzzy cascaded sys-
tem is assumed to be locally controllable. The
design of the fuzzy controller shares the same
antecedent as the fuzzy cascaded system and
employs a linear state feedback control in the
consequent part. For each local dynamics the
controller is defined as

(A2) If z1 is Fi1 and . . . and zp is Fip then u =
−Kix2, where Ki ∈ R

q×m is the gain matrix.

Based on theses assumptions, each cascaded subsys-
tem is locally controllable and state feedback gains are
determined for every local cascaded system.

The goal of this paper is to find some conditions on
the ith interconnection term such that the closed-loop
fuzzy cascaded system (2.1) is globally asymptotically
stable. Notice that our stabilization analysis and design
assume that the ith interconnection term has a nonlin-
ear growth in x1 such that neither the ISS property nor
the linear growth condition in x1 are satisfied for (2.3).

2.1 Main results

Let us consider the following assumptions.

(H1) There exists a common positive symmetric def-
inite matrix P that satisfies the following in-
equality:

AT
i P + PAi < 0, for all i = 1, . . . , r.
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Remark 2.1 Note that assumption (H1) may be very
severe because all local models seem to be stable. But
readers should not forget that in this paper not all non-
linearities are transformed into the matrices Ai. In-
deed, the term ψi may include unbounded nonlineari-
ties, or bounded ones, such that only the stable part of
the model is included in Ai.

(H2) There exist positive symmetric and definite ma-
trices P, Q̃ii and Q̃ij (i < j), such that the fol-
lowing inequalities [12] hold:

ϒii < −Q̃ii , for all i = 1, . . . , r,

and

ϒij + ϒji < −Q̃ij − Q̃ji , 1 ≤ i < j ≤ r,

where ϒij = (Ci −BiKj )
T P̃ + P̃ (Ci −BiKj ).

(H3) ‖ϕi(x1, x2)‖ ≤ Gi(x2)Hi(x1), such that: for
i = 1, . . . , r, Hi is a positive bounded function
and Gi is a positive continuous function with
Gi(0) = 0 and satisfies the local Lipschitz con-
dition.

Theorem 2.1 Under assumptions (H1), (H2), and
(H3), the system (2.1) in closed loop with the feedback
u(x1, x2) = −∑r

i=1 hi(z)Kix2 is globally asymptoti-
cally stable.

Remark 2.2 Using as Lyapunov function the candidate
V (x1) = xT

1 Px1 for the system (2.3), it is easy to see
that the system (2.2) is globally asymptotically stable.

Proof Consider the Lyapunov function candidate
Ṽ (x2) = xT

2 P̃ x2 for the subsystem (2.4). Its derivative
with respect to time is given by

˙̃V (x2) = ẋT
2 P̃ x2 + xT

2 P̃ ẋ2

= xT
2

r∑
i=1

h2
i (z)ϒiix2

+ xT
2

∑
i<j

hi(z)hj (z)(ϒij + ϒji)x2

≤ −xT
2

r∑
i=1

h2
i (z)Q̃iix2

− xT
2

∑
i<j

hi(z)hj (z)(Q̃ij + Q̃ji)x2.

Let δ = inf{λmin(Qij ), i, j = 1, . . . , r}; λmin denotes
the smallest eigenvalue of the matrices Qij , i, j =
1, . . . , r .

Then

˙̃V (x2) ≤ −δ

r∑
i=1

r∑
j=1

hi(z)hj (z)‖x2‖2

≤ −δ‖x2‖2,

which implies that the closed-loop system (2.4) is
globally exponentially stable, uniformly on x1, with
u = −∑r

i=1 hi(z)Kix2, and x2 verifies the following
estimation:

∥∥x2(t)
∥∥ ≤ λ

1
2
max(P )

λ
1
2
min(P )

∥∥x2(0)
∥∥ exp

(
− δ

2λmax(P )
t

)
,

for all t ≥ 0.

Then, taking into account the above estimation and the
fact that the system (2.2) is globally asymptotically
stable, it suffices to prove the boundedness of the com-
ponent x1(t) of any trajectory (x1(t), x2(t)), t ≥ 0, of
the system (2.1).

Suppose that ‖x1‖ > c, where c > 0, i.e., x1 is un-
bounded. The derivative of V along the trajectories of
system (2.3) is given by

V̇ (x1) = ∇V (x1)

(
r∑

i=1

hi(z)Aix1

)

+ ∇V (x1)

(
r∑

i=1

hi(z)ϕi(x1, x2)

)

≤ ∇V (x1)

(
r∑

i=1

hi(z)ϕi(x1, x2)

)

≤ ∥∥∇V (x1)
∥∥ r∑

i=1

∥∥ϕi(x1, x2)
∥∥.

Since

λmin(P )‖x1‖2 ≤ V (x1) = xT
1 Px1 ≤ λmax(P )‖x1‖2,

and

∥∥∇V (x1)
∥∥ ≤ 2λmax(P )‖x‖,
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we have

∥∥∇V (x1)
∥∥ ≤ 2

λmax(P )

λ
1
2
min(P )

V
1
2 (x1).

Also, we have
∥∥ϕi(x1, x2)

∥∥ ≤ Gi(x2)Hi(x1),

and then

V̇ (x1) ≤ 2
λmax(P )

λ
1
2
min(P )

V
1
2 (x1)

r∑
i=1

Gi(x2)Hi(x1).

Since, for all i = 1, . . . , r , Hi is bounded, there exists
M > 0, such that ‖Hi(x1)‖ ≤ M , for all x1 and for all
i = 1, . . . , r.

It follows that

V̇ (x1) ≤ 2M
λmax(P )

λ
1
2
min(P )

V
1
2 (x1)

r∑
i=1

Gi(x2).

Thus,

dV (x1)

V 1
2 (x1)

≤ 2M
λmax(P )

λ
1
2
min(P )

r∑
i=1

Gi(x2) dt.

Integrating between 0 and t , one obtains for all t ≥ 0,

∫ t

0

dV (x1)

2V 1
2 (x1)

≤ M
λmax(P )

λ
1
2
min(P )

r∑
i=1

∫ t

0
Gi(x2) ds.

This implies that

V
1
2 (x1) ≤ 2M

λmax(P )

λ
1
2
min(P )

r∑
i=1

∫ t

0
Gi(x2) ds.

We prove that
∫ t

0 ‖Gi(x2(t))‖ds < ∞, for all t ≥ 0
and for all i = 1, . . . , r.

Using the fact that Gi satisfies the local Lipschitz
condition, there exists for all i = 1, . . . , r , a neighbor-
hood of 0, Vi(0), where Gi satisfies the Lipschitz con-
dition.

Let

W =
r⋂

i=1

Vi(0).

Then, there exists T ≥ 0 such that x2(t) ∈ W for all
t ≥ T .

Let ξi, i = 1, . . . , r, is the Lipschitz constant which
is associated to Gi.

Therefore, for all t ≥ T we have

∫ t

T

∥∥Gi

(
x2(t)

)∥∥ds

≤ ξi

∫ t

T

∥∥x2(t)
∥∥ds

≤ ξi

λ
1
2
max(P )

λ
1
2
min(P )

∥∥x2(0)
∥∥∫ t

T

exp

( −δ

2λmax(P )
t

)
ds < ∞.

It follows that for all t ≥ 0,

∫ t

0

∥∥Gi

(
x2(t)

)∥∥ds =
∫ T

0

∥∥Gi

(
x2(t)

)∥∥dt

+
∫ t

T

∥∥Gi

(
x2(t)

)∥∥ds < ∞.

We deduce that V (x1) is bounded. It follows that x1

must be bounded. Hence, the system (2.1) in closed
loop with the feedback u(x1, x2) = −∑r

i=1 hi(z)Kix2

is globally asymptotically stable. �

Now, dropping the locally Lipschitz condition of the
function Gi, other additional conditions have to be
taken into account.

Then let us assume the following assumptions.

(H′
1) There exist positive symmetric definite matri-

ces P and Qi such that the following inequality
holds for all i = 1, . . . , r :

AT
i P + PAi < −Qi.

(H′
2) There exists a common positive symmetric def-

inite matrix P̃ that satisfies the following in-
equalities:

ϒii < 0, for all i = 1, . . . , r,

and

ϒij + ϒji < 0, 1 ≤ i < j ≤ r.

(H′
3) ‖ϕi(x1, x2)‖ ≤ Gi(x2)Hi(x1), such as: for i =

1, . . . , r, Hi is a positive continuous bounded
function and Gi is a positive continuous func-
tion with Gi(0) = 0.
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Theorem 2.2 Under the assumptions (H′
1), (H′

2),

and (H′
3), the system (2.1) in closed loop with the

feedback u(x1, x2) = −∑r
i=1 hi(z)Kix2 is globally

asymptotically stable.

Remark 2.3 Also we can see as Lyapunov function the
candidate V (x1) = xT

1 Px1 for the system (2.3). The
derivative of V along the trajectories of system (2.3)
satisfies

V̇ (x1) ≤ −
r∑

i=1

λmin(Qi)‖x1‖2.

It means that the system (2.2) is globally asymptoti-
cally stable.

Proof By (H′
2), the subsystem (2.4) is globally

asymptotically stable, uniformly on x1.

Since, for all i = 1, . . . , r, Hi is a positive continu-
ous bounded function, there exists a positive constant
M > 0 such that
∥∥Hi(x1)

∥∥ ≤ M, for all i = 1, . . . , r and for all x1.

Since, the equilibrium of (2.4) is globally asymptoti-
cally stable, uniformly on x1, there exists T > 0 such
that

Gi(x2) ≤
∑r

i=1 λmin(Qi)

4rMλmax(P )
,

for all t > T and for all i = 1, . . . , r,

where λmin(Qi) denotes the smallest eigenvalue of the
matrices Qi for all i = 1, . . . , r, and λmax(P ) denotes
the largest eigenvalue of the matrix P.

Consider the Lyapunov function candidate V (x1) =
xT

1 Px1 for the system (2.3). Its derivative with respect
to time is given by

V̇ (x1) = ∇V (x1)

(
r∑

i=1

hi(z)Aix1

)

+ ∇V (x1)

(
r∑

i=1

hi(z)ϕi(x1, x2)

)
.

Suppose that

‖x1‖ > c, where c > 0.

On the one hand, we have
∥∥∇V (x1)

∥∥ ≤ 2λmax(P )‖x1‖.

Thus,

V̇ (x1) ≤ −
r∑

i=1

λmin(Qi)‖x1‖2 + 1

2

r∑
i=1

λmin(Qi)‖x1‖2,

for all t > T and ‖x1‖ > max(1, c).

It follows that V (x1) is bounded for ‖x1(t)‖ >

max(1, c) and t > T . If ‖x1(t)‖ ≤ max(1, c) for
t > T , V (x1) is bounded by definition. Then V (x1)

is bounded for all t > T .

On the other hand, we can see that

V̇ (x1) = ∇V (x1)

(
r∑

i=1

hi(z)Aix1

)

+ ∇V (x1)

(
r∑

i=1

hi(z)ϕi(x1, x2)

)

≤ ∥∥∇V (x1)
∥∥ r∑

i=1

Gi(x2)Hi(x1)

≤ 2Mλmax(P )‖x1‖
r∑

i=1

Gi(x2).

Thus,

V̇ (x1) ≤ 2Mλmax(P )

λ
1
2
min(P )

V
1
2 (x1)

r∑
i=1

Gi(x2).

It follows that
∫ τ

0

dV (x1(t))

2V 1
2 (x1(t))

≤ Mλmax(P )

λ
1
2
min(P )

∫ τ

0

r∑
i=1

Gi

(
x2(t)

)
dt

≤ 2Mλmax(P )

λ
1
2
min(P )

bT , for 0 ≤ τ ≤ T ,

with b = maxτ∈[0,T ]
∑r

i=1 Gi(x2(τ )).

This implies that V (x1) is bounded for all t ∈
[0, T ].

This contradicts the fact that V is radially un-
bounded, so the component x1 of any trajectory
(x1(t), x2(t)), t ≥ 0 is bounded for all t ≥ 0. Then
the system (2.1) in closed loop with the feedback
u(x1, x2) = −∑r

i=1 hi(z)Kix2 is globally asymptot-
ically stable. �

Remark 2.4 The conclusion that we can obtain from
Theorem 2.1 and Theorem 2.2 is that the ith intercon-
nection term has a nonlinear bounded function on x1.
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Then the question which can be asked is: are these re-
sults valuable when the ith interconnection term has
unbounded functions on x1?

Example 2.1 We consider the following planar sys-
tem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ11 = −2x11 − 1
π
x11 log(x2

11
+ x2

12
) arctan(x11)x21

ẋ12 = x11 arctan(x11) − x12

+ 1
2x12 log(x2

11
+ x2

12
)x22

ẋ21 = −x22 − u

ẋ22 = −2x22 + x21 arctan(x11) − u.

(2.5)

Let
{

ẋ11 = −2x11

ẋ12 = x11 arctan(x11) − x12 .
(2.6)

⎧⎪⎪⎨
⎪⎪⎩

ẋ11 = −2x11 − 1
π
x11 log(x2

11
+ x2

12
) arctan(x11)x21

ẋ12 = x11 arctan(x11) − x12

+ 1
2x12 log(x2

11
+ x2

12
)x22 .

(2.7)

{
ẋ21 = −x22 − u

ẋ22 = −2x22 + x21 arctan(x11) − u.
(2.8)

Let x1 = [x11 x12]T and x2 = [x21 x22]T .

It is clear to see that neither the ISS property nor
the linear growth condition in x1 are verified for (2.7).

Using the idea of the sector nonlinearity, one can
represent exactly the system by the following two-rule
model:

Rule 1: If z is F11 then

{
ẋ1 = A1x1 + ψ1(x1, x2)x2

ẋ2 = C1x2 + B1u

Rule 2: If z is F21 then

{
ẋ1 = A2x1 + ψ2(x1, x2)x2

ẋ2 = C2x2 + B2u

where

A1 =
[−2 0
−π

2 −1

]
, A2 =

[−2 0
π
2 −1

]
,

C1 =
[

0 −1
−π

2 −2

]
, C2 =

[
0 −1
π
2 −2

]
,

B1 = B2 =
[−1
−1

]
,

F11 =
π
2 − arctan(x11)

π
and

F21 = arctan(x11) + π
2

π
.

We define the membership functions as

h1(x1) =
π
2 − arctan(x11)

π
and

h2(x1) = arctan(x11) + π
2

π
.

Using an LMI optimization algorithm, we obtain

P =
[

13.2640 0.0000
0.0000 12.6093

]

and the following matrices:

Q1 = 103 ×
[

4.6671 1.6563
1.6563 2.0048

]
,

Q2 = 103 ×
[

4.6671 −1.6563
−1.6563 2.0048

]
.

By taking V (x1) = xT
1 Px1 as a Lyapunov function

candidate for (2.6), it is easy to show that the system
(2.6) is globally asymptotically stable.

Now, for each subsystem in (2.8), we assume that
the following rules are given:

Rule 1: If z is F11 then u(t) = −K1x2

and

Rule 2: If z is F21 then u(t) = −K2x2,

where

K1 = [−2.3463 1.6400
]

and

K2 = [−2.9843 1.4334
]
,

and w have the following optimization results:

P̃ =
[

0.0873 −0.0026
−0.0026 0.0173

]
,
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Q̃11 =
[

0.1903 0.0027
0.0027 0.0070

]
,

Q̃22 =
[

0.2525 −0.0111
−0.0111 0.0101

]
,

Q̃12 =
[

0.2981 −0.0057
−0.0057 0.0120

]
, and

Q̃21 =
[

0.2981 −0.0057
−0.0057 0.0120

]
.

It follows that the closed-loop system (2.8) is globally
exponentially stable, uniformly on x1, with the feed-
back law u(x1, x2) = −∑2

i=1 hi(z)Kix2.

Let

ψ1(x1, x2)

=
[

1
2x11 log(x2

11
+ x2

12
) 0

0 1
2x12 log(x2

12
+ x2

11
)

]

and

ψ2(x1, x2)

=
[
− 1

2x11 log(x2
11

+ x2
12

) 0
0 1

2x12 log(x2
11

+ x2
12

)

]
.

We can see that ‖ψ1(x1, x2)‖ = ‖ψ2(x1, x2)‖ ≤
1
2 (|x11 | + |x12 |)| log(x2

11
+ x2

12
)|, having a nonlinear

unbounded function on x1. Thus, (H3) and (H′
3) are

not satisfied. Then, we cannot apply the above theo-
rems. Nevertheless, it is easy to prove that this system
in closed loop with u(x1, x2) = −∑2

i=1 hi(z)Kix2

can be globally asymptotically stable. In the follow-
ing we will present a more general result to cover the
situation discussed in this example.

First of all, we suppose that (H1) holds. Then we
consider the Lyapunov function candidate

V (x1) = xT
1 Px1

for the system (2.3).
One can state the following assumption.

(H′′
3) There exists c > 0, such that for all i = 1, . . . , r,

∇V (x1)
(
hi(z)ϕi(x1, x2)

) ≤ Gi(x2)Hi

(
V (x1)

)
,

for all ‖x1‖ ≥ c,

where Hi : [0,+∞[→ R, is a continuous function sat-
isfying
⎧⎨
⎩

∫ ∞
a

ds∑r
i=1 Hi(s)

= ∞, for some a > 0,

Hi(V (x1)) > 0, for all ‖x1‖ > c,

and Gi is a continuous function with Gi(0) = 0 and
satisfies the local Lipschitz condition.

Then we have the following theorem.

Theorem 2.3 Under assumptions (H1), (H2) and
(H′′

3), the system (2.1) in closed loop with the
feedback u(x1, x2) = −∑r

i=1 hi(z)Kix2 is globally
asymptotically stable.

Proof Using the same idea as Theorem 2.1, we proof
that
∫ +∞

0

∥∥Gi

(
x2(t)

)∥∥dt < ∞, for all i = 1, . . . , r.

Now, we suppose that x1 is unbounded. The derivative
of V along the trajectories of system (2.3) is given by

V̇ (x1) = ∇V (x1)

(
r∑

i=1

hi(z)Aix1

)

+ ∇V (x1)

(
r∑

i=1

hi(z)ϕi(x1, x2)

)

≤ ∇V (x1)

(
r∑

i=1

hi(z)ϕi(x1, x2)

)

≤
r∑

i=1

Gi(x2)Hi(x1), for all ‖x1‖ ≥ c.

Let t1 < t̄1 < t2 < t̄2 < · · · < tk < t̄k < · · · be the time
values such that ‖x1‖ ≥ c, for all t ∈ [tk, t̄k] and for all
k = 1,2, . . . .

Then,

+∞∑
k=1

∫ t̄k

tk

dV (x1(t))∑r
i=1 Hi(V (x1(t)))

≤
+∞∑
k=1

∫ t̄k

tk

r∑
i=1

Gi

(
x2(t)

)
dt

≤
∫ +∞

0

r∑
i=1

∥∥Gi

(
x2(t)

)∥∥dt.
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Since x1 is unbounded, it is easy to see that for every
sufficient large integer N > 0, there exists an interval
IN = [tkN , t̄kN ] such that ‖x1‖ ≥ c for all t ∈ IN .

This implies that, for all N > 0,

∫ t̄kN

tkN

dV (x1(t))∑r
i=1 Hi(V (x1(t)))

≤
r∑

i=1

∫ +∞

0

∥∥Gi

(
x2(t)

)∥∥dt

< ∞.

This contradiction means that x1 must be bounded.
Then all the orbits of (2.3) are bounded. So, the sys-
tem (2.1) in closed loop with the feedback u(x1, x2) =
−∑r

i=1 hi(z)Kix2 is globally asymptotically sta-
ble. �

Let return to the example.
Since

∥∥∇V (x1)
∥∥ ≤ λmax(P )‖x1‖,

we have for all ‖x1‖ ≥ 1, and i = 1,2,

∇V (x1)
(
hi(z)ψi(x1, x2)x2

)
≤ λmax(P )‖x1‖2 log

(‖x1‖2)‖x2‖.

Moreover,

λmin(P ) = 12.6093 > 1;

then, by using the inequality

λmin(P )‖x1‖2 ≤ V (x1) = xT
1 Px1,

it follows that

∇V (x1)
(
hi(z)ψi(x1, x2)x2

)
≤ λmax(P )‖x1‖2 log

(
λmin(P )‖x1‖2)‖x2‖,

where λmin(P ) denotes the smallest eigenvalue of the
matrix P and λmax(P ) denotes the largest eigenvalue
of the matrix P.

Hence,

∇V (x1)
(
hi(z)ψi(x1, x2)x2

)

≤ λmax(P )

λmin(P )
V (x1) log

(
V (x1)

)‖x2‖.

One can get

G1(x2) = G2(x2) = λmax(P )

λmin(P )
‖x2‖

and

H1
(

V (x1)
)= H2

(
V (x1)

)= V (x1) log
(

V (x1)
)
.

Therefore, it is easy to see that
⎧⎨
⎩

∫ +∞
2

ds∑2
i=1 Hi(s)

= ∞
Hi(V (x1)) > 0, for all i = 1,2, and ‖x1‖ ≥ 1.

Fig. 1 Trajectories of the
closed-loop system
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Hence, the conditions of theorem (2.3) are satis-
fied. It follows that the closed-loop system (2.5)
is globally asymptotically stable with u(x1, x2) =
−∑2

i=1 hi(z)Kix2.

For simulation we select x(0) = [1,1,1,1]T as ini-
tial condition. The result of the simulation is depicted
in Fig. 1.

3 Conclusion

In this paper, we dealt with the analysis problem of
nonlinear cascaded systems. In particular, we have in-
terested in a class of TS fuzzy cascaded systems. We
have developed sufficient conditions to ensure global
asymptotic stability by using a fuzzy feedback law.
These results are far from complete, much work is
needed to pursue the conditions for the stability of TS
fuzzy cascaded systems.

Acknowledgement The authors wish to thank the reviewers
for their valuable and careful comments.
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