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Abstract This two-part paper uses graph transforma-
tion methods to develop methods for partitioning, ag-
gregating, and constraint embedding for multibody
systems. This first part focuses on tree-topology sys-
tems and reviews the key notion of spatial kernel op-
erator (SKO) models for such systems. It develops sys-
tematic and rigorous techniques for partitioning SKO
models in terms of the SKO models of the component
subsystems based on the path-induced property of the
component subgraphs. It shows that the sparsity struc-
ture of key matrix operators and the mass matrix for
the multibody system can be described using partition-
ing transformations. Subsequently, the notions of node
contractions and subgraph aggregation and their role
in coarsening graphs are discussed. It is shown that
the tree property of a graph is preserved after subgraph
aggregation if and only if the subgraph satisfies an ag-
gregation condition. These graph theory ideas are used
to develop SKO models for the aggregated tree multi-
body systems.
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1 Introduction

The investigation of the structural properties of multi-
body system dynamics remains an active area of re-
search. Graph techniques have been developed for the
systematic formulation of the equations of motion [20,
24, 28, 30]. The sparsity structure of the equations of
motion have been exploited to develop efficient dy-
namics computational algorithms [3, 7, 8, 23, 25]. Fur-
thermore, analytical techniques such as system-level
mass matrix factorization, and diagonalizing coordi-
nate transformations have also been explored [1, 2, 9,
18, 19, 26] to simplify the dynamics formulations.

Recently, graph techniques have been used to iden-
tify general structural properties of tree multibody
systems that underlie a broad family of analytical
techniques and low-order algorithms for the systems
[13–17]. It is seen that tree system dynamics can be
described using abstract spatial kernel operator (SKO)
models, and that several operator results including an-
alytical mass matrix inversion follow directly from the
SKO model structure—independent of the specific de-
tails of the system. Furthermore, these analytical re-
sults lead to a large family of low-order, scatter/gather
recursive computational algorithms for important dy-
namics problems.

This two-part paper, further develops graph theory
concepts and techniques for multibody system dynam-
ics subjected to partitioning and aggregation graph
transformations. Partitioning transformations decom-
pose the system graph into simpler component sub-

mailto:Abhi.Jain@jpl.nasa.gov


2780 A. Jain

graphs, while aggregation transformations collapse
one or more component subgraphs into nodes to ob-
tain coarser system graph representations. For exam-
ple, a tree-topology system can be decomposed into
a simpler tree of interconnected serial-chain segments
in the system. In other instances, decompositions can
reflect the natural structure of the system, e.g., a mo-
bile platform with robotic arms equipped with multi-
fingered hands for grasping and manipulating task ob-
jects. Applications of partitioning and decomposition
techniques in multibody dynamics include: hierarchi-
cal dynamics and control; assembly of the overall
equations of motion from those of simpler component
subsystems; organizing dynamics computations (e.g.,
mass matrix, forward dynamics) from those of the
component sub-systems for serial or parallel compu-
tations. Furthermore, partitioning techniques can help
identify the sparsity structure of key dynamics matri-
ces associated with the system dynamics that can be
exploited to improve computational efficiency.

The contributions of this part are in the use of graph
theory techniques to systematically study and derive
results on the effect of partitioning and aggregation
transformations on the SKO models for tree-topology
systems. We derive the explicit partitioned structure of
the system SKO model that is induced by partitioning
transformations of the system graph. Since subgraph
aggregation can destroy the tree graph structure, we
derive rigorous sufficient conditions for tree structure
preservation after the application of aggregation trans-
formations. Preservation of the tree-topology structure
leads to the natural question about the structure of the
SKO model for the aggregated system. We derive ex-
plicit expressions for these aggregated SKO models.
Our focus on SKO models is motivated by the easy
availability of the large family of analytical and al-
gorithmic techniques for these models. Furthermore,
we show how the sparsity structure of key matrices
and operators associated with tree-topology systems
can be completely understood by applying the parti-
tioning techniques developed in this paper. Part 2 of
this paper [12] applies the aggregation transformation
ideas developed here to develop constraint embedding
techniques that extend the notion of SKO models to
non-tree topology multibody systems.

The paper is organized as follows. Section 2 pro-
vides an overview of key graph theory ideas and the
notion of SKO models. Section 3 focuses on partition-
ing transformations for SKO models. Toward this, the

graph theory concepts of induced and path-induced
subgraphs are introduced and their role in partitioning
of abstract graphs is discussed. These ideas are used to
partition dynamics models for tree multibody systems
in Sect. 4. Section 5 studies the notion of subgraph ag-
gregation for coarsening graphs. These ideas are sub-
sequently used to apply aggregation transformations
to dynamics models in Sect. 6. The aggregation tech-
niques are then used to analyze the sparsity structure
of the SKO model operators as well as the mass matrix
in Sect. 7. The second part of this two-part paper uses
the techniques derived here to develop a constraint-
embedding technique that extends the notion of SKO
models to nontree multibody systems.

2 Background: SKO models for tree multibody
systems

Directed graphs (digraphs) provide natural mathemati-
cal constructs for describing the topology and connec-
tivity of bodies in a multibody system. This section
contains a brief review of key graph concepts and their
use for multibody dynamics modeling.

2.1 Directed graphs and trees

A graph is a collection of nodes, and edges connect-
ing pairs of nodes. A directed graph (also known as
a digraph) is a graph where the edges have direction,
i.e., an edge from one node to another is not the same
as an edge in the reverse direction [27]. Each edge in a
digraph defines a parent/child relationship between the
node pair of that edge. Nodes defining an edge are said
to be adjacent nodes. The node from which the edge
emanates is referred to as the parent node, and the
destination node is said to be the child node. The set
of parent nodes of the kth node is denoted ℘(k), and
the set of its children nodes is �(k). Nodes without par-
ent nodes are referred to as root nodes. Digraphs can
have zero, one, or multiple root nodes. We assume that
there is at most a single edge in the same direction be-
tween any pair of nodes, i.e., parallel edges between a
pair of nodes are not allowed.

A node, j , is said to be the ancestor of another
node, i, if there is a directed path from the node j

to the node i. We use the notation i ≺ j (or equiva-
lently j � i) to indicate that node j is an ancestor of
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Fig. 1 The correspondence
between a tree-topology
multibody system and its
standard tree digraph.

node i. The notation i ⊀ j implies that node j is not
an ancestor of node i. Node i is said to be the descen-
dant of node j if j is an ancestor of node i. A pair of
nodes, i and j , are said to be related if one of them is
the ancestor of the other; otherwise they are said to be
unrelated.

1. A connected digraph is a digraph such that there
is an undirected path connecting any pair of nodes,
i.e., it is a digraph without disjoint components.

2. A rooted digraph is a connected digraph with a
single root node that is the ancestor of every other
node in the digraph.

3. A directed acyclic graph (DAG) is a connected
digraph without any directed cycles, i.e., there is
no directed path from any node back to itself.

4. A simply connected graph, or a polytree is a DAG
in which nodes are not multiply connected, i.e.,
there is at most one directed path between any pair
of nodes.

5. A tree, is a polytree where a node has at most one
parent node, i.e., ℘(k) contains at most one node
for any node k. All trees have a unique root node.

6. A serial-chain is a tree where each node has at
most one child. Unlike trees, serial-chains have the
stronger property that all node pairs are related, i.e.,
for any pair of nodes in the serial-chain, one of the
nodes is necessarily an ancestor of the other.

7. A forest is a collection of disjoint trees. Removing
an edge or a node from a tree converts it into a for-
est. Adding a common root node to the independent
trees in a forest converts them into a single tree.

A tree is said to be canonical1 if the index of a par-
ent node is always greater than the index of its child
node, i.e., ℘(k) > k for any node k. Every rooted di-
graph has a spanning tree, i.e., a tree that contains all
the nodes in the digraph and whose edges belong to
the digraph. The edges removed to convert a rooted
digraph into its spanning tree are referred to as cut-
edges. The adjacency matrix, S, for a digraph with n

nodes is an n × n matrix where the (k, j) element is 1
if there is an edge between the kth and j th nodes, and
zero otherwise.

2.2 Multibody digraphs

The standard digraph for a multibody system is a di-
graph with the inertial frame as the root node, and all
the links in the system as the remaining nodes in the
digraph. Thus, an n-link multibody system has a stan-
dard digraphwith n + 1 nodes.

The edges in the digraphare defined by the motion
constraints among the bodies, and between the bodies
and the inertial frame. Thus, each hinge is represented
by an edge, with the edges oriented from the inboard
to the outboard body. Additional edges are assigned to
other nonhinge motion constraints in the system. All
motion constraints with respect to the inertial frame
are defined so that edges from the inertial frame node
to the link nodes are directed away from the inertial
frame root node. These assignments result in a rooted
digraph representation for the multibody system. Fig-
ure 1 illustrates the tree multibody system and its stan-

1More precisely, the canonical property of a tree depends only
on the way indices are assigned to the nodes, and not the topo-
logical structure of the tree itself.



2782 A. Jain

dard digraph. The convention is to depict the inertial
frame node as unfilled, and the edges from the node as
dashed lines. Multibody systems are classified as fol-
lows, based on the topology of their standard digraph:

• systems with tree standard digraphs are referred to
as tree-topology systems;

• systems with serial-chain standard digraphs are re-
ferred to as the familiar serial-chain systems. They
are special cases of tree-topology systems;

• systems with nontree standard digraphs are referred
to as closed-chain or constrained systems. These
digraphs can have directed cycles and/or multiply-
connected nodes. Recall that every rooted digraph
can be decomposed (nonuniquely) into a spanning
tree together with a set of cut-edges. A decompo-
sition into a spanning tree with n + 1 nodes and a
set of cut-edges is often used when working with
closed-chain systems.

2.3 Equations of motion for tree-topology, rigid body
systems

Consider a canonical n-link rigid body serial-chain
system. The tip link is denoted link 1 and the base-
body link as link n. The associated serial-chain tree as-
sociated with this graph is a strictly canonical tree with
the parent/child relationship given by ℘(k) = k + 1.

Using 6-dimensional spatial coordinate-free nota-
tion with V(k) ∈ R6 denoting the spatial velocity (an-
gular and linear) of the kth link, θ̇̇̇(k) the kth hinge
generalized velocities, H ∗(k) the kth hinge map ma-
trix, l(k + 1, k) the vector between the (k + 1)th and
kth body frames, and

φ∗(k + 1, k) =
(

I l̃(k + 1, k)

0 I

)
∈ R6×6 (1)

the rigid body transformation matrix, the link-to-link
spatial velocity relationship between the (k + 1)th
links and its child body k can be expressed as [7, 11]:

V(k) = φ∗(k + 1, k)V(k + 1) + H ∗(k)θ̇̇̇(k) (2)

The overall velocity degrees of freedomfor the system
is denoted N and is defined as the sum of all the indi-
vidual hinge degrees of freedom.

Now, we introduce stacked vectors needed to de-
fine system level relationships. The stacked vectors V

and θ are defined as

V
�= col

{
V(k)

}n

k=1 =

⎡
⎢⎢⎢⎣

V(1)

V(2)
...

V(n)

⎤
⎥⎥⎥⎦ ∈ R6n, and

θ
�= col

{
θ(k)

}n

k=1 =

⎡
⎢⎢⎢⎣

θ(1)

θ(2)
...

θ(n)

⎤
⎥⎥⎥⎦ ∈ RN (3)

The V stacked vector consists of the component body-
level V(k) spatial velocity vectors combined into a sin-
gle large vector. Correspondingly, the θ stacked vector
consists of the component body-level θ(k) generalized
coordinates combined into a single large vector. The
link-level (2) relationship can now be expressed equiv-
alently at the system level [11] as

V = E ∗
φV + H ∗ θ̇̇̇ (4)

where the spatial operator Eφ ∈ R6n×6n is defined as

Eφ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
φ(2,1) 0 . . . 0 0

0 φ(3,2) . . . 0 0
...

...
. . .

...
...

0 0 . . . φ(n,n − 1) 0

⎞
⎟⎟⎟⎟⎟⎠

=
n−1∑
k=1

ek+1φ(k + 1, k)e∗
k (5)

ek ∈ R6n×6 denotes a block-vector containing zero en-
tries except for the kth slot which is a 6 × 6 identity
matrix. The block-diagonal H ∈ RN×6n spatial oper-
ator is defined as follows:

H
�= diag

{
H(k)

}n

k=1

=

⎛
⎜⎜⎜⎝

H(1) 0 . . . 0
0 H(2) . . . 0
...

...
. . .

...

0 0 . . . H(n)

⎞
⎟⎟⎟⎠ ∈ RN×6n (6)

The Eφ spatial operator is in fact a BWA2 matrix for
the system digraph, and is referred to as a spatial ker-

2A block-weighted adjacency (BWA) matrix [14] for a di-
graph is its adjacency matrix with block matrix entries. The
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nel operator (SKO) for the system [14]. Observe that
(4) is an implicit equation with V appearing on the
both sides. However, it is explicit at the component-
level, i.e., if we look at the kth row of this matrix equa-
tion, we obtain back the explicit (2) form.

The key difference between serial-chain and tree-
topology multibody systems is that, in a tree system,
bodies can have multiple children bodies. Examining
the kinematic velocity relationships across the links,
the interlink velocity relationship in (2) generalizes as
follows for bodies in a tree-topology system:

V(k) = φ∗(℘(k), k
)
V
(
℘(k)

) + H ∗(k)θ̇̇̇(k) (7)

That is, the spatial velocity of the kth link can be ex-
pressed as the sum of the rigidly propagated spatial
velocity of the parent body and the relative spatial ve-
locity, H ∗(k)θ̇̇̇(k), across the kth hinge. Defining the
V and θ̇̇̇ stacked vectors and the H spatial operator in
the same way as shown earlier, it is easy to verify that
the following operator expression is a system-level re-
arrangement of the component-level velocity relation-
ship in (7)

V = E ∗
φV + H ∗ θ̇̇̇ (8)

with Eφ is defined more generally as [13, 15]

Eφ =
n∑

k=1

e℘(k)φ
(
℘(k), k

)
e∗
k (9)

The Eφ SKO operator continues to be a BWA ma-
trix for the system digraph. This time, the φ(℘ (k), k)

matrices are its 6 × 6 weight matrices. Observe that
(4) and (8) have identical form, even though the for-
mer was derived specifically for a canonical serial-
chain system, while the latter holds for arbitrary tree-
topology systems.

For trees, Eφ is nilpotent3 and, therefore, has a well-
defined 1-resolvent,4 φ = (I − Eφ)−1 [14]. φ is re-
ferred to as the spatial propagation operator (SPO)
associated with the Eφ SKO operator. Equation (8) can

(k, j) element of a BWAmatrix is a mk × mj weight matrix,
w (j, k), when there is an edge between the kth and j th nodes.
Here, mk denotes the weight dimension associated with the kth
link.
3A matrix A is nilpotent if An = 0 for some finite n.
4A 1-resolvent of a matrix A is defined as the (I−A)−1 matrix.

thus be transformed into the following explicit form:

V = (
I − E ∗

φ

)−1
H ∗ θ̇̇̇ = φ∗H ∗ θ̇̇̇ (10)

Differentiating the above leads to the following ex-
pression for the link spatial accelerations α:

α = φ∗H ∗ θ̈̈̈ + a (11)

where a denotes the state-dependent Coriolis acceler-
ation stacked vector.

With f(k) ∈ R6 denoting the interbody interaction
spatial force between the parent ℘(k) and the kth
links, the following is the force balance expression for
the kth body in a tree-topology system:

f(k) −
∑

∀j∈�(k)

φ(k, j)f(j) = M(k)α(k) + b(k) (12)

where M(k) ∈ R6×6 is the kth link spatial inertia and
b(k) is the state-dependent gyroscopic spatial force for
the kth body. Switching to the system-level stacked
vector form, we obtain

f = Eφf + Mα + b (13)

where M is a block-diagonal spatial operator with link
spatial inertias along the diagonal, and b is the state-
dependent stacked vector of gyroscopic terms. Contin-
uing in this mode, the following expressions summa-
rize the equations of motion for tree-topology systems:

V
(8)= E ∗

φV + H ∗ θ̇̇̇

α = E ∗
φα + H ∗ θ̈̈̈ + a

f
(13)= Eφf + Mα + b

T = H f

(14)

T is the stacked vector of generalized forces. Using
φ = (I − Eφ)−1, these expressions can be transformed
from implicit ones into the following explicit operator
expressions:

V = φ∗H ∗ θ̇̇̇

α = φ∗(H ∗ θ̈̈̈ + a)

f = φ(Mα + b)

T = H f

(15)
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Combining the expressions in (15) leads to

T = M(θ)θ̈̈̈ + C(θ, θ̇̇̇) (16)

where

M(θ) = HφMφ∗H ∗ ∈ RN×N and

C(θ, θ̇̇̇)
�= Hφ(Mφ∗

a + b) ∈ RN (17)

M ∈ RN×N denotes the mass matrix for the tree-
topology system, and C ∈ RN is the vector nonlinear
Coriolis and gyroscopic velocity dependent terms.

2.4 SKO models for tree systems

References [13–15] have shown that SKO and SPO
operators such as Eφ and φ occur in internal-coordinate
tree multibody kinematics and dynamics formulations.
The occurrence of these operators is invariant to spe-
cific details such as body indexing, rigid/flexible links,
regular or flexible/geared joints etc. Only the details of
the weight matrices change with the system—not the
SKO and SPO 1-resolvent properties. In general, the
weight matrices can be nonsquare, noninvertible, and
of nonuniform size. We formalize this general prop-
erty with the definition of SKO models for multibody
systems.

An SKO model for an n-links tree-topology multi-
body system consists of the following:

1. A tree digraph reflecting the bodies and their con-
nectivity in the system.

2. An EA SKO operator and associated SPO operator,

A
�= (I − EA)−1.

3. A full-rank block-diagonal, joint map matrix oper-
ator, H .

4. A block-diagonal and positive-definite spatial iner-
tia operator, M .

5. Stacked vectors: θ̇̇̇ denoting independent general-
ized velocities, T the generalized forces, V the node
velocities, α the node accelerations, f the interbody
forces, a the body Coriolis accelerations, b the
body gyroscopic forces, N the number of degrees
of freedom, and equations of motion defined as:

V = A∗H ∗ θ̇̇̇

α = A∗(H ∗ θ̈̈̈ + a)

f = A(Mα + b)

T = H f

(18)

Thus,

T = M(θ)θ̈̈̈ + C(θ, θ̇̇̇) (19)

where

M(θ)
�= HAMA∗H ∗ ∈ RN×N and

C(θ, θ̇̇̇)
�= HA(MA∗

a + b) ∈ RN
(20)

M is the symmetric and positive-definite mass ma-
trix for the tree system and C is the vector of non-
linear Coriolis and gyroscopic velocity dependent
terms. Equation (20) is the Newton–Euler operator
factorization of the mass matrix.

SKO models are also referred to by the (H,A,M)

triplet of operators that define them.
References [13, 15] show that several analytical

techniques and efficient algorithms follow directly
from the SKO model structure for multibody systems.
Examples of these include:

• Recursive O(N) procedures for computing SPO op-
erator and stacked vector products.

• General O(N) Newton–Euler inverse dynamics al-
gorithms.

• Solutions for the forward Lyapunov equations and
decomposition of AXB∗ operator product.5

• General O(N2) algorithm for computing the mass
matrix.

• Solution for the backward Lyapunov equations and
decomposition of A∗XB operator product.

• Recursive algorithms for computing the A∗XB op-
erator product.

• The general O(N) articulated body inertia solution
of the Riccati equation.

• The alternative Innovations Operator Factorization
of the mass matrix.

• An analytical expression for the inverse of the mass
matrix.

• The analytical expression for the determinant of the
mass matrix.

• The general O(N) AB forward dynamics algorithm.

These results require no assumptions on the SKO
model regarding the SKO weight matrices, the compo-
nents of the other spatial operators, or the structure of

5Here, A and B denote an arbitrary pair of SPO operators, and
X a compatible block diagonal matrix, for the SKO model.
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Fig. 2 Examples of a
subgraph S and its induced
and path-induced
sub-graphs SI and SP ,
respectively

the tree digraph. Thus, any multibody system formula-
tion satisfying the requirements of the SKO model has
available to it the full spectrum of these techniques and
efficient algorithms.

3 Partitioning digraphs

In this section, we study the partitioning of SKO mod-
els for tree multibody systems. We begin with a dis-
cussion of partitioning concepts from graph theory and
subsequently apply them to multibody systems.

A subgraph S of a digraph, T, is defined as a di-
graph containing a subset of the nodes and edges in T.
S is said to be induced if all edges in T connecting
node pairs in S are also in S [4, 27]. In other words,
S is induced if all node pairs in S that are adjacent
in T are also adjacent in S. Thus, induced subgraphs
preserve the adjacency property for node pairs, so that
a pair of nodes in an induced subgraph are adjacent
if and only if they are adjacent in the parent digraph.
The induced subgraph SI for a subgraph S is the
minimal subgraph containing S that is also an induced
subgraph. A subgraph, and its induced subgraph, con-
tain the same nodes, and differ only in the edges they
contain.

A subgraph S of T is said to be path-induced if
it contains all the paths (nodes and edges) in T that
connect node pairs in S. A path-induced subgraph has
no missing nodes or edges for paths in T that con-
nect the nodes in S. Thus path-induced sub-graphs
preserve the relatedness property for node pairs, so
that a pair of nodes in a path-induced subgraph are
related if and only if they are related in the parent
digraph. The path-induced subgraph SP for a sub-
graph S is the minimal subgraph of T containing S

that is path-induced. Figure 2 illustrates a subgraph,
and its induced and path-induced subgraphs. The path-
induced property applies even to disconnected sub-

graphs. A path-induced subgraph, will generally con-
tain more nodes and edges than the original subgraph
or its induced subgraph. That is,

S ⊆ SI ⊆ SP (21)

The following corollary shows that nontree path-
induced sub-graphs are “complete”, in the sense that
if such a subgraph contains part of a loop, then it must
necessarily contain all the nodes and edges in the full
loop, or, if it contains multiply-connected nodes, then
all nodes and edges on paths connecting these nodes
must also belong to the subgraph.

Corollary 3.1 (Non-tree path-induced sub-graphs)
Let S be a path-induced subgraph of a digraph T.

1. If S contains an edge that is a part of a directed
cycle in T, then the full cycle must also be in S.

2. If S contains a pair of multiply-connected nodes
(i.e., nodes connected by more than one path), then
all the paths connecting them must also be in S.

Proof

1. Since a directed cycle containing an edge, repre-
sents a directed path connecting the node pair for
the edge, the path (and the cycle) must belong to S

since it is path-induced.
2. Similarly, all paths connecting a pair of nodes in

S must be in the subgraph since it is path-induced,
and the result follows.

�

3.1 Partitioning by path-induced subgraphs

We now turn our attention to partitioning of digraphs.
The following lemma shows that path-induced sub-
graphs are special in that they partition digraphs
into component sub-graphs that are themselves path-
induced.
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Fig. 3 Illustration of the
disjoint partitioning of a T

tree by a path-induced
sub-forest S into parent P,
and child C path-induced
sub-forests

Lemma 1 (Induced partitions of digraphs) Assume
that S is a path-induced subgraph of a digraph T. De-
fine the C and P sub-graphs as follows:

• C child subgraph is the induced subgraph for the
set of nodes that are not in S, but are descendants
of the nodes in S, and

• P parent subgraph is the induced subgraph for the
remaining nodes that are neither in S nor in C.

The S, C and P subgraphs represent a disjoint par-
titioning of the nodes in T. The following properties
hold for the C and P subgraphs:

1. C is path-induced.
2. P is path-induced.

Proof

1. Assume that there are nodes i � j � k where i,

k ∈ C. Since j is a descendant of i, it must belong
to either S or C. We will show that node j must
necessarily belong to C. First, since i ∈ C, by defi-
nition there is a node l ∈ S which is an ancestor of
node i, i.e., l � i � j .
If node j ∈ S, we would have l � i � j . Since
i /∈ S, this would contradict the assumption that S

is path-induced. Hence, j /∈ S and j ∈ C. There-
fore, C is path-induced.

2. Assume that there are nodes i � j � k, where
i, k ∈ P. We will show that node j must necessarily
be in P.
If j ∈ S, then, since node k is its child, k must be
either in S or C, which would contradict our as-
sumption that k ∈ P. Thus j /∈ S.
If instead j ∈ C, then there must a node l ∈ S that
is the ancestor of j , i.e., l � j . This would imply
that l � k as well, since j � k. Since k will then
be a descendant of l ∈ S, it must belong to either
S or C. This would contradict our assumption that

k ∈ P. Hence, node j must be in P. This establishes
that P is path-induced. �

P contains nodes that are ancestors of the nodes in S

but are not themselves in S, together with all nodes
that are unrelated with any of the nodes in S. While
all nodes in T belong to one of the S, C and P sub-
graphs, connecting edges between these subgraphs do
not belong to any of the subgraphs.

4 Partitioning SKO models

When T is a tree digraph, a path-induced subgraph of
T is in fact a path-induced sub-forest, i.e., it is a col-
lection of one or more disjoint path-induced subtrees.
Thus, in the partitioning described in Lemma 1, S,
C, and P are all path-induced subforests. This is illus-
trated in Fig. 3. The partitioning process can be con-
tinued on the component sub-forests to further subdi-
vide them into finer-grain path-induced subforests, if
desired.

4.1 Partitioning SKO model operators

When T is the tree digraph for an SKO model, the
disjoint partitioning induced by a path-induced sub-
graph S also partitions the bodies in the multibody
system into disjoint component multibody systems,
corresponding to the S, C, and P path-induced sub-
forests. Since these are subforests, each of the compo-
nent systems have well-defined SKO spatial operators,
denoted EAS

, EAC , and EAP , respectively.
For ease of exposition, we assume that T is a

canonical tree. The S, C, and P sub-graphs are then
also canonical. Therefore, the EA, EAS

, EAC , and EAP

SKO operators are all strictly lower-triangular. The
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system-level EA SKO operator can be expressed in the
following block-partitioned form:

EA =
⎛
⎝EAC 0 0

BS EAS
0

0 ES EAP

⎞
⎠ (22)

The SKO operators of the individual subforests form
the block-diagonal elements of EA, with:

1. The EAC SKO operator for C—with the smallest
indices—being in the upper left corner.

2. The EAP SKO operator for P—with the largest
indices—being in the lower right corner.

3. The EAS
SKO operator for S being in the middle.

4. BS is a connector block, whose nonzero elements
are for the parent/child edges between the nodes in
S and their children in C.

5. ES is also a connector block, whose nonzero el-
ements are for the parent/child edges between the
nodes in P and their children in S.

6. The lower-left block is zero because none of the
nodes in C are the children of the nodes in P.

It is worth pointing out that the block lower-triangular
structure of EA in (22) continues to hold even un-
der the more relaxed condition where the component
systems are not necessarily canonical systems them-
selves, but are only canonical with respect to each
other. In this situation, the index of a node in C whose
parent is in S is required to be less than that of its par-
ent. Similarly, the index of a node in S whose parent
is in P is required to be less than that of its parent.

Since the component systems are subforests, their
corresponding SPOoperators are well-defined, and
given by:

AC
�= (I − EAC)−1, AS

�= (I − EAS
)−1,

AP
�= (I − EAP)−1

(23)

The following lemma describes the corresponding par-
titioned structure of the system level SPO operator A

in terms of the SPO operators of the component sys-
tems.

Lemma 2 (Partitioning of the A SPO operator) The
A SPO operator for the full system has the following
partitioned structure corresponding to the partitioned

structure of EA in (22):

A =
⎛
⎝ AC 0 0

ASBSAC AS 0
AP(ESASBS)AC APESAS AP

⎞
⎠

(24)

Observe that the SPO operators for the component
subgraphs are the block-diagonal elements of A.

Proof Start with the partitioned expression for EA

in (22), and observe that

A−1 = (I − EA)

(22)=
⎛
⎝ I − EAC 0 0

−BS I − EAS
0

0 −ES I − EAP

⎞
⎠

(23)=
⎛
⎝ A−1

C 0 0
−BS A−1

S
0

0 −ES A−1
P

⎞
⎠

The result follows by verifying that the product of this
expression for A−1, with A in (24), is indeed the iden-
tity matrix. �

If the P subgraph is empty, then the rows and
columns for the parent subgraph do not exist in the par-
titioned structure. Similarly, if C is empty, then the cor-
responding columns and rows for the child subgraph
do not exist in the partitioned structure.

4.2 Partitioning of an SKO model

The partitioning of the tree digraph for an SKO model
also induces the following corresponding partitioning
of the system-level block-diagonal H and M opera-
tors:

H =
⎛
⎝HC 0 0

0 HS 0
0 0 HP

⎞
⎠ and

M =
⎛
⎝MC 0 0

0 MS 0
0 0 MP

⎞
⎠

(25)

Observe that (HC,AC,MC), (HS,AS,MS), and
(HP,AP,MP) define SKO models for the component
tree-topology multibody systems associated with the
C, S, and P subgraphs, respectively.
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The following corollary looks at the case where a
system is partitioned into just outer and inner subsys-
tems, and shows that the mass matrix subblock corre-
sponding to the outer system is simply the mass matrix
of the outer subsystem itself.

Corollary 4.1 (Mass matrix invariance of the outer
sub-system) Consider an SKO model partitioned as
in (22), but with empty C. That is, the system is parti-
tioned into inner, P, and outer, S, SKO models. Then
the overall SKO model mass matrix has the following
partitioned structure:

M =
(

MS X

X∗ MP + Y

)
(26)

where

MS
�= HSASMSA∗

SH ∗
S,

MP
�= HPAPMPA∗

PH ∗
P,

X
�= HSASMSA∗

SE∗
SA∗

PH ∗
P,

Y
�= HPAPESASMSA∗

SE∗
SA∗

PH ∗
P

(27)

Proof The expressions in (26) and (27) are obtained
by directly evaluating M = HAMA∗H ∗ using the fol-
lowing component partitioned expressions from (24)
and (25):

H =
(

HS 0
0 HP

)
, A =

(
AS 0

APESAS AP

)
,

M =
(

MS 0
0 MP

)
�

Observe that MS and MP are the respective mass
matrices for the S and P SKO models. Also, observe
that the upper right sub-block MS of M is indepen-
dent of quantities associated with the P subgraph, i.e.,
the elements of the MS mass matrix do not depend
upon the properties or generalized coordinates of in-
board bodies.

5 Aggregating sub-graphs

In this section, we use the partitioning techniques de-
veloped so far to study sub-structuring of SKO models
using subgraph aggregation. We begin with the devel-
opment of the aggregation concepts for digraphs and
subsequently apply them to SKO models.

5.1 Edge and node contractions

In graph theory, edge-contraction is referred to as the
process of collapsing the node pair for an edge, into a
single node [27]. The node and edge neighbors of the
original pair of nodes become neighbors of the new
aggregated node. Thus, the parent and children nodes
of either of the original nodes (not including the node
pair themselves) are the parent and children nodes of
the aggregated node in the transformed digraph.

For a tree, the result of each such edge-contraction
is once again a tree, with one fewer node. The edge-
contraction process can be repeated to aggregate mul-
tiple edges in a tree. Thus, aggregating a sub-tree of a
tree, using edge-contraction, results in a digraph that
is also a tree.

Node-contraction is a more general concept that
applies to pairs of nodes that are not necessarily con-
nected by an edge. The node-contraction of a pair of
nodes replaces the pair of nodes with a single ag-
gregated node, where all the neighboring nodes and
edges of the original pair become neighbors of the
new aggregated node. Thus, edge-contraction is equiv-
alent to node-contracting the node pair for an edge.
Unlike edge-contractions, node-contractions generally
do not preserve the tree property of a digraph. Node-
contractions can be applied repeatedly to aggregate
multiple nodes in a subgraph. Formally, subgraph ag-
gregation is defined as the process of transforming a
digraph by applying node-contraction to all the nodes
in the subgraph. This is illustrated in Fig. 4. It shows
examples of trees transformed into multiply-connected
and cyclic digraphs, following subgraph aggregation.
Later, we will examine the conditions under which the
tree property is preserved following subgraph aggre-
gation.

The following lemma shows that aggregating a sub-
graph or its induced subgraph result in the same trans-
formed digraph.

Lemma 3 (Aggregation of a subgraph and its induced
subgraph) Let S denote the subgraph of a digraph T.
Then the new digraph, TS, created by aggregating S,
is the same as the one obtained by aggregating the in-
duced subgraph, SI , i.e., TS ≡ TSI

.

Proof S and SI contain the same nodes, while the
latter contains all the edges connecting the nodes as
well. Node-contraction of a pair of nodes removes all
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Fig. 4 Examples of
subgraph aggregation using
node-contraction

edges connecting the node-pair. Thus, aggregating S

by node-contraction removes all edges connecting the
nodes in S, whether or not the edges are in S itself.
This implies that the aggregation of S or SI results in
the same transformed digraph. �

One implication of this lemma is that the nodes and
edges missing from the transformed tree, after aggre-
gating S, are precisely the nodes and edges in the SI

induced subgraph of S.

5.2 Tree preservation after subgraph aggregation

Let S denote a subgraph of a tree digraph, T. The ag-
gregation of S results in a new TS digraph, where all
the nodes associated with the nodes in S are replaced
by a single node. We will henceforth refer to this ag-
gregated node, as node S. Topologically, all the parent
nodes of the S subgraph, denoted ℘(S), are now the
parents of node S, and all the children nodes of the
S subgraph, denoted �(S), are now the children of
node S. In general, TS obtained by this topological
transformation will not be a tree.

The following defines the aggregation condition
for subgraphs.

Assumption 1 (Aggregation condition) A subgraph
S, of a tree digraph T, is said to satisfy the aggre-
gation condition if:

1. S is an induced subgraph, i.e., S ≡ SI .
2. ℘(S) contains exactly one node—one that is nec-

essarily the ancestor of all the nodes in S.

The induced requirement for a S satisfying the aggre-
gation condition is a mild one since Lemma 3 states
that aggregating a subgraph, or its induced subgraph,
lead to the same transformed digraph. Some examples
of a tree subgraph S, satisfying the aggregation con-
dition, are:

• a single node
• a serial-chain segment
• a subtree
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Fig. 5 Examples of
path-induced subgraphs that
do, and do not, satisfy the
aggregation condition

The following lemma shows that any subgraph of a
tree satisfying the aggregation condition is a path-
induced subgraph.

Lemma 4 (Aggregation condition and path-induced
subgraphs) If a subgraph S of a T tree satisfies the
aggregation condition, then it is path-induced, i.e.,
S ≡ SP .

Proof Since S satisfies the aggregation condition, it
is an induced subgraph. An induced subgraph of a tree
can differ from its path-induced subgraph in the nodes
and edges that lie on the paths connecting nodes in S.

First, let us consider the case where the node sets
are the same. Since S is induced, there are no missing
edges in S, and, therefore, even the set of edges are
exactly the ones in the path-induced subgraph. Hence,
S and its path-induced subgraph are the same.

Let us now consider the case when the node sets
are not the same. Then there exists a node k in the
path-induced subgraph SP that is not in S. Node k

must lie on a path connecting a pair of nodes in S.
This implies that there is a node l on this path that
belongs to ℘(S). However, since k is in the interior of
the path, node l is not the ancestor of all the nodes in
S. This contradicts the assumption that S satisfies the
aggregation condition, which allows for only a single
ancestor node for S. Hence, S must be a path-induced
subgraph. �

The converse is not true, i.e., not all path-induced
subgraphs satisfy the aggregation condition. Figure 5
illustrates cases of path-induced subgraphs that do,
and do not, satisfy the aggregation condition.

The following lemma shows that the aggregation
condition is a necessary and sufficient condition for
the TS aggregated digraph to be a tree.

Lemma 5 (Tree property after subgraph aggregation)
Let S denote an induced subgraph of a tree digraph T.
Let us assume that S is aggregated to create a new TS

digraph with aggregated node S. Then the aggregated
TS digraph is a tree if and only if the original sub-
graph S satisfies the aggregation condition.

Proof

1. First, let us assume the TS is indeed a tree, and we
will show that ℘(S) must contain a single node.
Since TS is a tree, all of its nodes, including node
S, can have at most one parent. Thus, ℘(S) can
have at most one node. The S subgraph therefore
satisfies the aggregation condition.

2. Now, let us consider the converse case, i.e., assume
that ℘(S) contains a single node that is the ances-
tor for all the nodes in S. We will prove that TS

must then be a tree. We need to show that TS is not
a polytree, is not multiply-connected, and does not
have directed cycles.
(a) To show that TS is not a polytree, we need

to focus only on node S and show that it can-
not have multiple parents. This follows directly
from the assumption that ℘(S) contains only
one node.

(b) To show that TS is not multiply-connected, we
need to focus only on the node S and show
that there is no node in TS from which there
is more than one directed path to the node S.
Since T is a tree, it has no multiply-connected
nodes. Thus, the only way for node S to be
multiply-connected is for multiple paths to end
at node S. This would mean that the node S

has multiple parents—one from each of the
paths that end on it. This would contradict the
assumption that ℘(S) contains a single node.

(c) Now, we show that TS cannot have directed
cycles. Again, we need to focus on node S,
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and show that it cannot be part of a directed
cycle. Assume that such a cycle exists. This im-
plies that there are nodes k, j ∈ S, and a node
i /∈ S such that k � i � j . In other words, there
is a path from k to j containing node i. This
would imply that there is a node, l, on the path
from i to j that is a parent node for S. Since
℘(S) contains only one node, l must be this
ancestor node. This would imply that node l,
and hence node i, is an ancestor of k. However
we know that k is an ancestor of i. Hence, node
S is not part of any directed cycles. �

Lemma 5 shows that preservation of the tree prop-
erty after subgraph aggregation requires that the sub-
graph satisfy the aggregation condition. Intuitively,
this result is not surprising, once we recall that edge-
contractions preserve the tree property, and that the ag-
gregation of a path-induced subgraph is equivalent to
applying edge-contraction to all the edges in the sub-
graph.

5.3 The SA aggregation subgraph

The aggregation subgraph, for a subgraph S of a
tree, is defined as the minimal subgraph containing S

that also satisfies the aggregation condition. The ag-
gregation subgraph of a subgraph S is denoted SA.

Lemma 6 (Properties of SA)

1. SA is a path-induced subgraph.
2. The following containment relation holds

S ⊆ SI ⊆ SP ⊆ SA (28)

3. SA is the subforest obtained by deleting the root
node from the smallest subtree containing S.

Proof

1. By definition, SA satisfies the aggregation condi-
tion, and hence by Lemma 4, it is path-induced.

2. By definition, S ⊆ SA. Hence, the path-induced
subgraph of S, SP , is contained in the path-
induced subgraph of SA, which is SA itself. This
establishes the last containment in (28). The rest are
restatements of (21).

3. Since SA satisfies the aggregation condition, it has
a single parent node. Thus, with the parent node

added in, the new subgraph is a subtree. The min-
imality of the sub-tree follows from the definition
of a aggregation subgraph, which is required to be
minimal. �

This lemma helps us better understand the relation-
ship between a subgraph, S, and its induced, path-
induced and aggregation subgraphs. Starting with the
S subgraph, we obtain its induced subgraph SI by
adding in the missing edges between the nodes in S.
Furthermore, adding in any missing nodes and edges
on paths connecting nodes in S leads us to the path-
induced SP subgraph. To obtain the SA aggregation
subgraph, we need to further grow the path-induced
subgraph until we get to the smallest sub-tree contain-
ing it, and then drop the root node from this subtree.
The aggregation subgraph for a subgraph is important
because, as shown by Lemma 5, while the aggrega-
tion of a subgraph S will generally not preserve the
tree property, aggregating SA instead ensures that the
aggregated digraph remains a tree. Preserving the tree
property is necessary requirement for the aggregated
tree to have an SKO model.

6 Transforming SKO models via aggregation

6.1 SKO operators after body aggregation

Let T be a tree digraph associated with a multibody
system. We assume without loss in generality that it
is canonical. Let S denote a subgraph satisfying the
aggregation condition. By Lemma 5, the aggregated
TS digraph, with aggregated node S, is also a tree.
Let us now develop an SKO model for the system with
the TS aggregated tree.

To define SKO operators for TS, we first need
to assign weight dimensions to the nodes in TS.
All nodes unaffected by the aggregation process in-
herit the weight dimensions from the nodes in T. The
weight dimension for node S is defined as the sum of
the weight dimensions of all the nodes in the S sub-
graph, i.e.,

mS
�=

∑
k∈S

mk (29)

Since the S subgraph satisfies the aggregation condi-
tion it is path-induced. From Lemma 1, S induces a
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disjoint partitioning of T into path-induced parent P

and child C subgraphs, respectively. These partitioned
subgraphs allow us to express the Eφ SKO operator for
T in the partitioned form shown in (22):

EA =
⎛
⎝EAC 0 0

BS EAS
0

0 ES EAP

⎞
⎠ (30)

Lemma 7 (SKO operator for the TS tree) With S sat-
isfying the aggregation condition, define the EAa

ma-
trix using the partitioned sub-blocks of (30) as follows:

EAa

�=
⎛
⎝EAC 0 0

BS 0 0
0 ESAS EAP

⎞
⎠ (31)

The following facts hold for EAa
:

1. EAa
is an SKO operator for the original tree, T.

2. EAa
is an SKO operator for the aggregated tree, TS.

Proof

1. Since S satisfies the aggregation condition, ℘(S)

contains a single node. Let us denote this node as
node j . Comparing the expression for EAa

in (31)
with that of EA in (30), the only term that needs
further examination to establish the SKO property
is the ESAS block, which differs from the ES

block. Recall that the ES connector block contains
non-zero entries for the edges connecting nodes
in P to nodes in S subgraphs. Therefore, ES has
the form

ES =
∑

l∈℘(S)

el

∑
k∈S

℘(k)=l

A(l, k)e∗
k = ej

∑
k∈S

℘(k)=j

A(j, k)e∗
k

(32)

In the above equations, we have taken some nota-
tional liberties; the ex vectors represent appropriate
size vectors for the S and P subgraphs, instead of
the full-sized ones for the T tree.

It follows that

ESAS
(32)= ej

∑
k,i∈S
℘(k)=j

A(j, k)e∗
kAS

(33)

The e∗
kAS product is the kth row of AS. Since

AS is an SPO operator, its kth row A(k, i) entry
is nonzero only when node i is a descendant of the
kth node. Hence, (33) can be reexpressed as

ESAS
(33)= ej

∑
k∈S

℘(k)=j, k�i

A(j, k)A(k, i)ei

= ej

∑
i∈S
j�i

A(j, i)e∗
i (34)

In the last expression, j � i, denotes the condi-
tion that the j th node is an ancestor of the ith
node. From (34), it is clear that only the j th row
of ESAS is nonzero. The only nonzero entries in
this row are for nodes in S that are descendants of
the j th node.6 Thus, each column of ESAS, has at
most a single nonzero element, and since the cen-
tral block of EAa

is zero, this implies that the same
column has only a single nonzero entry in the full
EAa

matrix as well. Thus, the single nonzero entry
per column requirement for an SKO operator for T

is satisfied. Hence, EAa
is an SKO operator for T.

2. We have seen that EAa
is an SKO operator for T.

For TS, the central rows and columns of EAa
corre-

spond to the single S node in the TS tree. For EAa

to be an SKO operator for TS, we need to show
that it satisfies the SKO operator structural require-
ments, as represented by (9). That is, ESAS must
be of the form ejX for some X. Equation (34) sat-
isfies this requirement, and, thus, EAa

is an SKO
operator for TS. �

Having derived the expression for an EAa
SKO op-

erator for TS, the following lemma derives the expres-
sion for the corresponding SPO operator for TS.

Lemma 8 (The Aa SPO operator for the TS tree) Us-
ing the same assumptions and notation from Lemma 7,
the SPO operator, Aa , for TS is given by the following

6In fact all nodes in S are descendants of j and, therefore, the
row is fully populated.
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expression:

Aa
�= JaA

(24)=
⎛
⎝ AC 0 0

BSAC I 0
AP(ESASBS)AC APESAS AP

⎞
⎠

where Ja
�=

⎛
⎝ I 0 0

0 A−1
S

0
0 0 I

⎞
⎠ (35)

Proof Since Lemma 8 established EAa
as an SKO op-

erator for the TS tree, we need to show that Aa =
(I − EAa

)−1 for it to be an SPO operator for TS. Now

(I − EAa
)

(22)=
⎛
⎝ I − EAC 0 0

−BS I 0
0 −ESAS I − EAP

⎞
⎠

(23)=
⎛
⎝ A−1

C 0 0
−BS I 0

0 −ESAS A−1
P

⎞
⎠

The result follows by verifying that the product of the
above, with Aa in (35), is the identity matrix. �

Node S in TS contains all the bodies associated with
the nodes in the original subgraph S. Unlike regular
rigid links, the geometry of node S is variable, and de-
pends on the hinge coordinates of the component links
within the subgraph S. Such variable geometry bodies
have been used in other dynamics modeling contexts
[5, 10, 29].

6.2 SKO model for the TS aggregated tree

The key difference between the aggregated and the
original tree is that the former treats the set of bodies
in subgraph S as a single body. The aggregation pro-
cess provides a way of transforming and substructur-
ing SKO models for tree-topology multibody systems
into coarser SKO models. The aggregation process in-
duces the following partitioning of the θ̇̇̇ , V, f and T

stacked vectors:

θ̇̇̇ =
⎡
⎢⎣

θ̇̇̇C

θ̇̇̇S

θ̇̇̇P

⎤
⎥⎦ , V =

⎡
⎣VC

VS

VP

⎤
⎦ ,

f =
⎡
⎣fC

fS

fP

⎤
⎦ , T =

⎡
⎣TC

TS

TP

⎤
⎦

(36)

For the TS aggregated tree, the VS, θ̇̇̇S, etc., sub-
vectors of the V and θ̇̇̇ stacked vectors correspond to
the single S aggregate link. This partitioning of the
system-level θ̇̇̇ and V stacked vectors extends to other
stacked vectors such as the Coriolis spatial accelera-
tions vector a, the gyroscopic spatial forces vector b,
and to the other spatial operators.

Lemma 9 shows that the transformed system with
the aggregated tree possesses a well-defined SKO
model, and defines the equations of motion for the
model.

Lemma 9 (SKO model for an aggregated tree) Let
(H,A,M) denote an SKO model with tree digraph T.
Let S be a subgraph of T satisfying the aggregation
condition. Then the (Ha,Aa,M) spatial operators de-
fine an SKO model for the TS aggregated tree, where

Ha
�= HJ

−1
a

(35)=
⎛
⎝HC 0 0

0 HS 0
0 0 HP

⎞
⎠ and

HS
�= HSAS

(37)

Ha defines the new joint map matrix for the TS aggre-
gated tree, with HC, HS, and HP denoting the compo-
nent joint map matrices as defined in (25). The trans-
formed version of the equations of motion from (18)
are given by:

V = A∗
aH

∗
a θ̇̇̇

α = A∗
a

(
H ∗

a θ̈̈̈ + a
)
,

where a
�= J

−∗
a a =

⎡
⎣aC

aS

aP

⎤
⎦ , aS

�= A∗
SaS

f = Aa(Mα + b),

where f
�= Jaf =

⎡
⎣fC

f′
S

fP

⎤
⎦ , f

′
S

�= A−1
S

fS

T = Haf

(38)

Thus,

T = Mθ̈̈̈ + C (39)
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with

M = HaAaMA∗
aH

∗
a ∈ RN×N and

C
�= HaAa

(
MA∗

aa + b
) ∈ RN

(40)

The mass matrix expression above represents the
Newton–Euler operator factorization of the mass ma-
trix for the SKO model of the aggregated system.

Proof Lemma 8 established that Aa is the SPO oper-
ator for TS. With the central row and column of Ha

corresponding to node S in TS, Ha is block-diagonal
for TS. Lastly, M has remained unchanged in go-
ing from T to TS. Thus, the structural requirements
1 through 4 for an SKO model in Sect. 2.4, are satis-
fied for the TS tree, by the (Ha,Aa,M) operators.

The equations of motion in (38) follow by substitut-
ing the expressions for Ha and Aa from (35) and (37)
in the original equations of motion in (18). �

Observe that, while HS is block-diagonal, HS =
HSAS is no longer block-diagonal. Consequently,
Ha is not block-diagonal for T and the (Ha,Aa,M)

operators do not satisfy the structural requirements for
an SKO model for the original T. Nevertheless, the
above lemma shows that these operators do satisfy the
SKO model structural requirements for the TS tree.
This implies that all of the SKO model formulation
techniques and algorithms, including mass matrix fac-
torization and inversion, are applicable to the SKO
model of the aggregated tree.

The following corollary formally verifies that at the
system-level, the mass matrix and Coriolis terms in the
equations of motion are identical across the original
and the aggregated systems. This of course is to ex-
pected, since the aggregation process only changes the
form of the equations of motion and not the system
dynamics.

Corollary 6.1 (Mass matrix invariance with aggrega-
tion) The mass matrix, M, and the Coriolis vector,
C, of a tree-topology system remain unchanged after
subgraph aggregation. In other words, the expressions
for M and C in (40) agree with the quantities defined
in (20), i.e.,

M = HAMA∗H ∗ = HaAaMA∗
aH

∗
a

C = HA(MA∗
a + b) = HaAa

(
MA∗

aa + b
) (41)

Proof First, we have

HA
(35),(37)= (

HaJ
−1
a

)
(JaAa) = HaAa (42)

Using this directly establishes the M equalities in (41).
Moreover,

HA(MA∗
a + b)

(42)= HaAa(MA∗
a + b)

(35)= HaAa

(
MA∗

aJ
−∗
a a + b

)
(38)= HaAa(MA∗

aa + b)

This establishes the C equalities in (41). �

The aggregation process provides a way to apply
substructuring to develop alternative SKO models for
a multibody system.

7 SKO model sparsity structure

Researchers have used system-level matrices and oper-
ators to analyze and exploit the sparsity structure of the
mass matrix to develop efficient computational algo-
rithms for the inverse and forward dynamics problems
[3, 7, 21, 23]. In this section, we apply the partitioning
and aggregation techniques developed to identify the
sparsity structure of the SKO and SPO operators and
the mass matrix for tree-topology systems.

Tree and serial-chain subgraphs are always path-
induced and satisfy the aggregation condition. Thus
any tree system can be successively partitioned using
such subgraphs. However, only in serial-chains are all
node pairs related resulting in the most dense SKO
and SPO operators. Thus, serial-chain subgraphs are
well suited for analyzing the sparsity structure of SKO
models. Toward this, the system digraph can be de-
composed into disjoint serial-chain branch segments,
which are subsequently aggregated to obtain a coarser
tree model for the system. Figure 6 illustrates such
a transformation of a tree with five serial-chain seg-
ments into a coarser tree with all the serial-chain seg-
ments aggregated into nodes.

The sparsity structure of the system’s spatial opera-
tors (e.g., SPO, mass matrix) directly reflects the struc-
ture of the aggregated tree. Subblocks of these ma-
trices are associated with the aggregated serial-chain
segment nodes, and are the most dense because all the
nodes in a serial-chain are related. Equation (43) il-
lustrates the sparsity structure of the system-level EA
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Fig. 6 Illustration of a tree-topology system on the left transformed into the coarser tree on the right by aggregating the serial-chain
segments

SKO operator via its decomposition in terms of the
SKO operators for each of the aggregated serial-chain
nodes

EA =

⎛
⎜⎜⎜⎜⎝

EA1 0 0 0 0
0 EA2 0 0 0
0 0 EA3 0 0

EA4,1 EA4,2 0 EA4 0
0 0 EA5,3 EA5,4 EA5

⎞
⎟⎟⎟⎟⎠ . (43)

Eφj denotes the SKO operator for the j th branch seg-
ment. Also, when the kth branch is a child of the j th
branch, the EAj,k

block denotes the non-zero connec-
tor block between them. All other blocks are zero. The
structure of EAj,k

is as follows:

EAj,k

�=

⎛
⎜⎜⎜⎝

0 · · · 0 A(1j , nk)

0 · · · 0 0
... · · · ...

...

0 · · · 0 0

⎞
⎟⎟⎟⎠ (44)

where 1j denotes the tip body on the j th branch that
is the parent of the nk base-body of the kth branch.
This partitioned structure of EA is a generalization of
the partitioned structure in (22). We see that the only
nonzero blocks in the lower-triangular part of the EA

matrix in (43) are for the adjacent nodes in the aggre-
gated tree.

With φj
�= (I − Eφj )

−1 denoting the SPO operator
for the j th branch, the overall structure of the system
level A SPO operator for Fig. 6 tree is illustrated in
(45):

A =

⎛
⎜⎜⎜⎜⎝

A1 0 0 0 0
0 A2 0 0 0
0 0 A3 0 0

A4,1 A4,2 0 A4 0
A5,1 A5,2 A5,3 A5,4 A5

⎞
⎟⎟⎟⎟⎠ (45)

The Aj,k blocks denote the nonzero connector block
between related serial-chain segments. All other
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Fig. 7 Structure of the mass matrix M for the tree topology
system in Fig. 6

blocks are zero. This partitioned structure of EA is a
generalization of the partitioned structure in (24). The
general expression for the Aj,k elements is:

Aj,k = AjEAj,i
Ai,k with i ∈ �(j), i 
 k

In the above, Ak,k ≡ Ak . We see that the only nonzero
blocks in the lower-triangular part of the A matrix in
(45) are for the related nodes in the aggregated tree.

Figure 7 illustrates the sparsity structure of the
mass matrix for the tree-topology system in Fig. 6.
As expected, the sparsity structure of the mass ma-
trix mirrors the sparsity of the A SPO operator and
its transpose. The block-diagonal of the mass matrix
contains dense blocks, one for each of the branch seg-
ments in the tree. The off-diagonal blocks are zero for
unrelated nodes in the aggregated tree. The topology
dependency of the mass matrix’s sparsity structure was
initially described in [22].

8 Conclusions

SKO models play a pivotal role in the analysis and al-
gorithm development for tree multibody systems. In
this paper, we have studied the effect of topological
transformations on such SKO models. Path-induced
subgraphs are shown to partition tree digraphs into
parent and child path-induced subgraphs. We derive
the relationship between the SKO models of the origi-
nal multibody system and the SKO models of the par-
titioned subsystems. We further show that SKO mod-
els can be substructured into coarser SKO models by

aggregating path-induced subgraphs into aggregated
nodes. We show that the path-induced property for the
aggregated subgraph is a necessary and sufficient con-
dition for preserving the tree structure of the aggre-
gated system and derive the SKO model for the aggre-
gated system. Lastly, we use these topological insights
to understand the relationship between the topological
structure of the system digraph and the sparsity of the
system SKO and SPO operators and its mass matrix. In
the companion second part, we use these aggregation
methods to develop a constraint embedding technique
that extends the notion of SKO models from tree to
closed-topology systems.

We anticipate future applications of these substruc-
turing ideas in the development of parallel algorithms
for distributing computations across component SKO
models. Featherstone’s divide and conquer (DCA) for-
ward algorithm [6] exemplifies such a use of a hierar-
chy of substructured component models to parallelize
the solution for the forward dynamics problem. We
also expect that partitioning and substructuring ideas
to be useful in managing the dynamics computations
for humanoid and legged robotic platforms subject to
varying topologies and constraints. Furthermore, we
anticipate the sparsity structure insights to facilitate
the further development of sparsity based computa-
tional algorithms.
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