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Abstract In this paper, an adaptive fuzzy robust H∞
controller is proposed for formation control of a
swarm of differential driven vehicles with nonholo-
nomic dynamic models. Artificial potential functions
are used to design the formation control input for
kinematic model of the robots and matrix manipula-
tions are used to transform the nonholonomic model
of each differentially driven vehicle into equivalent
holonomic one. The main advantage of the proposed
controller is the robustness to input nonlinearity, ex-
ternal disturbances, model uncertainties, and measure-
ment noises, in a formation control of a nonholo-
nomic robotic swarm. Moreover, robust stability proof
is given using Lyapunov functions. Finally, simula-
tion results are demonstrated for a swarm formation
problem of a group of six unicycles, illustrating the ef-
fective attenuation of approximation error and external
disturbances, even in the case of robot failure.
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1 Introduction

Each Multi-Agent System (MAS) is comprised of a
group of intelligent agents, which are capable of solv-
ing particular problems (e.g., Disaster Management
[1] and Social Structures Modeling [2]) that are not
easily solvable by individuals. MAS have many ad-
vantages in comparison with individual agents such as
flexibility which is a result of decentralized behavior
of these systems. In addition, these systems can be a
good solution for large scale problems.

Although, MAS emerged as a software concept, it
found its way to the practical robotic problems soon.
In fact, the early works on robots motion control has
considered motion of single robots [3–7]. However,
in the recent years, by using multiagent system the-
ory, control of a robotic swarm has been interested
by control communities. Some possible applications
of a multirobot system include underwater or outer
space exploration, factory transportation services, haz-
ardous inspiration, guarding, escorting, and patrolling
missions [8–12].

Recently, H∞ optimal control techniques has been
found to be an effective solution to treat robust stabi-
lization and tracking problems, in the presence of ex-
ternal disturbances and system uncertainties [13–18].
In an H∞ control technique, the main design goal is to
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force the gain from unmodeled dynamics, external dis-
turbances, and approximation errors to be equal or less
than a prescribed disturbance attenuation level (H∞
attenuation constraint) [13]. This goal is generally rep-
resented as a Linear Matrix Inequality (LMI) problem.

In the traditional H∞ control, the exact model of
the system must be known. However, in order to pro-
pose a robust control method, an integration between
this robust scheme with fuzzy logic approximators can
propose effective controllers for uncertain dynamic
models [19–21].

In addition, although, control of nonholonomic mo-
bile robots has been a subject of intense research in re-
cent years [22–24], most of the works in this field do
not consider dynamic characteristics of mobile robots.
In fact, the main idea behind most of control tech-
niques is to define velocity control inputs, consider-
ing only the kinematic model of robot. However, de-
scribing a mechanical system contains both kinematic
and dynamic equations, where most dynamical sys-
tems can be considered as a cascade system in which
the kinematic and dynamic equations are two separate
subsystems which are related by a direct interconnec-
tion.

In this research, a matrix conversion is used to
translate the nonholonomic model of a differentially
driven vehicle to the dynamic model containing the
forces and angular torque applied to each robot. Co-
ordinates of a holonomic point on the robot can be
the key-idea for this translation. In addition, to sat-
isfy the geometric formation, which is considered as
the goal of this article, a simple artificial potential
field is defined to guide the mobile robots through
this formation. Then, an unknown nonlinear dynamic
model is adopted to each 3-DOF mobile robot. There-
fore, an adaptive fuzzy approximator is combined with
H∞ control technique to propose a novel decentral-
ized adaptive fuzzy formation control methodology,
with robust characteristics. The main advantage of this
control strategy is insensitivity to robot dynamic un-
certainties, external disturbances and input nonlinear-
ities, where control laws are applicable to nonholo-
nomic robots (e.g., a unicycle).

The rest of this paper is organized as follows:
Sect. 2 presents the potential function evaluation.
Translation of nonholonomic robot models to dynamic
ones is described in Sect. 3. Design of the proposed
controller, comparison with an existing method and
stability analysis are discussed in Sect. 4. Simulation

results are included in Sect. 5, and Sect. 6 provides the
concluding remarks.

2 Potential function design

The major goal in this study is to solve a swarm for-
mation control problem (i.e., controlling the relative
position of the robots to create a desirable formation).
One of the effective solutions for this problem is using
an electrostatic-like potential function design which
guides the robots through continuous smooth paths
and avoids robot collisions. Such a potential func-
tion design has been discussed in various papers (e.g.,
[8, 11, 12, 25]).

Therefore, in this section, we will explain a simple
potential function design, in order to solve the forma-
tion control of a group of N point massless robots,
where the kinematic of the ith robot is considered as

żi = ui i ∈ {1,2, . . . ,N}, (1)

in which, zi ∈ R
2 is the coordinate matrix (for a robot

with 2-DOF) and ui ∈ R
2 denotes the control inputs.

However, one of the main shortcomings of this
kinematic model is that it does not correspond to the
nonholonomic constraints and dynamics of realistic
robots. To overcome this shortcoming, more general
dynamic models like unicycle models [26] or other
wheeled vehicle models can be discussed.

To propose a control law, an artificial potential
function is designed. This potential function can be
comprised of interrobot interactions, environmental
effects (e.g., obstacles, goals, etc.) or other exceptional
terms.

Consider the pair-wise potential fields, which are
defined between robots as

Fij = Lij

(|zi − zj |
)
, ∀i, j ∈ {1,2, . . . ,N}, (2)

where Lij denotes a proper inter-robot potential func-
tion. It is assumed that each robot senses the resultant
potential of all other robots.

The overall potential function is proposed to be in
the form of

F =
N−1∑

i=1

N∑

j=i+1

Lij

(|zi − zj |
) +

N∑

i=1

Qi

(|zi |
)
, (3)

where Qi denotes the global potential of each robot.
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Three assumptions for potential function in (3) is
considered [25, 27]:

Assumption 1 F is continuously differentiable.

Assumption 2 F is strictly convex.

Assumption 3 F is positive definite.

For example, the following potential function can
be chosen for a desired polygonal formation in a 2D
space:

F =
N−1∑

i=1

N∑

j=i+1

(|zi − zj |2 − dij

)2

+
N∑

i=1

(|zi |2 − ci

)2
, (4)

where dij denotes the distance between ith and j th
robot and ci denotes the desirable coordinate of ith
robot.

At the first step, to propose a solution for multi-
robot formation control, the ith steepest descent direc-
tion ([8, 25, 27]) is chosen as

fi = ∇zi
F (5)

where fi ∈ R
2 and the control law for the ith robot is

chosen as

ui = −fi. (6)

By substituting (6) in (1), the kinematic model is
obtained as

żi = −fi = −∇zi
F, ∀i ∈ {1,2, . . . ,N}. (7)

In the next section, a transformation procedure
will be used to transform the nonholonomic model of
differentially driven vehicles to a holonomic model.
Then, in Sect. 4, the dynamic model will be used to
force satisfaction of (7).

3 Translating nonholonomic model to holonomic
one

Consider the model of ith differentially driven robot
(Fig. 1a) in polar coordinates as

ṙi =
(

vi cos θi

vi sin θi

)
θ̇i = wi (8)

Fig. 1 Differentially driven vehicle

where the overdot denotes differential with respect to
time. ri = (xi, yi)

T is the coordinate of ith robot and
θi denotes the robot direction. vi and wi represent the
linear and angular velocities. In order to include the
dynamic model of unicycle, equations

v̇i = 1

mi

Fi,

(9)

ẇi = 1

Ji

τi

should be added to (8), where mi is the ith vehicle
mass, Ji is the ith vehicle moment of inertia, and Fi

and τi are the force and angular torque applied to the
ith unicycle, respectively.

As shown in Fig. 1b, based on [28, 29], we can de-
fine a holonomic point (qi ) in distance Li perpendicu-
lar to the axis which connects center of wheels as

qi = ri + Li

(
cos(θi)

sin(θi)

)
(10)

and

q̇i = ṙi + Li

∂

∂t

(
cos(θi)

sin(θi)

)
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=
(

cos(θi) −Li sin(θi)

sin(θi) Li cos(θi)

)(
vi

ωi

)
. (11)

After simply multiplying the right-hand side of
(11), differentiating this equation with respect to time,
and using (9) and (8) we will have

q̈i =
(

−viωi sin(θi) − Liω
2
i cos(θi)

viωi cos(θi) − Liωi
2 sin(θi)

)

+
( 1

mi
cos(θi) −Li

Ji
sin(θi)

1
mi

sin(θi) −Li

Ji
cos(θi)

)(
Fi

τi

)
. (12)

Matrix Γi is defined as

Γi =
( 1

mi
cos(θi) −Li

Ji
sin(θi)

1
mi

sin(θi) −Li

Ji
cos(θi)

)

, (13)

then its determinant can be easily calculated as

detΓi �= 0.

Therefore, matrix Γi is nonsingular and invertible.
By multiplying Γ −1

i to both sides of (12), we can
write

Mi(θi)q̈i + gi(vi,ωi, θi) = ui (14)

where

Mi(θi) = Γ −1
i , (15)

gi(vi,ωi, θi)

= −Γ −1
i

(
−viωi sin(θi) − Liω

2
i cos(θi)

viωi cos(θi) − Liωi
2 sin(θi)

)

(16)

and

ui =
(

Fi

τi

)
. (17)

To find a direct relation between holonomic point
and mobile robot center, based on (10) and (11), mo-
bile robot position (ri ), linear velocity (vi ) and angular
velocity (ωi ) can be described as

⎛

⎜⎜
⎝

rxi

ryi

vi

wi

⎞

⎟⎟
⎠ =

⎛

⎜⎜⎜
⎝

qxi − Li cos(θi)

qyi − Li sin(θi)

q̇xi cos(θi) + q̇yi sin(θi)

− 1
Li

q̇xi cos(θi) + 1
Li

q̇yi cos(θi)

⎞

⎟⎟⎟
⎠

. (18)

Therefore, (14) can be rewritten as

Mi(θi)q̈i + gi(qi, q̇i , θi) = ui. (19)

Equation (19) is a holonomic dynamic model which
needs the exact position of holonomic point and its ve-
locity to be known. However, in practice just measur-
ing the coordinate and velocity of robot center is appli-
cable. Therefore, let us define the coordinate and ve-
locity measurement error as �zi and �żi , respectively.
Now we can consider zi = qi +�zi and żi = q̇i +�zi ,
then it is straight forward to write (19) as

Mi(θi)(z̈i − �z̈i) + gi(zi − �zi, żi − �żi, θi) = ui

(20)

and if we define δai as the overall additive uncertainty,
then the simple form of (20) is

Mi(θi)z̈i + gi(zi, żi , θi) = ui + δai, (21)

It can be seen that (21) is similar to the general dy-
namic model of holonomic robots M(z)z̈+C(z, ż)ż+
g(z) = u + d introduced in [30]. Therefore, the ro-
bust control method proposed in following section
is designed based on the previous work of authors
on swarm formation control of multi-robot systems
in [31].

4 Problem formulation and control design

In this section, a novel formation error based on the
integral of formation gradient (5) will be proposed and
a robust H∞ controller will be designed. In addition,
fuzzy logic system will be utilized to approximate the
unknown parts of dynamic models.

Consider a group of N fully autonomous nonholo-
nomic dynamically driven mobile robots. The dynam-
ics of the ith simple mobile robot is nonlinear and can
be written by using (21) in the general form as

Mi(θi)z̈i + gi(zi, żi , θi) = ui + di (22)

where zi ∈ R
2 is the coordinate matrix (for the holo-

nomic point of robot with 2-DOF), ui ∈ R
2 is the con-

trol input and di ∈ R
2 include the measurement errors

(δai ) and the external disturbances.
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Using the definition of Mi in (15), as this matrix is
nonsingular, its inverse can be used to write

z̈i = −Gi(θi)gi(zi, żi , θi) + Gi(θi)ui + Gi(θi)di,

(23)

where Gi(θi) = M−1
i (θi).

Consider, the kinematic formation error for the ith
robot as

ei(t) = zi(t) +
∫ t

0
fi(τ ) dτ, (24)

where ei ∈ R
2 and fi is the gradient of potential func-

tion defined in (5). It is straightforward to write the
first and second derivatives of (24) as

ėi (t) = żi (t) + fi, (25)

ëi (t) = z̈i (t) + ḟi . (26)

Our design goal is to propose an adaptive fuzzy
controller so that

ëi + k1ėi + k2ei = 0 (27)

is achieved, where k1 and k2 are chosen to make (27)
asymptotically stable.

To design the controller, consider the control law
proposed as

ui = G−1
i (θi)

(
Hi(zi, żi , θi) − ḟi − k1ėi − k2ei

)
, (28)

where Hi(zi, żi , θi) = Gi(θi)gi(zi , żi , θi).
In order to use the control law (28), which is de-

signed based on the feedback linearization control
method, the functions Hi(.) and Gi(.) must be known
and no disturbance is allowed (i.e., di = 0). However,
in practice these matrices may be unknown for most of
real dynamical robots, external disturbances, and mea-
surement noises emerge easily. To overcome this, we
make use of two adaptive fuzzy logic systems Ĥi(.)

and Ĝi(.) to approximate Hi(.) and Gi(.), respec-
tively.

4.1 Adaptive fuzzy approximator design

By designing two simple fuzzy logic systems as fuzzy
models and using the singleton fuzzifier, product infer-
ence, and weighted average defuzzifier [32], the output

of our fuzzy models can be expressed as

Ĥi(zi, żi , θi | φHi) = ζT
Hi(zi, żi , θi)φHi, (29)

Ĝi(θi | φGi) = ζT
Gi(θi)φGi. (30)

Therefore, we can rewrite the overall control law
(28) as

ui = Ĝ−1(θi | φGi)
[
Ĥi(zi , żi , θi | φHi) − ḟi

− k1ėi − k2ei + uai

]
(31)

where uai is engaged to attenuate the fuzzy logic ap-
proximation error, external disturbances and measure-
ment noises.

To derive the adaptive law for adjusting φHi and
φMi , we first define the optimal parameter vectors φ∗

Hi

and φ∗
Mi as

φ∗
Hi = arg min

φ
Hi

∈ΩH

[
sup

∥∥Ĥi(zi, żi , θ i | φ
Hi

)

− Hi(zi, żi , θHi)
∥
∥]

(32)

and

φ∗
Gi = arg min

φ
Gi

∈ΩG

[
sup

∥∥Ĝi(θ i | φ
Gi

) − Gi(θGi)
∥∥]

(33)

where ΩH and ΩG are proper compact sets defined as

ΩH = {
φHi ∈ R

n | ‖φHi‖ ≤ DH

}

and

ΩG = {
φGi ∈ R

n | ‖φGi‖ ≤ DG

}
.

The minimum approximation error is defined as

wi = (
Ĥi

(
zi, żi , θ i | φ�

Hi

) − Hi(zi, żi , θ i)
)

+ (
Gi(θi) − Ĝi

(
θi | φ�

Gi

))
ui (34)

where it can be assumed that wi ∈ L∞ [32].
By choosing the control input as (31) after some

manipulations, (23) can be rewritten as

z̈i = (Ĥi − Hi) + (Gi − Ĝi)ui

− ḟi − k1ėi − k2ei + uai + Gidi (35)

and the formation error dynamic can be expressed as

ëi = (Ĥi − Hi) + (Gi − Ĝi)ui

− k1ėi − k2ei + uai + Gidi. (36)
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Moreover, by defining Ei = [e1i , ė1i , e2i , ė2i], it is
straightforward to write

Ėi = AEi + Buai + B
[
(Ĥi − Hi) + (Gi − Ĝi)ui

]

+ BGidi (37)

where

A = I2×2 ⊗
[

0 1
−k2 −k1

]

2×2
,

B = I2×2 ⊗ [0 1]T

in which ⊗ denotes the Kronecker matrix product.
Based on (29), (30), and (34), the matrix form of for-
mation error in (37) can be rewritten as

Ėi = AEi + Buai

+ B
(
ζT

Hi(zi, żi , θi)φ̃Hi
− ζT

Gi(θi)φ̃Gi
ui

)

+ Bwi + BGidi

= AEi + Buai

+ B
(
ζT

Hi(zi, żi , θi)φ̃Hi
− ζT

Gi(θi)φ̃Gi
ui

)

+ Bw′
i (38)

where

φ̃Hi = φHi − φ�
Hi, (39)

φ̃Gi = φGi − φ�
Gi, (40)

w′
i = Bwi + BGidi. (41)

In the following theorem, it will be shown that the
proposed control law (31) guarantees the robust stabil-
ity of formation problem.

Theorem 1 Consider a group of N fully autonomous
nonholonomic differentially driven vehicles with the
dynamic represented in (23), and with the control law
in (31). The robust compensator of ith robot uai and
the fuzzy adaptation laws are chosen as

uai = −1

r
BTPEi, (42)

φ̇
H

= −γ1ζHi(zi, żi , θi)B
TPEi, (43)

φ̇
G

= +γ2ζGi(θi)B
TPEiu

T
i , (44)

where r , γ1 and γ2 are positive constants and P is the
positive semidefinite solution of following Riccati-like

equation:

PA + ATP + Q − 2

r
PBBTP + 1

ρ2
PBBTP = 0

(45)

in which, Q is a positive semidefinite matrix and
2ρ2 ≥ r .

Therefore, the H∞ criterion

N∑

i=1

[∫ T

0
ET

i QEi dt

]

≤
N∑

i=1

[
Ei(0)TPEi(0) + 1

γ1
φ̃T

Hi(0)φ̃Hi(0)

+ 1

γ2
tr
(
φ̃T

Gi(0)φ̃
Gi

(0) tr
)]

+ ρ2
N∑

i=1

[∫ T

0
w′

i
T
w′

i dt

]
(46)

can be achieved for a prescribed attenuation level
ρ and all the variables of closed loop system are
bounded.

4.2 Comparison with the existing methods

In recent years, some methods based on potential fields
are integrated with some nonlinear control schemes
such as feedback linearization method and Sliding
Mode Control (SMC), which concludes in formation
control design of dynamic robots [25, 27, 33, 34].
Cortes et al. [33] suggested the use of decentralized
coverage algorithms as formation control algorithms,
and they presented various density functions that lead
the multivehicle network to predetermined geometric
patterns. In particular, they presented simple density
functions that lead to segments, ellipses, polygons,
or uniform distributions inside convex environments.
Cheaha et al. [27] presented a region-based shape con-
troller for a swarm of fully actuated robots, where a
linear approximator was used to approximate the un-
known dynamic model and an SMC controller inte-
grated with artificial potential functions was used to
satisfy a predetermined geometric 2D formation. Ran-
jbarsahraei et al. [34] proposed an adaptive control
scheme for multi-robot formation control. Their con-
trol method was based on artificial potential functions
integrated with adaptive fuzzy SMC technique. They
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Fig. 2 Computational complexity comparison of SMC-based
method [34] with the proposed control method

considered fully actuated mobile robots with com-
pletely unknown dynamics. An adaptive fuzzy logic
system was used to approximate the unknown system
dynamics.

To compare the computational complexity of our
proposed method with the method proposed in [34],
consider N nonholonomic robots, each one with 3-
DOF. In the proposed method, each robot fuzzy ap-
proximator uses the position and velocity of itself.
However in [34] when two membership functions are
defined for each variable (i.e., zx , zy , żx , and ży )
of each robot, then a collection of 8N adaptation
rules are needed. Figure 2 illustrates the computational
complexity comparison for different swarm popula-
tions (N ).

From Fig. 2, it is completely clear that the com-
putational complexity of proposed method is inde-
pendent of swarm population N , while in the ex-
isting method [34] (and many similar methods such
as [27]). This computation complexity increases with
the swarm population (or at least number of neighbor-
ing robots), which is undesirable and impractical.

4.3 Stability proof

In order to prove the multirobot robust stability, a Lya-
punov candidate is chosen as

V =
N∑

i=1

[
1

2
ET

i PEi + 1

2γ1
φ̃T

Hiφ̃Hi

+ 1

2γ1
tr
(
φ̃T

Giφ̃Gi

)]
. (47)

Based on (38) and (42), and using the fact that
˙̃
φHi = φ̇Hi and ˙̃

φGi = φ̇Gi , the time derivative of V is

V̇ = 1

2

N∑

i=1

[
ĖT

i PEi + ET
i P Ėi + 1

γ1

˙̃
φT

Hiφ̃Hi

+ 1

γ2
tr
( ˙̃
φT

Giφ̃Gi

)]

= 1

2

N∑

i=1

[
ET

i

(
ATP + PA − 2

r
PBBTP

)
Ei

]

+ 1

2

N∑

i=1

[(
ET

i PBζT
Hi(zi, żi .θi) + 1

γ1
φ̇T

Hi

)
φ̃

Hi

]

− 1

2

N∑

i=1

[(
ET

i PBζT
Gi(θi)φ̃Gi

ui

− 1

γ2
tr
(
φ̇T

Giφ̃Gi

))]

+ 1

2

N∑

i=1

[
w′T

i BTPEi + ET
i PBw′

i

]
. (48)

Using adaptation law (43) and (44), and the Riccati-
like equation (45), the above equation becomes

V̇ = 1

2

N∑

i=1

[
−ET

i QEi − 1

ρ2
ET

i PBBTPEi

]

+ 1

2

N∑

i=1

[
w′T

i BTPEi + ET
i PBw′

i

]

≤ 1

2

N∑

i=1

[−ET
i QEi + ρ2w′T

i w′
i

]
. (49)

Integrating the above inequality from t = 0 to T

yields to

V (T ) − V (0) ≤ 1

2

N∑

i=1

[
−

∫ T

0
ET

i QEi dt

+ ρ2
∫ T

0
w′T

i w′
i dt

]
. (50)

Using the fact that V (T ) ≥ 0 and from (47), the
H∞ criterion (46) can be achieved and the proof is
completed.
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Table 1 Parameter specifications of hexagonal formation

|i − j | = 1 |i − j | = 2 |i − j | = 3 |i − j | = 4 |i − j | = 5

dij 1.0 1.7 2.0 1.7 1.0

5 Simulation results

This section presents three simulation examples to
illustrate the effectiveness of the proposed control
scheme. In the first example, a group of six unicy-
cles with known dynamics is considered. The second
example presents the hexagonal formation of six un-
known unicycles and an adaptive fuzzy logic system is
used to approximate the unknown dynamics. This ex-
ample shows the system stability under the proposed
novel controller. In order to prove the controller ro-
bustness, in the third example a white Gaussian noise
is applied to all measured data and one of the robots
is forced to be stationary and still the formation main-
tains its stabilizing performance. All the simulation re-
sults are implemented in MATLAB with 0.01 s as the
step-size.

The unique formation problem used in all three
simulation examples, is a 2D hexagon with unit radius
defined by

F =
5∑

i=1

6∑

j=i+1

(|zi − zj |2 − dij

)2
, (51)

where dij is specified in Table 1.
In addition, six random points in the 2D space are

chosen to be the initial positions for six unicycles with
random initial orientations. These points are assumed
to be fixed in all three numerical simulations.

5.1 Example I. Six unicycles with known dynamics

Consider a group of six mobile unicycles with dy-
namic models. The nonlinear dynamic of the ith robot
is considered as the model in (8)–(9), while mi = 0.2
and Ji = 1.

To give a solution for the formation problem (51),
formation error is defined as (24) and the control law
is designed based on (28), where k1 = 15 and k2 = 4.

Figure 3a shows the formation trajectory of these
six unicycles starting from initial coordinates to the
final unit hexagon (51) in 30 s and Fig. 3b shows the
potential function decrement defined in (51).

Fig. 3 Hexagonal formation of six unicycles with known dy-
namics

The first subfigure (Fig. 3a) shows how smooth the
controller guides all the unicycles to form the desired
hexagon. This geometric formation doesn’t have any
fixed position or direction, and it will only be deter-
mined by the unicycles initial position.

The second subfigure (Fig. 3b) illustrates the po-
tential decrement through the time. It is shown that the
potential is forced to get stabilized in less than 20 s.

5.2 Example II. Six unicycles with unknown
dynamics

To verify the effectiveness of proposed method the
same formation potential and the novel formation er-
ror are chosen as (51) and (24); respectively. Consider
a group of six unicycles with the same dynamic mod-
els in (8)–(9), while mi = 0.2 and Ji = 1. However,
to design the control law, the dynamic model of uni-
cycles is assumed to be unknown (i.e., mi and Ji for
i = 1,2, . . . ,6 are unknown).
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Table 2 Gaussian membership functions

μF 1
1
(zx) = 1

1+exp(3(zx+0.5))
μF 3

1
(zy) = 1

1+exp(3(zy+0.5))

μF 2
1
(zx) = 1

1+exp(−3(zx−0.5))
μF 4

1
(zy) = 1

1+exp(−3(zy−0.5))

μF 1
2
(żx) = 1

1+exp(30(żx+0.15))
μF 4

2
(ży) = 1

1+exp(30(ży+0.15))

μF 2
2
(żx) = exp(−30 × ż2

x) μF 5
2
(ży) = exp(−30 × ż2

y)

μF 3
2
(żx) = 1

1+exp(−30(żx−0.15))
μF 6

2
(ży) = 1

1+exp(−30(ży−0.15))

μF 1
3
(θ) = 1

1+exp(6(θ+0.6π))
μF 3

3
(θ) = 1

1+exp(−6(θ−0.6π))

μF 2
3
(θ) = exp(−0.9 × θ2)

Table 3 Fuzzy rule-base

a. Rule-base for approximation of Ĥ (z, ż, θ):

Rl : IF zx is F i
1 AND zy is F

j

1 AND θ is Fk
3 THEN y is G| ij

1 ,

i = 1,2 j = 3,4 k = 1,2,3

Rl : IF żx is F i
2 AND ży is F

j

2 THEN y is G| ij

2 ,

i = 1,2,3 j = 4,5,6

b. Rule-base for approximation of Ĝ(θ):

Rl : IF θ is Fk
3 THEN y is G| ij

3 ,

k = 1,2,3

Therefore, twelve fuzzy logic approximators (two
for each robot) are designed to approximate the un-
known dynamic, where each robot approximator just
needs the current position and velocity of itself. Gaus-
sian membership functions are listed in Table 2.

Using the aforementioned 13 membership func-
tions, 2 fuzzy rule-bases are designed as shown in Ta-
ble 3, where zx and zy are the position coordinate and
θ is the robot angle of an individual robot and y is the
output of each rule.

The output of the fuzzy system is achieved by
choosing singleton fuzzification, center average de-
fuzzification, Mamdani implication in the rule base,
and product inference engine [32] as

Ĥ (zx, zy, żx, ży, θ | φH )

=
[

φT
H1ζH (zx, zy, żx, ży, θ)

φT
H2ζH (zx, zy, żx, ży, θ)

]

and

Ĝ(θ | φG) =
[

φT
G11ζG(θ) φT

G12ζG(θ)

φT
G21ζG(θ) φT

G22ζG(θ)

]

Fig. 4 Hexagonal formation of six unicycles with partially un-
known dynamics

where

φH1 = [φH11 , φH12 , . . . , φH121 ]T,

φH2 = [φH21 , φH22 , . . . , φH221 ]T

and

φG11 = [φG111 , φG112 , φG113 ]T,

φG12 = [φG121 , φG122 , φG123 ]T,

φG21 = [φG211 , φG212 , φG213 ]T,

φG22 = [φG221 , φG222 , φG223 ]T

are adjustable parameters. ζH (zx, zy, żx, ży, θ) and
ζG(θ) are the set of fuzzy basis functions.

All φs are initialized from zero vectors and the
learning rate in (43), (44) are set to γ1 = γ2 = 15.

Simulation results of the proposed adaptive fuzzy
H∞ technique are shown in Figs. 4a, b. The motion
trajectory in the first 30 s is illustrated in Fig. 4a and
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Fig. 5 Hexagonal formation in presence of 20 dB noise and one
unicycle failure

the formation potential (51) is shown to be stabilized
in Fig. 4b.

5.3 Example III. Formation problem in presence of
measurement noise and robot failure

In this example, the robustness of proposed controller
in presence of measurement noise and robot failure,
will be proved. The proposed potential function (3)
and gradient based method proposed in Sect. 2 are
able to obtain the exact formation even in the case
of one unicycle failure. Therefore, in this example it
will be shown that when unicycle #3 (x3(0) = −1,
y3(0) = +1) is forced to be stationary with zero ve-
locity, other unicycles move toward this unicycle to
achieve the hexagon formation. In addition, a white
Gaussian noise with SNR = 20 dB is applied to all the
measured data. All of the model characteristics and
controller designs are the same as previous example
in Sect. 5.2. Motion trajectory and formation poten-

tial (51) of the first 90 s of simulation are shown in
Figs. 5a, b respectively.

6 Conclusion

In this paper, the formation control problem of a class
of multirobot systems with unknown nonholonomic
dynamics was investigated. On the basis of the Lya-
punov stability theory, a novel decentralized adap-
tive fuzzy controller with corresponding parameter up-
date law was developed and the stability of the sys-
tem was proved even in the case of external distur-
bances and input nonlinearities. All the theoretical re-
sults were verified by simulation examples and good
performance of the proposed controller was shown
even in the case of robot failure and presence of mea-
surement noise.
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