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Abstract In this paper, a procedure for the optimal
design of multi-parametric nonlinear systems is pre-
sented which makes use of a parametric continuation
strategy based on simple shooting method. Shooting
method is used to determine the periodic solutions of
the nonlinear system and multi-parametric continua-
tion is then employed to trace the change in the system
dynamics as the design parameters are varied. The in-
formation on the variation of system dynamics with
the value of the parameter vector is then used to find
out the exact parameter values for which the system
attains the required response. This involves a multi-
parametric optimisation procedure which is accom-
plished by the coupling of parameter continuation with
different search algorithms. Genetic Algorithm as well
as Gradient Search methods are coupled with paramet-
ric continuation to develop an optimisation scheme.
Furthermore, in the coupling of continuation and Ge-
netic Algorithm, a “norm-minimising” strategy is de-
veloped and made use of minimising the use of con-
tinuation. The optimisation procedure developed is ap-
plied to the Duffing oscillator for the minimisation of
the system acceleration with nonlinear stiffness and
damping coefficient as the parameters and the results
are reported. It is also briefly indicated how the pro-
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posed method can be successfully used to tune nonlin-
ear vibration absorbers.

Keywords Shooting method · Parametric
continuation · Genetic Algorithms · Nonlinear
systems

1 Introduction

Mechanical systems can exhibit nonlinear characteris-
tics due to geometry, material properties or boundary
conditions. The traditional technique for the dynamic
analysis of such systems has been a direct numerical
integration. This involves considerable computational
effort due to the need to go past transient solutions in
order to find the steady-state response. Furthermore, in
the design of mechanical systems which exhibit non-
linear characteristics, there is a need to understand the
change in the dynamic behaviour of the system as a
particular design parameter is changed. This is done
with the specific aim of obtaining the parameter value
for which some system performance index is opti-
mised. To do this using numerical integration is a cum-
bersome exercise as explicit solutions have to be gen-
erated corresponding to each parameter value which
requires a huge initial map to be swept to obtain accu-
rate results. As the size of the problem increases, the
computational cost increases exponentially. Paramet-
ric continuation strategy offers an alternate and more
robust approach to the aforementioned problem as it
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aims at obtaining the solutions at a certain parame-
ter value with the help of the solutions generated at
its neighbouring parameter value. The broad strategy
here is to quantify the change in solution characteris-
tics with the change in the value of the parameter and
to use this information to generate the solution for a
range of parameter values.

The continuation technique is generally carried out
in two distinct phases: the first phase, known as the
shooting technique, tries to find the missing initial
conditions of the problem corresponding to the pe-
riodic solution and the second phase investigates the
change in this periodic solution and the fixed points
when a system parameter is varied infinitesimally.
Shooting technique will involve the application of nu-
merical integration technique to convert the original
nonlinear differential equations to nonlinear algebraic
equations. Newton–Raphson method is then used to
solve these equations to obtain the complete set of ini-
tial conditions corresponding to the periodic solution.
Throughout the shooting method the system parame-
ter is kept constant so that the initial conditions ob-
tained are valid for a specific value of the system pa-
rameter. The second phase studies the change in the
initial conditions and system dynamics as this value is
changed. Here the system parameter acquires the sta-
tus of a variable. After obtaining the system dynamics
for different parameter regimes, identification of op-
timal parameter value is carried out by which the re-
quired optimal system response is obtained.

In this paper, an optimisation strategy based on the
use of specific search algorithms coupled with para-
metric continuation has been proposed for the design
optimisation of multi-parametric nonlinear systems.
To deal with case of multi-parametric systems, con-
tinuation will have to be carried out, generally, on an
(m + 1)-dimensional parameter space (if m numbers
of system parameters are considered). To this end, a
continuation method which can deal with m parame-
ters has been developed in this paper; using this con-
tinuation can be carried out along the line connect-
ing any two points on an (m + 1)-dimensional param-
eter space. The optimisation procedure involves the
search for that point on this parameter space which fur-
nishes the optimal system response and is carried out
here with the use of two different search methodolo-
gies: Genetic Algorithms (GA) and Gradient Search
methods. During the search operation, the search al-
gorithm typically demands the system response at a

certain point on the m-dimensional parameter space
which is provided by the use of continuation. A short-
est distance approach is developed and employed here
to keep the steps needed in continuation to the possi-
ble minimum. The strategy developed is used to opti-
mise the values of nonlinear stiffness and damping in
the Duffing oscillator and the correctness of the results
are verified. To ascertain the computational efficiency
of the proposed method, the optimisation is carried out
without the help of continuation strategy, using GA
coupled with shooting method alone and the results
and computational time are compared. To check the
effect of using a shortest distance approach in contin-
uation the results of the optimisation process using GA
and continuation alone are analysed and comparisons
are carried out.

2 Parametric continuation strategy

The idea of solution continuation has long been known
and exploited in various branches of mathematics
and mechanics. It is worth mentioning that this very
idea actually underlies the well-known perturbation
method whose first applications go back to the pio-
neering works of Henri Poincaré. In the mathemati-
cal theory of nonlinear differential equations, solution
continuation has repeatedly been used to prove the ex-
istence of solutions of nonlinear equations [1]. The
first use of continuation idea for computational pur-
poses appears to be due to Lahaye [2] who proposed a
method for solving transcendental equations by intro-
ducing a parameter p into the equation and construct-
ing a solution for each pi by the Newton–Raphson
method using the solution of the previous value pi−1

as a starting approximation. Another formulation of
the continuation method was given by Davidenko [3].
He was the first to realise the process of solution con-
tinuation as a process of moving and applied adequate
mathematical apparatus of differential equation to it.
Morozov successfully used the continuation strategy
in the theory of finite deflection of plates [4].

In the later half of the 1990s investigations related
to the application of path following to nonlinear dy-
namical systems began to appear. Kubicek and Marek
[5] developed a comprehensive numerical technique
based on the shooting method to compute bifurcation
points. Solution continuation was done using the aug-
mented Jacobian matrix and the Jacobian matrix was
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then solved using Gauss elimination. They also pre-
sented the application of the developed technique to
partial differential equations. Seydel [6] presented al-
gorithms for the calculation of nonlinear dynamic sys-
tem bifurcation behaviour. It also discussed numer-
ous examples to illustrate the use of parametric con-
tinuation in dynamical systems. Continuation method
was used for the solution of numerous problems in
nonlinear mechanics, especially in dealing with non-
linear deformation problems, by Grigolyuk and Sha-
lashilin [7]. Closely related to continuation technique
is the asymptotic numerical method which aims at the
computation of the solution path U(λ) for a continu-
ous nonlinear problem where U is the unknown and
λ is a scalar parameter [8]. U is normally approxi-
mated by vector fields Un which are solutions of a
recurrent sequence of linear problems. These linear
problems are solved by a classical discretisation tech-
nique, generally by finite element method. Cochelin
[9] proposed an efficient continuation method within
this framework without any iterative correction step.
Noor and Peters [10] used this technique to deter-
mine equilibrium paths of nonlinear elastic struc-
tures.

Application of this technique to mechanical sys-
tems has been reported in recent years. Padmanabhan
and Singh [11] have used the technique developed by
Kubicek and Marek for the solving the dynamics of
Impact Oscillator. The continuation parameters used
were both frequency and the input force amplitude.
The continuation strategy was based on swapping of
the last column in the Jacobian with the right-hand side
when a singularity is encountered due to the presence
of bifurcations. In a subsequent paper Padmanabhan
and Singh [12] show the capability of the algorithm
to study systems with multi-harmonic excitations. Dif-
ferences in the system response due to single harmonic
and multi-harmonic excitations were discussed in de-
tail. In both these papers, the nonlinearity was due
to clearances in the system leading to impacts. Noah
and Sundararajan [13] have used the shooting-based
arc-length continuation methods to study rotor bear-
ing systems. Instability issues and bifurcations in the
rotor orbits are reported in detail in this paper. More
recently the work by Shalashilin and Kuznetsov [14]
discussed issues pertaining to the best continuation pa-
rameter and introduce the concept of optimal parame-
terisation.

2.1 Shooting method for periodic solution

The general governing equation for a periodically
forced nonlinear system with N degrees of freedom
and with a fundamental excitation frequency Ω can be
written in the state space form as

Ẋ = F(X;Ωτ) (1)

where the state vector is defined as

X = [x1, x2, . . . , x2N ]T ,

xi+1 = ẋi , i = 1,3,5, . . . ,2N − 1.

Here xi ’s and xi+1’s (i = 1,2, . . . ,2N − 1) represent
the displacements and velocities, respectively, of the
nonlinear system. F represents the force vector which
includes the linear, nonlinear and periodic excitation
components. In order to solve (1) it is proposed to use
the shooting method which transforms the initial value
problem into a two-point boundary value problem. The
periodicity conditions can be written as

xi(0) = xi(τ0), τ0 = 2π/Ω, i = 1,2, . . . ,2N. (2)

But the set of initial conditions for which the equa-
tions yield periodic solutions is unknown, so the first
step would be to guess the initial conditions randomly
so that xi(0) = ηi . With the help of this guessed set
of initial conditions, the set of equations described
by (1) can be solved by using any numerical integra-
tion scheme. The values of xi(τ0) depend upon the ac-
curacy of the initial conditions and implicitly on the
value of a parameter α; thus,

xi(τ0) = φi(η;α). (3)

Here, α could typically represent any design variable
like spring stiffness or damping coefficient, or external
variable like amplitude or frequency of the periodic
forcing function. The periodicity boundary condition
requires that the following equation be satisfied:

Gi(η;α) = φi(η;α) − ηi = 0. (4)

For a given fixed value of the parameter α the above
equation can be solved by the Newton–Raphson
method with the Jacobian matrix

Jij = ∂Gi

∂ηj

=
{

∂φi

∂ηj

− δij

}
(5)
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where δij denotes the Kronecker delta. For finding
this Jacobian matrix, the unknown ∂φi

∂ηj
which repre-

sents the rate of change of the final conditions with
respect to the initial conditions is required. Differenti-
ating xi(τ ) with respect to η yields

∂xi(τ )

∂ηj

= μij (τ ). (6)

Differentiating with respect to τ gives

μ̇ij (τ ) = ∂

∂τ

{
∂xi(τ )

∂ηj

}
= ∂

∂ηj

{
∂xi(τ )

∂τ

}

=
2N∑
k=1

∂Fi

∂xk

μkj . (7)

Here, μij can be obtained by solving the above
set of equations along with the initial conditions
μij (0) = δij using any numerical integration scheme.
Now the required Jacobian can be evaluated as

Jij = ∂Gi

∂ηj

=
{

∂φi

∂ηj

− δij

}
= μij (τ0) − δij . (8)

This Jacobian is used to solve (4) by Newton–Raphson
method which yields a new set of better initial condi-
tions, ηi ’s. Now we start again and solve the parent
equation (1) with the help of the new set of initial con-
ditions and this iterative process continues till conver-
gence or till a periodic solution surfaces. This results
in the following equation being satisfied:

η0 = φ
(
η0;α∗). (9)

The solution η0 is then the fixed point of the iteration
process described above for a fixed value of the pa-
rameter α = α∗. Now the primary interest is in quan-
tifying the change in this initial condition vector when
the parameter value is changed infinitesimally which
is realised by the method of solution continuation.

2.2 Parametric continuation

Now, one would like to know how the fixed points or
the periodic solutions change as the parameter of in-
terest is varied from α∗, for which the solution has al-
ready been determined. For this purpose, the trajectory
of the solution branch in the neighbourhood of α∗ can

be obtained from (4) by a Taylor series expansion in α

which is truncated to the first term:

2N∑
k=1

{
∂φi

∂ηk

− δik

}
∂ηk

∂α
+ ∂Gi

∂α
= 0. (10)

Note that the term in the parentheses represents the
Jacobian matrix elements given by (7). So as long as
this Jacobian is non-singular at α∗, we may compute
the tangents ∂ηk

∂α
which quantify the rate of change of

initial conditions with respect to the change in the vari-
able α. In order to get the terms δGi

δα
, we differentiate

xi(τ ) with respect to the parameter:

∂xi(τ )

∂α
= ψi(τ). (11)

Now, differentiating with respect to τ , gives:

ψ̇i(τ ) = ∂

∂τ

{
∂xi(τ )

∂α

}
= ∂

∂α

{
∂xi(τ )

∂τ

}

=
2N∑
k=1

∂Fi

∂xk

ψk + ∂Fi

∂α
. (12)

With an appropriate numerical integration scheme, the
set of equations given by (12) along with the initial
conditions given by ψi(0) = 0 can be solved. This will
yield the individual ψi ’s. Now the missing term in (10)
is given by δGi

δα
= ψi(τ0). From the calculated fixed

points at α = α∗ one may estimate the new set of initial
conditions at α1 = α∗ + �α as

η1∗
i = η0

i + ∂ηi

∂α

∣∣∣∣
α∗

�α. (13)

2.3 Continuation for multi-parametric systems

In almost all practical design problems, the system re-
sponse will depend on more than one design parame-
ter. The case of multi-parametric system can be dealt
with using the above-mentioned continuation tech-
nique by following a “looping” approach; for exam-
ple, if there are two design parameters, continuation
is carried out for the first parameter alone keeping the
second parameter fixed and this is done for a range of
the second parameter values. This method, apart from
being computationally cumbersome, is not suited for
the objective of this work which is to combine con-
tinuation with different search strategies for obtaining
the parameter values furnishing optimal response (for
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Fig. 1 Continuation for a system with two parameters

further discussions on these lines, see next section).
So, a continuation strategy which deals with m num-
ber of parameters is developed here. This means that
the parameter α given in Sect. 2.2 will become a vec-
tor α = (α1, α2, α3, . . . , αm) and the change of system
dynamics when this vector is changed to α + �α =
(α1 + �α1, α2 + �α2, . . . , αm + �αm), where the
�αi ’s that will in general be unequal, need to be quan-
tified. For this, the continuation needs to be carried out
on an (m + 1)-dimensional space (m parameters and
one system response measure).

The geometrical difference in the approaches men-
tioned above is clearly conveyed in Fig. 1. The case of
a system whose dynamics depends upon two param-
eters α1 and α2 is shown here. Suppose that the use
of shooting method at the point A(α1, α2) has already
furnished the periodic solution for this particular set
of parameter values. Now one is interested in arriv-
ing at the periodic solutions at the point D(α1 + �α1,

α2 + �α2) using the already known solution at the
point A and without explicitly solving the system at D.
Using the “looping” approach mentioned above, this is
attained by continuation along the parameter α1 alone
for different values of α2. This amounts to keeping α2

constant to start with and continuing along the param-
eter α1 (i.e. along the line AB) in small increments.
Then a small increment in α2 is given and the continu-
ation is carried out for α1 again at this new fixed value
of α2 to generate the next line parallel to AB shown in
the figure. So, it is clear from the figure that the con-
tinuation process using this strategy involves the gen-
eration of the whole grid ABCD. Evidently, the gen-
eration of the whole grid is a wasteful process as we

are interested in the solution at the point D alone; the
best option would be to move along the line AD. To do
this, the rate of change of the initial conditions with re-
spect to both the parameters will have to be quantified.
If the system being studied is of 2 d.o.f., two initial
conditions η1 and η2 are needed to solve the system
and thus the following terms will have to be quanti-
fied: ∂η1

∂α1
,

∂η1
∂α2

,
∂η2
∂α1

,
∂η2
∂α1

. Moreover, it is clear from the
above discussion that the computational complexity of
the “looping” approach will be O(n2), whereas the
complexity of the algorithm which carries out contin-
uation along the line AD will only be O(n).

Now, consider the case of continuation for a system
with m parameters; as already mentioned, in this case
the vector α will be α = (α1, α2, α3, . . . , αm). This
will not bring about any change in the shooting method
procedures as here α is considered a constant and all
the calculations are done for some fixed α = α∗. But in
the continuation stage, α attains the role of a variable
and therefore changes will be needed. The algebraic
equation (4) becomes

Gi(η;α) = φi(η;α) − ηi = 0

where α = (α1, α2, α3, . . . , αm). The differential form
now becomes

J
∂η

∂α
+ ∂G

∂α
= 0 (14)

where the Jacobian J = ∂G
∂η

remains the same as in the
single-parameter case. But as α is an m-dimensional
vector now, the other terms in the differential form
change. So,

J = ∂G

∂η
=

⎛
⎜⎜⎝

∂G1
δη1

. . . ∂G1
δη2N

...
. . .

...
∂G2N

δη1
. . .

∂G2N

δη2N

⎞
⎟⎟⎠ ,

(15)

∂η

∂α
=

⎛
⎜⎜⎝

∂η1
∂α1

. . .
∂η1
∂αm

...
. . .

...
∂η2N

∂α1
. . .

∂η2N

∂αm

⎞
⎟⎟⎠ .

Note that ∂η
∂α

now involves (2N × m) terms includ-
ing the cross terms. This gives us the rate of change
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of each of the initial conditions with respect to all m

system parameters. Now

∂G

∂α
=

⎛
⎜⎜⎝

∂G1
∂α1

. . . ∂G1
∂αm

...
. . .

...
∂G2N

∂α1
. . .

∂G2N

∂αm

⎞
⎟⎟⎠ . (16)

If we denote δG
δα

= Jα because of its resemblance with
the actual Jacobian, we have the differential form as

J
∂η

∂α
+ Jα = 0. (17)

We need to solve the above equation for ∂η
∂α

; thus,
it constitutes a system of (2N × m) equations with
(2N × m) variables ∂ηi

∂αj
with i = 1,2, . . . ,2N and

j = 1,2, . . . ,m.
Now the task is to get hold of the individual terms

of J and Jα . The elements of the Jacobian matrix
Jij = ∂Gi

∂ηj
undergo no change as they remain unaf-

fected by the change in the dimension of α. So all the
Jij ’s are computed using (8) itself. The individual en-
tries of Jα are

Jα(ij) = ∂Gi

∂αj

(18)

where i = 1,2, . . . ,2N and j = 1,2, . . . ,m. Define
new variables

ψij (τ ) = ∂xi(τ )

∂αj

. (19)

Differentiating once

ψ̇ij (τ ) = ∂

∂αj

(
∂xi

∂τ

)
=

m∑
k=1

∂Fi

∂xk

ψkj + ∂Fi

∂αk

(20)

and solving (20) with appropriate initial conditions
gives us all the ψij ’s recalling that

Jα(ij) = ∂Gi

∂αj

=
(

∂φi

∂αj

− ∂ηi

∂αj

)
= ψij (τ0) − ∂ηi

∂αj

.

Writing in the matrix form (replace 2N = n for nota-
tional convenience)

J =
⎛
⎜⎝

μ11(τ0) − 1 . . . μ1n(τ0)
...

. . .
...

μn1(τ0) . . . μnn(τ0) − 1

⎞
⎟⎠ (21)

and

Jα =

⎛
⎜⎜⎝

ψ11(τ0) − ∂η1
δα1

. . . ψ1m(τ0) − ∂η1
δαm

...
. . .

...

ψn1(τ0) − ∂ηn

δα1
. . . ψnm(τ0) − ∂ηn

δαm

⎞
⎟⎟⎠

=
⎛
⎜⎝

ψ11(τ0) . . . ψ1m(τ0)
...

. . .
...

ψn1(τ0) . . . ψnm(τ0)

⎞
⎟⎠

−

⎛
⎜⎜⎝

∂η1
δα1

. . .
∂η1
δαm

...
. . .

...
∂ηn

δα1
. . .

∂ηn

δαm

⎞
⎟⎟⎠ . (22)

Equation (14) now becomes

⎛
⎜⎝

μ11 − 1 . . . μ1n

...
. . .

...

μn1 . . . μnn − 1

⎞
⎟⎠

τ0

[
∂η

∂α

]

+
⎛
⎜⎝

ψ11 . . . ψ1m

...
. . .

...

ψn1 . . . ψnm

⎞
⎟⎠

τ0

−
[

∂η

∂α

]
= 0 (23)

where [ ∂η
∂α

] is given by (15). Solving the above equa-

tion gives us all the δηi

δαj
’s which means that we have

the rate of change of each initial condition with respect
to each parameter. Then, the new initial conditions will
be

ηnew
i = ηold

i +
m∑

j=1

∂ηi

∂αj

�αj . (24)

This will provide an estimate of the new initial condi-
tions at the point (α + �α) in the parameter space.

3 Formulation of the optimisation problem

The main aim of this work is to make use of the
parametric continuation method in the optimal de-
sign of multi-parametric nonlinear systems. This in-
volves the determination of the optimal value of the
m-dimensional parameter vector so that the nonlinear
system gives the desired performance. In the single-
parameter case, the optimal value of the parameter
can easily be inferred from the continuation curve it-
self; but as the number of parameters increases, the
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Fig. 2 The scheme for optimisation of multi-parametric systems using GA along with continuation

determination of optimal parameter value becomes
a difficult task as the search is to be carried out in
higher dimensional spaces. In this case, the use of a
specialised search algorithm which can deal with the
nonlinear nature of the problem cannot be avoided.
This work proposes the use of two different search
strategies coupled with continuation, namely, the Gra-
dient Search method and GA. These two strategies
were chosen because of their diametrically opposite
character; Gradient search is normally a local search
method whereas the GA is a global search strat-
egy [16]. Thus, we may arrive at local optimum in
the neighbourhood of a specific point in parameter
space by using Gradient methods in a short time. But
if we are interested in global optimal values, then we
will have to resort to the use of GA and obviously
it will be more time-consuming than local search.
The optimisation problem can be formulated as fol-
lows:

Minimise the function R = f (α1, α2, . . . , αm)

subject to the constraints ai ≤ αi ≤ bi .

3.1 Coupling of continuation and GA

The role of GA in the whole scheme is made clear in
Fig. 2. For explaining how GA is combined with pa-
rameter continuation, let us consider GA as a toolbox.
A typical iteration of the whole scheme sketched in
Fig. 2 will be as follows. The GA, after carrying out
a search based on its internal logic of natural selec-
tion, furnishes a point α = (α1, α2, α3, . . . , αm) in the
m-dimensional parameter space. The multi-parametric

Fig. 3 Continuation in a 2-dimensional parameter space with
the help of norm minimiser

continuation has to be used to furnish the system re-
sponse measure at this particular parameter values to
the GA toolbox. To speed up this process of continu-
ation, a module termed “norm minimiser” is used in
the scheme. In the first iteration of the whole scheme,
continuation begins from the point (a1, a2) as it is the
lower limit given by the constraints. With reference
to Fig. 3, which shows the case of a system with two
parameters α1 and α2, the point 1 is the first point
furnished by the GA and the system response mea-
sure at 1 is found out by continuing from the point
(a1, a2). This continuation is done in small steps and
at each step the parameter vector (α1, α2) along with
the response measure at that point is stored in the
database. Based on the value at 1, the GA toolbox fur-
nishes the next point 2. Once the point 2 is fed into the
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“norm minimiser”, it searches the database to locate
the nearest point available to 2. This amounts to find-
ing the Euclidean norm between the point 2 and all the
points available in the database and selecting the min-
imum, hence the name “norm minimiser”. In Fig. 3,
this closest point comes out to be the point 1; so multi-
parametric continuation is carried out from point 1 to 2
as shown. Let us say that the next point generated by
the GA is 3; the norm minimiser locates the nearest
available point in the database (3′ in the figure) and
continuation is carried out from that point to 3. This
process continues till convergence criterion of the GA
is met; then we would have converged to the optimal
parameter vector.

3.2 Coupling of continuation and Gradient search

The Gradient-based search strategies usually rely on
the gradient of the function f to be optimised with
respect to each of its parameters. The gradient of the
function f which depends on m variables is defined as
an m-component vector given by

∇f =

⎧⎪⎪⎨
⎪⎪⎩

∂f
∂α1
...

∂f
∂αm

⎫⎪⎪⎬
⎪⎪⎭

.

The gradient has the very important property that the
negative of the gradient vector denotes the direction
of steepest descent [17]. Taking the case of two vari-
ables, let us illustrate how we may find the gradient
of a function f using continuation. For finding ∇f at
a point P (refer to Fig. 4) in the parameter space, we

Fig. 4 Steepest descent search in a 2-parameter space

need ∂f
∂α1

and ∂f
∂α2

at the point P which can be found
out as follows:

∂f

∂α1

∣∣∣∣
P

= f (2) − f (1)

dist(2,1)

∂f

∂α2

∣∣∣∣
P

= f (3) − f (4)

dist(3,4)

where f (1), f (2), etc. are the values of the function
at points 1 and 2 respectively and dist(2,1) denotes
the Euclidean distance between points 2 and 1. In our
case, the function f will be some dynamical property
of the system which we need to minimise, say accel-
eration. Thus, if we need the gradient of f at the point
P, we first find f (1), . . . , f (4) by carrying out con-
tinuation in the α1–α2 space from P. Once we have
the function values at these points, the gradient can be
found out very easily from the above relation. Then
the search proceeds in the direction of the negative
gradient and this continues till local optimum is ob-
tained.

The main contributions of this work are the cou-
pled use of search strategies and parametric contin-
uation towards the optimisation of multi-parametric
nonlinear systems and the introduction of the above-
mentioned norm minimising procedure to minimise
the number of iterations in continuation and thus to
expedite the optimisation process. Two different anal-
yses can be carried out to see the effect of these on
the optimisation. First, optimal parameter values of the
same system can be arrived at by the use of GA and
shooting method alone. Here, the system response de-
manded by the GA at a point in the parameter space is
provided by the use of shooting method at that point.
The comparison of the results obtained by this method
and the newly proposed algorithm will give a qual-
itative idea about the efficiency of the new method.
Second, to see the advantages, if any, of using the
proposed “norm minimiser” along with continuation,
we may perform the optimisation employing GA and
continuation alone. In this case, the system response
at a point will be found out in each iteration using
continuation from a constant point (this point can be
taken as the zero vector). A comparison with this re-
sult will bring out the effect of using the norm min-
imiser.
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4 Application to Duffing oscillator

4.1 Single-parameter continuation

In the present work, a MATLAB based computational
scheme has been developed to apply the above tech-
nique to a commonly used single-degree-of-freedom
(SDOF) Duffing oscillator whose governing equation
is given by

ẍ + ξ ẋ + kx + βx3 = f cos(Ωτ). (25)

Here, k is the linear stiffness, ξ is the viscous damp-
ing coefficient, β is the nonlinear stiffness, f is the
external excitation amplitude and Ω is the excitation
frequency.

4.1.1 Continuation in frequency

In order to ascertain the correctness of the algorithm
as well as the computational apparatus, first, taking
frequency as the parameter, the amplitude values ob-
tained from the present continuation procedure are
compared with the standard theoretical amplitude val-
ues available for the Duffing oscillator [18]. The gov-
erning equation can be written in the state space form
as{

ẋ1

ẋ2

}
=

(
0 1

−k −ξ

){
x1

x2

}
+

{
0

−βx3
1

}

+
{

0
f cos(Ωτ)

}
. (26)

The variational equations defining μij can be obtained
as(

μ̇11 μ̇12

μ̇21 μ̇22

)

=
(

0 1
−k − 3βx2

1 −ξ

)(
μ11 μ12

μ21 μ22

)
. (27)

Similarly, the governing equations for ψi ’s may be ob-
tained, treating the frequency Ω as the parameter, as
{

ψ̇1

ψ̇2

}
=

(
0 1

−k − 3βx2
1 −ξ

){
ψ1

ψ2

}

+
{

0
−f τ sin(Ωτ)

}
. (28)

Now consider the case of the hardening spring for
which the nonlinear stiffness is positive. Figure 5(a)

shows the frequency continuation curve for the lin-
ear Duffing oscillator with parameter values ξ = 0.05,
f = 0.2, k = 1, β = 0.5.

Figure 5(b) shows the comparison results for soft-
ening spring with negative nonlinear stiffness, the pa-
rameter values being ξ = 0.05, f = 0.2, k = 1, β =
−0.5. Both the comparison plots show that there is a
very close agreement between the theoretical values
and those obtained by the continuation procedure. It
is to be noted that in both the cases the continuation
curves were obtained by forward sweep; i.e. the fre-
quency value was positively incremented. In both the
cases the other branch of the solution can easily be ob-
tained by sweepback.

4.1.2 Continuation in nonlinear stiffness

Now, the case of single-parameter continuation in non-
linear Duffing oscillator is considered to ascertain the
shape of the single-parameter curve and its trend with
respect to different parameters. If the nonlinear stiff-
ness is considered as the parameter, the governing
equation for ψi ’s will be
{

ψ̇1

ψ̇2

}
=

(
0 1

−k − 3βx2
1 −ξ

){
ψ1

ψ2

}

+
{

0
−x3

1

}
. (29)

Figure 6(a) shows the continuation diagram with non-
linear stiffness as the parameter for Duffing oscillator
with parameter values f = 0.3, k = 1, ξ = 0.15 for
three different values of forcing frequency which are
greater than the natural frequency of the unforced lin-
ear system which is obviously

√
k/m = 1. The y axis

shows the acceleration values (the root mean square
(RMS) values are taken here). As is evident from the
figure, the acceleration of the system registers a small
increase with the introduction of nonlinearity into the
system (β = 0 corresponds to the linear system) when
the forcing frequency under consideration is well re-
moved from the resonant region. As the frequency gets
closer to the resonant region, it is seen that the in-
crease in acceleration becomes more pronounced and
is characterised by sudden jumps to higher values as
the stiffness is varied. It is a well-known fact that the
nonlinear effect becomes more relevant in the resonant
regime and this explains the steep rise for the curve for
Ω = 1.3; yet it should be noted that the global trend
of increase in acceleration is not altered.
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Fig. 5 Comparison of
frequency response curves
for the Duffing oscillator
for parameter values
ξ = 0.05, f = 0.2, k = 1,
β = 0.5 and ξ = 0.05,
f = 0.2, k = 1, β = −0.5

Figure 6(b) shows the case when the forcing fre-
quency is equal to or less than the natural resonant
frequency. For the case where Ω = 1 we see that the
acceleration begins to increase as small nonlinearity is
introduced but then reverses the trend and decreases
after that; thus it is seen that there is a reversal in the
trend when one passes the resonant frequency. The
figure shows that for frequencies less than the reso-
nant one, the decreasing trend continues. From a sys-

tem design perspective, the above analysis reveals that
the presence of nonlinearity in the system can be ex-
ploited; we see that if the minimisation of accelera-
tion is one of our design objectives, it is beneficial to
introduce nonlinear stiffness into the system provided
we operate at frequencies lower than the resonant fre-
quency. If the operating range is higher than the res-
onant one, it is better to stick to the linear case as
it corresponds to minimum acceleration. The curves
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Fig. 6 (a) Continuation
curve for nonlinear stiffness
in Duffing oscillator for
parameter values f = 0.3,
k = 1, ξ = 0.15 and for
three frequency values
which are greater than the
natural frequency of the
unforced linear system
(
√

k/m = 1).
(b) Continuation curve for
nonlinear stiffness in
Duffing oscillator for
parameter values f = 0.3,
k = 1, ξ = 0.15 and for
three frequency values
which are less than the
natural frequency of the
unforced linear system

given above closely reflect the “jump” behaviour of
the Duffing oscillator as given in works like [15]. Due
to the jump phenomenon, the resonance gets shifted
and thus the increase in amplitude occurs after passing
the natural frequency; in the above plot we see that the
sudden increase occurs at frequency 1.3 rather than the
natural frequency 1.

4.1.3 Continuation in damping

If the damping coefficient is considered as the param-
eter to be varied, the governing equation for ψi ’s be-
comes{

ψ̇1

ψ̇2

}
=

(
0 1

−k − 3βx2
1 −ξ

){
ψ1

ψ2

}
+

{
0

−x2

}
. (30)
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Fig. 7 Continuation curve
for damping coefficient in
Duffing oscillator for
parameter values β = 0.1,
k = 1, f = 0.3 and for four
different frequency values

Figure 7 shows the variation of system acceleration
with respect to the value of damping coefficient for the
values β = 0.1, k = 1, f = 0.3. The plots are given
for four different values of external frequency as is
shown in the figure. It is easily inferred from the fig-
ure that the general trend is for the system accelera-
tion to decrease with increasing value of the damping
coefficient in the case of Duffing oscillator. This re-
sult is along expected lines keeping in mind the fact
that the energy dissipation increases with increasing
damping factor and this results in the decrease in the
amplitude as well as acceleration. For higher values of
excitation frequency, this decrease is minimal and al-
most linear but it can be seen that for lower values of
forcing frequency the nonlinear aspects become more
pronounced and the variation is no longer linear. In
fact, the rate of decrease of acceleration increases dras-
tically for lower frequencies; furthermore, the general
trend remains the same throughout and does not seem
to depend upon the natural frequency as in the case of
nonlinear stiffness. But another point becomes clear
when we examine the curves corresponding to the fre-
quency values 1 and 1.2. When the damping value
is below 0.4, the system forced with frequency 1.2
gives lesser acceleration but once this damping value
is passed, it is desirable to have frequency as 1 as it
gives lower acceleration. Thus it is clear that the min-
imisation of acceleration, in this case, depends upon

the range of damping and the value of the excitation
frequency.

4.2 Multi-parametric continuation

Now the case of multi-parametric continuation is con-
sidered with the parameter vector α = [β, ξ ]. The vari-
ational equations in the shooting method remain un-
changed and the μij ’s are given by (16) itself. But the
continuation equation has to be changed and (20) gives
(

ψ ′
11 ψ ′

12
ψ ′

21 ψ ′
22

)
=

(
0 1

−k − 3βx2
1 −ξ

)(
ψ11 ψ12

ψ21 ψ22

)

+
(

0 0
−x3

1 −x2

)
. (31)

Solving (31) gives us all the ψij ’s. Thus (23) can now
be solved for all ∂ηi

∂αj
’s which is the quantification of

the rate of change of the system response with respect
to each parameter value. The new initial conditions for
shooting are given by (24).

4.2.1 Application of GA

This multi-parametric continuation is now coupled
with the use of GA as explained in Sect. 3. The min-
imisation of RMS acceleration is selected as the opti-
misation criterion and the value of the parameter vec-
tor which gives minimum acceleration is found out.
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Table 1 The minimum
RMS acceleration values
and their corresponding
parameter vector for
Duffing oscillator at a
forcing frequency of 1.2

Range for Range for Optimal Optimal RMS

nonlinear damping nonlinear damping acceleration

stiffness coefficient stiffness

1 0.2–2 0.2–2 0.246 1.999 0.167

2 0.1–0.5 0.1–0.5 0.118 0.479 0.287

3 0–0.5 0.1–1 0.024 0.995 0.240

Table 2 Comparison
between the proposed
method and the others
which do not use norm
minimiser

Method used Optimal parameter RMS Computational

vector acceleration time (s)

GA + Shooting (0.027,0.958) 0.244 212

GA + Continuation from zero vector (0.020,0.990) 0.245 240

Proposed method (0.024,0.995) 0.241 113

The results quoted here are for a frequency value of
1.2 and are given in Table 1. Case 1 in the table refers
to the following optimisation problem:

Minimise R = Acceleration (nonlinear stiffness (α1),

damping (α2))

subject to the conditions 0.2 ≤ α1 ≤ 2 and

0.2 ≤ α2 ≤ 2.

From Fig. 6(a) it is clear that at f = 1.2, the accel-
eration increases with increasing nonlinear stiffness,
and from Fig. 7 it can be seen that system acceleration
decreases with increase in damping. Therefore, the re-
sults obtained by the use of multi-parametric contin-
uation coupled with GA and given in Table 1 closely
match these trends.

As explained in Sect. 3, the optimisation of the
same system is now carried out using GA coupled
with shooting method and GA along with continua-
tion from a fixed point for comparison purposes. The
results are given in Table 2.

It is seen that when the optimisation process in-
volves only GA and shooting procedure, the accuracy
is severely compromised. When we use GA and con-
tinuation from zero vector, we get results very close
to those of the proposed method, but at the expense
of almost double the computational time. Computa-
tional time when using shooting method is lower than
when using continuation from zero as it does not carry
the continuation procedure with it which, as is evident

from the table, severely restricts its potential of pre-
dicting the exact dynamics of the problem.

In Fig. 8 the best 10 individual function values in
each GA iteration are plotted; it is clearly seen from
the plot that with iteration the number of individual
values giving higher acceleration values steadily de-
creases indicating convergence to the minimum accel-
eration. The ranges for stiffness and damping were set
as 0.1–1 and 0.1–0.7.

Figure 9 shows the convergence of GA-based
method in the parameter space. The parameter vector
for the minimum acceleration value in each iteration is
plotted here. The rounded point is the optimal param-
eter vector (0.1075, 0.6788).

4.2.2 Application of Gradient search

The same optimisation problem which was solved us-
ing GA (above) is now tackled with the help of Gra-
dient search. But here the constraint ranges used are
0.95–0.1 for stiffness and 0.5–2.65 for damping. It is
clearly seen from Fig. 10 that we get the same be-
haviour as in the case of GA; the main difference being
that this strategy consumes much less time, obviously
because it is a local search.

The 2D version of the Gradient search shown
in Fig. 11 confirms to our analysis in the single-
parameter case and with GA.
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Fig. 8 Best 10 function
values in each GA iteration.
The minimum acceleration
value obtained is 0.2712
and the optimal vector is
(0.1075,0.6788)

Fig. 9 Convergence in the parameter space

5 Application to vibration absorbers

The Vibration absorber or the tuned mass damper
(TMD) is one popular device for passive vibration
mitigation of mechanical structures. Theoretical tun-
ing methodologies for linear TMDs have been devel-
oped which give the optimal values of the absorber

mass and the absorber damping [19]. Realising that
the linear TMD is effective only when it is precisely
tuned to the frequency of a vibration mode, the de-
velopment of nonlinear vibration absorbers effective
in larger frequency range has been undertaken [20].
One of the main advantages of introducing nonlinear-
ity into absorbers is that the absorption bandwidth can
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Fig. 10 Local search by Gradient method

be increased, thus facilitating absorption over a larger
frequency range [21]. But nonlinearity makes the de-
velopment of a closed-form tuning strategy impossible
and thus the optimal parameter values of the absorber
have to be found out using numerical search methods.
This brief section aims at utilising the methodology
developed here to optimally tune TMDs.

5.1 The linear case

A linear TMD consists of a primary undamped system
connected to an absorbing system which is damped.
The equations of motion are given by

m1ẍ1 + k1x1 + k2(x1 − x2) + c2(ẋ1 − ẋ2)

= F0 sinωt

m2ẍ2 + k2(x2 − x1) + c2(ẋ2 − ẋ1) = 0.

(32)

Tuning of an absorber essentially consists of arriving
at the optimal values of the absorber mass and ab-
sorber damper with the aim to mitigate the vibration
at the resonant frequency of the primary system. The
theoretical tuning condition requires that [19]

f = 1

1 + μ
(33)

where f = ωa/ωn, μ = m2/m1. ωa is the absorber
frequency and ωn is the natural frequency of the pri-
mary system. From (33) it is very clear that if the aim

is to mitigate the vibration at the resonant frequency
of primary system, then the smaller the absorber mass
the better. But this tuning condition tells us nothing
about the value of absorber damping. For the linear
case given by (32), different closed-form expressions
for optimal damping have been arrived at for different
optimisation criteria [19, 22]. But this approach does
not yield results in the nonlinear case wherein it be-
comes very difficult to arrive at such closed-form ex-
pressions; therefore, numerical tuning becomes a ne-
cessity.

Let us formulate the tuning problem for the linear
case as follows:

Minimise X1 at
ω

ωn

subject to the constraints a1 ≤ m2 ≤ b1 and

a2 ≤ c2 ≤ b2.

This formulation amounts to the minimisation of the
primary structure vibration at its resonant frequency
with bounds imposed upon the absorber mass and
the absorber damping. As the optimisation param-
eters are m2 and c2, in order to apply the devel-
oped optimisation scheme, it is necessary to carry
out multi-parametric continuation with the parameter
vector being (m2, c2). The variational and continua-
tion equations needed for this can be easily obtained
from (7) and (12), respectively. We impose the con-
dition ωa/ωn = 1, where ωa is the absorber natural
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Fig. 11 2D plots for
Gradient search

frequency and ωn is the primary system natural fre-
quency. Also set m1 = 1 and F0 = 1. The optimal
parameter values obtained by the use of the above
method of continuation in (m2, c2) coupled with GA
are given in Table 3.

The correctness of the above values can easily be
ascertained by plotting the amplitude–frequency dia-
gram of the system for the parent mass for the corre-
sponding values of the parameters. This can be done
by using Ω as the parameter and in the continua-

tion procedure. The amplitude–frequency plot for the
three optimal cases obtained in Table 3 are given in
Fig. 12. It is evident from the plots that for all the
three cases, the obtained parameter values do indeed
mitigate the parent structure vibration at resonance as
the amplitude value is very close to zero. It is fur-
ther seen that the optimal tends lie very close to the
lower bound of the range. This is because of the fact
that lower absorber mass facilitates higher mitigation.
Regarding the damping, this occurs because we are
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Table 3 Optimal values of
non-dimensional absorber
mass and damping for
different ranges and the
corresponding amplitude

Range of Range of Optimal μ Optimal ς Value of X1

μ = m2/m1 ς = c2/cc

1 (0.005,0.05) (0.002,0.02) 0.005 0.0021 0.72

2 (0.009,0.05) (0.003,0.02) 0.009 0.0033 0.732

3 (0.013,0.05) (0.005,0.02) 0.014 0.005 0.715

Fig. 12
Amplitude–frequency plots
for the three cases
mentioned in Table 3

trying to minimise the amplitude at resonance; it is
known that for undamped systems this amplitude is
zero, hence the trend given by the present analysis is
justified.

5.2 Tuning nonlinear absorbers

The main motivation in using nonlinear absorbers is
to increase the bandwidth of absorption. We shall con-
sider the case of a nonlinear vibration absorber con-
nected to an essentially nonlinear system. Damping is
provided for both the masses to induce energy dissipa-
tion. The equations of motion are

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2) + β1x
3
1

+β2(x1 − x2)
3 = 0

m2ẍ2 + c2(ẋ2 − ẋ1) + β2(x2 − x1)
3 = 0.

(34)

The parameters of the primary systems are m1 = 1 kg
and c1 = 0.002 Ns/m. For obvious reasons, a light-
weight absorber is selected with m2 = 0.05 kg and
c2 = 0.002 Ns/m. We shall provide the primary mass
an initial non-zero velocity so that it acts as an im-
pulse for the system; here it is given as ẋ1(0) = 4 m/s.

Our aim is to tune the nonlinear absorber stiffness
for given values of primary stiffness. As in the non-
linear case vibration mitigation occurs for a range of
frequency values, the optimisation problem cannot be
phrased in terms of the resonant frequency. So the
function to be optimised is normally taken as the total
energy absorbed by the absorber (this has to be max-
imised):

E%(t) = 100
c2

∫ t

0 (x1(τ ) − x2(τ ))2 dτ

1
2m1ẋ1(0)2

. (35)

Using the method developed above, this process
can be carried out by taking β2 as the continu-
ation parameter. The variational and continuation
equation can be derived from (7) and (12). The re-
sult of GA search coupled with this continuation is
given in Table 4. The optimal values obtained by
our method are compared with the values obtained
by tuning methodology developed elsewhere [23].
Both the values are found to be in very close agree-
ment.
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Table 4 Optimal values of
nonlinear absorber stiffness
and comparison with
theoretically tuned values

Value of β1 Range of β2 Optimal β2 by β2 by theoretical

proposed method tuning

1 0.3 (0.001,0.01) 0.0027 0.0025

2 1 (0.001,0.01) 0.0074 0.0075

6 Conclusion

The present study has focused on the qualitative
changes in the system dynamics with variation in
the parameter values and investigated the same with
the help of a simple shooting method based para-
metric continuation strategy. An effort has also been
taken to use parametric continuation for the determi-
nation of parameter values for which the system gives
the optimal response. Shooting method was used to
generate the periodic solution of the system and the
multi-parametric continuation scheme was employed
to obtain the change in the system dynamics with the
change in parameter values. This information was then
used to find the parameter values which generate an
optimal system response. For this, well-known search
strategies like Genetic Algorithm and Gradient Search
method were coupled with parametric continuation.
A norm minimisation strategy was used to make good
use of the continuation data which we possess and thus
to minimise continuation steps needed in each itera-
tion of the search algorithm. The developed procedure
was used to minimise acceleration of a Duffing oscilla-
tor with nonlinear stiffness and damping coefficient as
the parameters. The results indicate that the proposed
strategy is robust and also that the norm minimisation
introduced does help in improving the search speed.
The study also points towards the fact that the intro-
duction of nonlinearity into the system may be used
to elicit the required system response; it is seen that
under appropriate frequency ranges, nonlinearity has
the effect of decreasing the system acceleration. It was
further demonstrated how the proposed method can
be used as a tool for tuning of nonlinear vibration ab-
sorbers.

Future work is oriented towards the application of
the developed procedure in real time mechanical sys-
tems with an aim to tune typical design parameters to
attain optimal system performance. In such a work,
it will be beneficial to use the GA and the Gradient
search complementarily; GA coupled with continua-
tion can be used to zoom into a global optimal point

and Gradient search can then be used to search locally
in the neighbourhood to locate the optimal value. This
has the potential to speed up the search considerably.
Furthermore, in this work, the continuation strategy is
based on the simple shooting method which makes
the implicit assumption that the response frequency
is the same as that of the forcing frequency. In case
of systems with strong nonlinearities, this may not be
true. To deal with such systems, a continuation scheme
based on generalised shooting method which treats the
response frequency also as an unknown will have to be
developed.
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