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Abstract A technique to synchronize arrays of dy-
namical systems is presented. The arrays are formed
by uncertain nonlinear second-order systems, called
nodes, where only the generalized position is avail-
able. The synchronization technique can be applied to
many array topologies where the connections can be
unidirectional or bidirectional with different weights;
this produces a connection matrix that it is not neces-
sarily symmetric. The design of the coupling signals is
based on a robust discontinuous controller and on an
exact deriver that estimates the velocity of each node.
We present experimental results to illustrate the per-
formance of the synchronization technique.
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1 Introduction

Synchronization is a dynamical behavior that two or
more systems exhibit when a correlated motion be-
tween them is established. This phenomenon appears
very often in nature, but it can also be induced in a
forced way by introducing some coupling elements or
input signals in a convenient way. This last case is of-
ten denoted as controlled synchronization [1].

Synchronization is necessary in many engineering
systems where a collaborative operation is essential. In
this case, the synchronization becomes a control ob-
jective [2], and the product quality depends heavily on
the synchronization performance.

Controlled synchronization has important appli-
cations; for example, private communication sys-
tems [3], multi-robot systems, multi-finger robot hands,
and teleoperation master–slave systems, among oth-
ers. Some important papers on this topic are [4–6].

In the last years, many synchronization techniques
have been proposed, dealing with the master–slave
scheme and with arrays or networks of dynamical
systems; some important papers are [6–15]. Some of
these techniques have been developed to synchronize
chaotic systems using classic control techniques, e.g.
linear feedback [16–18], sliding mode control [20],
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and observed based synchronization [19]. These works
consider ideal conditions like identical systems and
availability of all state variables. Moreover, distur-
bances and uncertainties are not considered.

In [4], a synchronization technique for arrays of
mechanical systems with partial measurement of the
state vector is proposed. The technique requires an es-
timation of the velocity and acceleration, which adds
significant complexity to the solution. The technique
can be applied to arrays of identical systems, and an
exact model is assumed to be known.

Synchronization of systems with parameter uncer-
tainties is considered in [5]; here, an adaptive control
is used to synchronize two robots with kinematic con-
straints. This technique assumes availability of the full
state and no external disturbances. In [6], a synchro-
nization technique for particular configurations of ex-
actly known Lagrangian system networks is proposed.
This technique, based on the contraction stability anal-
ysis, guarantees global, exponential convergence.

Nonlinear second-order systems are important in
synchronization research because they can model
many important phenomena, and may display diverse
behaviors like equilibrium points, periodic orbits and,
for non-autonomous systems, chaotic dynamics. In
practice, many systems may be modeled by a second-
order model; some examples are the artificial neurons
and one-degree-of-freedom (1DOF) mechanical sys-
tems. nDOF mechanical systems can be seen as well
as a set of coupled, second-order systems.

Two recent papers about synchronization of second-
order systems are [21] and [22]. In [21], a consensus
analysis for special topologies in networks of second-
order systems is presented. This work considers iden-
tical nodes, without uncertainties or disturbances, and
complete availability of the state vector is assumed.
There is no reference system in the network, and there-
fore, when the consensus is presented, the solutions of
each node must be a possible trajectory of an isolated
node. The coupling signals are a linear combination
of errors between positions and velocities of the con-
nected nodes. The results are interesting but they are
difficult to apply in practice.

Some important works on synchronization of ar-
rays with higher order nodes are [13–15]: they present
important results on the relation between synchroniza-
tion and graph topology and on the stability of the syn-
chronization in the network. However, they consider
well established topologies that produce symmetric or

asymmetric connection matrices; also, they consider
identical nodes without uncertainties.

In [22] the synchronization problem of uncertain
second-order systems in normal form is studied. In this
work the arrays have a reference system, and the con-
nections are unidirectional. The nodes may be affected
by disturbances, and some model uncertainties are ac-
cepted. The coupling signals are synthesized based on
neuronal networks that estimate the unknown terms in
all nodes.

In this paper we present a synchronization tech-
nique for arrays of uncertain, second-order dynami-
cal systems which may have unidirectional or bidi-
rectional connections with different weights. The ar-
ray may have or not a reference system; hence, the ar-
rays considered in [21] and [22] are special cases. The
nodes can be different, can be affected with external
disturbances, and some parametric uncertainty is tol-
erated. Also, we assume that the generalized position
is the only measured variable.

Based on the array topology, we establish a suf-
ficient condition for synchronizability. If the array
is synchronizable, the coupling signals are designed
based on exact derivers with finite time convergence to
obtain the generalized velocities, and a second-order
sliding mode control technique is used to obtain the
synchronization in the array. This controller provides
a good robustness to the closed-loop system.

The organization of the paper is as follows. Sec-
tion 2 includes some preliminary definitions and the
statement of the synchronization objective. In Sect. 3,
the synchronization technique is described. Here, a
sufficient condition on synchronizability is estab-
lished. Also, in this section, a methodology to design
the coupling signals is presented. In Sect. 4 we present
a strategy to implement the coupling signals, based on
exact derivers with finite-time convergence, and using
a second-order sliding mode controller. In Sect. 5 we
include some experimental results to illustrate the per-
formance of the synchronization technique. Finally, in
Sect. 6, some conclusions are presented.

2 Synchronization objective

Consider k nonlinear systems, called nodes, described
by the differential equation

Σi : d2yi

dt2
− fi(yi, ẏi) = ui + vi + γi(t, yi, ẏi), (1)
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for i = 1, . . . , k, where yi is the output, fi(xi) is a
known, Lipschitz function, vi is a coupling input sig-
nal, and ui is a control input. The term γi(t, yi, ẏi) in-
cludes external disturbances and terms due to param-
eter uncertainties. It is considered smooth in t , yi and
ẏi , and satisfies
∥
∥γi(t, yi, ẏi)

∥
∥ ≤ ρ0i

+ ρ1i

∥
∥(yi, ẏi)

∥
∥ (2)

for some positive numbers ρ0i
, ρ1i

.

Condition 1 We consider that ui is a smooth, control
signal that, when vi = 0, produces a bounded behavior
of system i, for any disturbance γi satisfying (2).

Remark 1 As a consequence of Condition 1, when
vi = 0, the disturbance term and the function fi sat-
isfy
∥
∥γi(t, yi, ẏi)

∥
∥ ≤ ρi, (3)

and
∥
∥fi(yi, ẏi)

∥
∥ ≤ δi . (4)

A state representation of system (1) is

Σi :

⎧

⎪⎨

⎪⎩

ẋ1i = x2i ,

ẋ2i = fi(xi) + γi(t, xi) + ui + vi,

yi = x1i ,

(5)

for i = 1, . . . , k, where xi = (x1i , x2i ) is the state vec-
tor of node i.

These nodes form an array defined by a connection
graph; an example of these graphs is shown in Fig. 1.
The spheres represent the nodes Σi and the lines repre-
sent a coupling. These lines have a particular direction,
represented by an arrow which defines the information
flow. The meaning of a coupling line is the availability
of information, i.e., an arrow from Σi to Σj indicates
that the output yi of the ith node is available for the
j th node. It is important to note that, in this work, we
consider arrays where there are no isolate nodes.

Based on the preceding definitions, the problem to
be solved is to design the coupling signals vi such that
the objectives

lim
t→∞

∥
∥yi(t) − yj (t)

∥
∥ = 0, ∀i, j ∈ {1, . . . , k}, i �= j,

(6)

are satisfied for all xi(0) ∈ Ωi ⊂ R
2.

Fig. 1 An example of a connection graph

3 Design of the coupling signals

We establish the following definitions of synchroniza-
tion, based on [2], to obtain a systematic design of the
coupling signals and satisfy the objective given in (6).

Consider a set of k functionals εi : Y1 × Y2 × · · ·
× Yk → 	, i = 1, . . . , k, where Yi are the sets of all
output functions.

Definition 1 We call the outputs y1(t), . . . , yk(t) of
systems Σ1, . . . ,Σk , as synchronized with respect to
the functionals ε1, . . . , εk if

εi

(

yi(t), . . . , yk(t)
) = 0, i = 1, . . . , k. (7)

Definition 2 We call the outputs y1(t), . . . , yk(t) of
systems Σ1, . . . ,Σk , with initial conditions x1(0), . . . ,

xk(0), as asymptotically synchronized with respect to
the functionals ε1, . . . , εk if

lim
t→∞ εi

(

yi(t), . . . , yk(t)
) = 0, i = 1, . . . , k. (8)

Now we propose the functionals

εi(·) =
k

∑

j=1,j �=i

βij (x1i − x1j ), i = 1, . . . , k, (9)

where βij is a constant that represents the coupling
force from node j to node i. If in the connection graph,



2738 D. Rosas et al.

Fig. 1, the node i does not receive information from
node j , then βij = 0. Each functional εi is a linear
combination of the errors among the output of node i

and the output of each node connected to it.
Using (9) we can define two problems: the first

one is to find the array topologies where the objec-
tive (6) can be satisfied when all functionals εi van-
ish. The second problem is to find the coupling signals
that asymptotically stabilize the origin of the dynamics
of these functionals. Hence we establish the following
definition.

Definition 3 Let us consider the array built with sys-
tems (5) and with a connection configuration defined
by the functionals (9). We call this array synchroniz-
able if there exist coupling signals vi such that the ob-
jective (6) can be satisfied.

Rewriting (9) in a matrix form, we have

ε = Θx1, (10)

where

x1 = [x11, x12, . . . , x1k]T ,

ε = [ε1 ε2 · · · εk ]T ,

Θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k∑

j=1,j �=1
β1j −β12 · · · −β1k

−β21
k∑

j=1,j �=2
β2j · · · −β2k

...
. . .

...

−βk1 −βk2 · · ·
k∑

j=1,j �=k

βkj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(11)

The matrix Θ is denoted as the connection matrix.
Note that Θ is square and the sum of the elements in a
row is zero. Also, note that this matrix is not necessar-
ily symmetric.

We establish now a sufficient condition for array (5)
to be synchronizable.

Theorem 1 If the rank of the connection matrix Θ of
(10) is k − 1, then the array (5) is synchronizable.

Proof First we show that the null space of Θ , (10), is
the diagonal of R

k , and then we calculate the coupling
signals that force array (5) to be synchronized. Take
the equation

0 = Θx1. (12)

If rank{Θ} = k − 1, a Gaussian elimination yields the
matrix Ξ ,

Ξ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −a12 · · · −a1i · · · −a1k−1 −a1k

0 1 · · · −a2i · · · −a2k−1 −a2k
...

. . .
...

...
...

0 0 · · · 1 · · · −ai k−1 −aik
... · · · ...

. . .
...

...

0 0 · · · 0 · · · 1 −1
0 0 · · · 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(13)

where the sum of the elements in each row is zero.
From (13) it is easy to see that the null space of Ξ ,
which defines the solution for (12), is given by x11 =
x12 = · · · = x1k .

Remark 2 If rank{Θ} = k, the unique solution of sys-
tem (12) is x11 = x12 = · · · = x1k = 0, which reduces
the possible solutions for the nodes (5) satisfying the
objective (6).

With the matrix Ξ we define a new system of linear
equations, equivalent to system (10):

ε̃ = Ξx1.

Now let us define r = [ε̃1 · · · ε̃k−1] ∈ R
k−1, so

r = Φx1, (14)

where

Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −a12 · · · −a1i · · · −a1k

0 1 · · · −a2i · · · −a2k

...
. . .

...
...

0 0 · · · 1 · · · −ai k

... · · · ...
. . .

...

0 0 · · · 0 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The dynamics of the variables r are given by

d

dt

[

r

ṙ

]

=
[

ṙ

Φẋ2

]

, (15)

where ẋ2 is defined as
⎡

⎢
⎣

ẋ21
...

ẋ2k

⎤

⎥
⎦ =

⎡

⎢
⎣

f1(x1) + γ1(t, x1) + u1
...

fk(xk) + γk(t, xk) + uk

⎤

⎥
⎦ +

⎡

⎢
⎣

v1
...

vk

⎤

⎥
⎦ ,
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or in compact form,

ẋ2 = F(·) + Γ (·) + v,

where

F(·) = [

f1(x1) + u1, . . . , fk(xk) + uk

]T
,

Γ (·) = [

γ1(t, x1), . . . , γk(t, xk)
]T

,

v = (v1, . . . , vk)
T .

Then system (15) can be rewritten as

d

dt

[

r

ṙ

]

=
[

ṙ

Φ[F(·) + Γ (·)] + U

]

, (16)

where U = Φv is the vector of control inputs for the
system. The problem now is to propose a control U
that stabilizes the origin of (16). For example, a possi-
ble control input can be

U = −Φ
[

F(·) + Γ (·)] − (Kpr + Kvṙ), (17)

where Kp and Kv are (k − 1) × (k − 1)-positive defi-
nite matrices. �

Note that Φ is a (k−1)×k-matrix; hence, normally
we will have an infinite number of choices for v.

4 Implementation of the coupling signals

The control input (17) depends on the terms F , Γ , and
ṙ , which are not exactly known in practice. In this sec-
tion we present a technique to implement the control
input (17) taking into account this situation. This tech-
nique is based on a discontinuous deriver with finite-
time convergence, based on the deriver proposed in
[23], and a discontinuous control based on the con-
troller proposed in [24].

The implementation of the coupling signals has two
stages. In the first stage all the nodes operate discon-
nected, that is, we set vi = 0 for all i a time long
enough such that the derivers attain their steady state.
After this time, the coupling signals are activated.

4.1 A deriver with convergence in finite time

Let us consider the first equation of each node,

ẋ1i = x2i .

The deriver is given by

˙̂xi = zi + c1i |x1i − x̂i | 1
2 sign(x1i − x̂i ),

żi = ui + vi + c2i sign(x1i − x̂i ),
(18)

where c1i and c2i are positive constants. The solutions
of system (18) are defined in the Filippov’s sense [25].
To analyze the deriver’s performance we define the er-
ror ei = x1i − x̂i , whose dynamics are given by

ėi = x2i − zi − c1i |ei | 1
2 sign(ei),

żi = ui + vi + c2i sign(ei).

A change of variables v1i = ei , v2i = x2i − zi leads to

v̇1i = v2i − c1i |v1i | 1
2 sign(v1i ),

v̇2i = fi(x1i , x2i ) + γi(t, xi) − c2isign(v1).
(19)

From (3) and (4) we have
∣
∣fi(x1i , x2i ) + γi(t, xi)

∣
∣ ≤ ρi + δi .

Therefore, we can use Theorem 1, given in [26], to
calculate the constants c1i and c2i satisfying

c1i >

√

2

c2i + δi

(c2i + (ρi + δi))(1 + p)

1 − p
,

c2i > ρi + δi,

(20)

for some constant p ∈ (0,1), to guarantee that the tra-
jectories of system (19) converge to the origin in finite
time. This means that x̂i = x̂1i and zi = x2i in finite
time.

4.2 Design of the control signal

Once the deriver described in the previous section con-
verges to the system state, the control input v is acti-
vated. Hence, in this stage we consider that the veloc-
ity in all nodes is available.

Let us consider the system (16). Because Γ (·) is not
exactly known and ṙ is estimated with the deriver, we
propose that the control input U , given by (17), have
the form

U = −ΦF(·) − [

Kpr + Kv
˙̂r + Kssign(r)

]

,

where Kp , Kv , and Ks are diagonal definite positive
matrices, ˙̂r is given by

˙̂r = Φz,

z = (z1 · · · zk)
T ,
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and sign(r) is defined as

sign(r) = [

sign(r1) . . . sign(rk)
]T

.

The closed-loop system is given by

d

dt

[

r

ṙ

]

=
[

ṙ

ΦΓ (·) − Kpr − Kv
˙̂r − Ks sign(r)

]

.

(21)

This system can be seen as a set of k − 1 second-order
subsystems with the form

d

dt

[

ri
ṙi

]

=
[

ṙi

μi(·) − kpiri − kvi
˙̂ri − ksi sign(ri)

]

,

(22)

where

μi(·) = φ1iγ1(·) + · · · + φkiγk(·),
and
∣
∣μi(·)

∣
∣ = ∣

∣φ1iγ1(·) + · · · + φkiγk(·)
∣
∣

≤
k

∑

j=1

φijρj .

We can then use the results presented in [24], where
it is shown that there exists a set of constants kpi , kvi ,
and ksi such that the origin will be an asymptotically
stable equilibrium point with a basin of attraction large
enough to be useful in practice. These conditions are

kpi > 0,

kvi > 0,

ksi > αi,

where

αj > λmax(Pi)

√

λmax(Pi)

λmin(Pi)

(
kpi

∑k
j=1 φijρj

θ

)

,

0 < θ < 1, and Pi is a matrix defined by

Pi =
[

0 1
−kpi −kvi

]

.

Therefore, we can guarantee the convergence of r to
zero and, in this way, the objective (6) will be satisfied.

5 Synchronization of four mechanical systems

In this section the experimental results of the synchro-
nization of an array composed by four 1-DOF me-
chanical systems is presented. Systems Σ1 and Σ2

are mass–spring–damper systems like the one shown
in Fig. 2; system Σ3 is an axis of the x–y mechani-
cal system shown in Fig. 3; system Σ4 is a horizontal
pendulum, which is the first link of the SCARA robot
shown in Fig. 4. All the positions are measured, but
the system parameters are all unknown. Input signals
u1 and u2, which drive systems Σ1 and Σ2, respec-
tively, are set to 1.5 sin(t) volts. Signals u3 and u4 are
control inputs of systems Σ3 and Σ4. They are syn-
thesized by feedback controllers to make the systems

Fig. 2 Mass–spring–damper system that corresponds to sys-
tems Σ1 and Σ2

Fig. 3 One axis of the x–y mechanical system corresponds to
system Σ3
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Fig. 4 SCARA robot. The first link corresponds to system Σ4

track the reference signal 0.01 sin(t), in meters, for Σ3

and 0.01 sin(t), in radians, for Σ4.
Figure 5 shows the structure of the array. In this

experiment, the outputs of systems Σ1, Σ2, and Σ3 are
measured in meters, the output of system Σ4 is given
in radians. For simplicity, these units are not indicated
in the graphs. The relation between the rectilinear and
the angular motions are 1 meter corresponding to 1
radian. Based on the connection graph, the functionals
εi are given by

ε1 = β13(x11 − x13) + β14(x11 − x14),

ε2 = β21(x12 − x11),

ε3 = β31(x13 − x11)

+ β32(x13 − x12) + β34(x13 − x14),

ε4 = β41(x14 − x11)

+ β42(x14 − x12)

+ β43(x14 − x13),

(23)

where β13 = 2, β14 = 5, β21 = 1, β31 = 3, β32 = 1.5,
β34 = 0.5, β41 = 3, β42 = 1, and β43 = 2. The connec-

Fig. 5 An array of four mechanical systems

tion matrix Θ is then

Θ =

⎡

⎢
⎢
⎣

7 0 −2 −5
−1 1 0 0
−3 −1.5 5 −0.5
−3 −1 −2 6

⎤

⎥
⎥
⎦

.

After a Gaussian elimination we obtain the matrix Ξ

as

Ξ =

⎡

⎢
⎢
⎢
⎣

1 0 − 2
7 − 5

7

0 1 − 2
7 − 5

7

0 0 1 −1
0 0 0 0

⎤

⎥
⎥
⎥
⎦

, (24)

which has rank 3, hence the array is synchronizable.
The variables r are given by (14), with

Φ =
⎡

⎢
⎣

1 0 − 2
7 − 5

7

0 1 − 2
7 − 5

7

0 0 1 −1

⎤

⎥
⎦ .

Even though we can obtain an approximated model of
these systems, in particular the terms composing the
vector F(·), we assume these terms are completely
unknown. This consideration will serve to show the
robustness performance of the proposed technique.
Hence we propose a control input U of the following
form:

U = −Kpr − Kvṙ − Kssign(r), (25)
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Fig. 6 Deriver
performance of system Σ1

Fig. 7 Performance of
deriver for system Σ2

with Kp , Kv , and Ks definite positive matrices. This
leads to solve the equation

Kpr + Kvṙ + Kssign(r) = −Φv (26)

from which we must choose a congruent set of cou-
pling signals v.

For example, let us consider that the gains in the
controller to be kp1 = 21, kv1 = 1, ks1 = 0.3, kp2 =
20, kv2 = 1, ks2 = 0.05, kp3 = 10, kv3 = 1, and ks3 =
0.4. In this experiment the nodes evolve disconnected
from time t = 0 to t ≈ 12.8 seconds. At this time the
coupling signals are activated.
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Fig. 8 Performance of the
deriver for system Σ3

Fig. 9 Performance of
deriver for system Σ4

Figures 6, 7, 8 and 9 show the performance of the
derivers for each node. These figures show the out-
puts xi1 and the signals x̂i and zi . The difference be-
tween the signals xii and x̂i have a maximum value of
7 × 10−5 which is small enough to conclude a good
estimation of the velocity zi .

Figure 10 shows the outputs of the nodes after and
before the coupling signals are applied. The initial er-
ror amplitude among the four system signals is be-
tween 2 × 10−3 and 4 × 10−3 units. This difference
decreases to 0.2 × 10−3 and 0.1 × 10−3 units near 10
seconds after the coupling signals are activated, see
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Fig. 10 Behavior of the
output of each node before
and after applying the
coupling signals

Fig. 11 Output errors
behavior of the systems
array

Fig. 11. This effect can also be observed in the vari-
ables r , shown in Fig. 12, where one can appreciate
that the variables remain in a small neighborhood of
the origin, which produces a small synchronization er-
ror.

The synchronization error is due to various factors
like dry friction, dead zone and backlash of the mech-
anisms, produced by the coupling between the mo-

tors and the mechanical parts, achieved with gears and
belts. Even though the effect of this kind of perturba-
tions was not considered in the analysis and, in conse-
quence, in the design of the control signals, the perfor-
mance of the synchronization is acceptable.

The coupling signals shown in Fig. 13 have values
between 0.2 and 2 volts. These signals exhibit high
frequency components of small amplitude that did not
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Fig. 12 Behavior of the
auxiliary signals ri

Fig. 13 Coupling signals

produce any experimental problem in the implementa-
tion.

6 Conclusions

The synchronization technique proposed in this paper
can be applied to different kinds of arrays of second-
order dynamical systems, like master–slave, rings, and
trees. Furthermore, by means of the individual priority
in the connection sense, the unidirectional or bidirec-
tional coupling among the nodes conforming the ar-
ray can be established. This technique does not im-

pose a symmetric structure of the connectivity matrix,
and uses a robust, finite-time, convergent observer that
eliminates the need of using a velocity sensor.

The application of the proposed synchronization
method to an array of four physical systems showed a
good robustness, even when the node dynamics were
not known and under the presence of non-smooth dy-
namics like dry friction, dead zone, and backlash. The
use of other control techniques that consider these dy-
namics will surely improve the closed-loop system
performance.

The proposed synchronization technique was de-
signed for 1-DOF mechanical systems; however, its
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extension to higher DOF systems seems very possible
and is under investigation.
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