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Abstract This note considers the problem of direct
adaptive neural control for a class of nonlinear single-
input/single-output (SISO) strict-feedback stochastic
systems. The variable separation technique is intro-
duced to decompose the coefficient functions of the
diffusion term. Radical basis function (RBF) neural
networks are used to approximate unknown and de-
sired control signals, then a novel direct adaptive neu-
ral controller is constructed via backstepping. The pro-
posed adaptive neural controller guarantees that all
the signals in the closed-loop system remain bounded
in probability. A main advantage of the proposed
controller is that it contains only one adaptive pa-
rameter needed to be updated online. Simulation re-
sults demonstrate the effectiveness of the proposed ap-
proach.
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1 Introduction

During the past decades, the research on stability anal-
ysis and control synthesis of nonlinear systems with
uncertainties has obtained much progress and many
remarkable results have been reported in [1–12]. In
addition, stochastic disturbance often exist in practical
systems and is usually a source of instability of control
systems. Therefore, investigation on stability analysis
and control design for stochastic nonlinear systems is
a meaningful issue and has attracted increasing atten-
tion in the control community in recent years [13–25],
Pan and Basar [14] were the first to solve the sta-
bilization problem for a class of stochastic nonlinear
strict-feedback systems based on a risk-sensitive cost
criterion, and their result guarantees global asymp-
totic stability in the sense of probability. By employ-
ing the quartic Lyapunov function, Deng and Krstić
[15–18] proposed a backstepping design for stochas-
tic strict-feedback systems and then the results were
extended to inverse optimal control of the stochas-
tic case. Furthermore, this design idea was general-
ized to several different cases, such as tracking con-
trol [19] and decentralized control [22, 23]. Then it is
noticed that fewer results have been obtained for the
control problem of stochastic systems with unknown
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nonlinear functions [24, 25]. A common weakness of
these control methods developed in [24, 25] is that
the number of adaptation laws depends on the num-
ber of the neural network nodes or the number of the
fuzzy rule bases. With an increase of neural network
nodes or fuzzy rules to improve approximation accu-
racy, the number of parameters to be estimated will
increase significantly. As a result, the on-line learn-
ing time will become prohibitively large. To solve this
problem, Yang et al. [4, 5] considered the norm of the
ideal weighting vector in fuzzy logic systems as the es-
timation parameter instead of the elements of weight-
ing vector. Therefore, the number of adaptation laws is
reduced considerably. Inspired by [4, 5], Chen et al. [7]
developed a new direct adaptive fuzzy control method
for a class of nonlinear system. A main advantage of
this method is that only one parameter is needed to
be estimated online regardless of the number of fuzzy
rule bases used and the order of systems. But how to
generalize this method of direct adaptive control to the
stochastic case is a challenging and meaningful issue.

Motivated by the aforementioned discussion, we
will consider the problem of direct adaptive neural
control for a class of strict-feedback stochastic nonlin-
ear systems. The main contributions of this paper are
given as follows. A novel direct adaptive neural con-
troller is proposed to control a class of stochastic sys-
tems with completely unknown nonlinear functions.
To develop a novel control design procedure, the sepa-
ration technique is used to decompose unknown func-
tions in the diffusion terms into a series of the product
of continuous functions and state variables. The up-
per bound of the norm of weight vector rather than
the weight vector elements themselves is used as the
estimated parameter. In this way, the presented adap-
tive law contains only one adaptive parameter. There-
fore, the computational burden is significantly allevi-
ated and the control scheme is more implemented in
practical applications. As shown later, all the signals
in the closed-loop system are proved to be bounded in
probability.

The remainder of this paper is organized as follows.
The problem formulation and preliminaries are given
in Sect. 2. A novel adaptive neural control scheme
is presented in Sect. 3. The simulation examples are
given in Sect. 4, followed by Sect. 5 which concludes
the work.

For the clarity of notations, throughout this paper
R+ denotes the set of all nonnegative real numbers;

Rn indicates the real n-dimensional space; Rn×r de-
notes the real n × r matrix space. For a given vec-
tor or matrix X, XT denotes its transpose; Tr{X} is
its trace when X is square; and ‖X‖ denotes the Eu-
clidean norm of a vector X. Ci denotes the set of all
functions with continuous ith partial derivative. K de-
notes the set of all functions: R+ → R+, which are
continuous, strictly increasing and vanishing at zero;
K∞ refers to the set of all functions which are of class
K and unbounded.

2 Preliminaries and problem formulation

Consider the following stochastic nonlinear strict-
feedback system:

⎧
⎪⎪⎨

⎪⎪⎩

dxi = (gi(x̄i )xi+1 + fi(x̄i))dt + ψi(x̄i)dw,

1 ≤ i ≤ n − 1,

dxn = (gn(x̄n)u + fn(x̄n))dt + ψn(x̄n)dw,

y = x1,

(1)

where x = [x1, x2, . . . , xn]T ∈ Rn, u ∈ R, and y ∈ R

are the state variable, the control input, and the system
output, respectively, x̄i = [x1, x2, . . . , xi]T ∈ Ri , w is
an r-dimensional standard Brownian motion defined
on the complete probability space (�,F,P ) with �

being a sample space, F being a σ -field, {Ft }t≥0 being
a filtration, and P being a probability measure. fi(.),
gi(.) : Ri → R,ψT

i (.) : Ri → Rr, (i = 1,2, . . . , n)

are unknown smooth nonlinear functions with fi(0) =
0, ψT

i (0) = 0(1 ≤ i ≤ n).
To introduce some useful conceptions and lemmas,

consider the following stochastic system:

dx = f (x, t)dt + h(x, t)dw, (2)

where x and w have the same definition as in (1), and
f : Rn × R+ → Rn, h : Rn × R+ → Rn×r are lo-
cally Lipschitz functions in x ∈ Rn, with f (0, t) = 0,
h(0, t) = 0, ∀t ≥ 0.

Definition 1 For any given V (x, t) ∈ C2,1(Rn ×
R+;R+), associated with the stochastic differential
equation (2) we define the differential operator L as
follows:

LV = ∂V

∂t
+ ∂V

∂x
f + 1

2
Tr

{

hT ∂2V

∂x2
h

}

. (3)
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Remark 1 The term 1
2 Tr{hT ∂2V

∂x2 h} is called Itô correc-

tion term, in which the second-order differential ∂2V

∂x2

makes the controller design much more difficult than
that of the deterministic case.

Definition 2 [26] The solution process {x(t), t ≥ 0}
of stochastic system (2) is said to be bounded in prob-
ability, if

lim
c→∞ sup

0≤t<∞
P {‖x(t)‖ > c} = 0.

Lemma 1 [23] Consider the stochastic system (2) and
assume that f (x, t), h(x, t) are C1 in their arguments
and f (0, t), h(0, t) are bounded uniformly in t . If
there exist functions V (x, t) ∈ C1,2(Rn × R+,R+),
μ1(·), μ2(·) ∈ K∞, constants a0 > 0, b0 ≥ 0, such that

μ1(|x|) ≤ V (x, t) ≤ μ2(|x|),
LV ≤ −a0V (x, t) + b0,

then the solution process of (2) is bounded in proba-
bility.

The following lemmas will be used in this note.

Lemma 2 (Young’s inequality [15]) For ∀(x, y) ∈
R2, the following inequality holds:

xy ≤ εp

p
|x|p + 1

qεq
|y|q,

where ε > 0,p > 1, q > 1, and (p − 1)(q − 1) = 1.

Lemma 3 For any continuous function f (x) : Rn →
R with f (0) = 0, x = [x1, x2, . . . , xn]T , then there ex-
ist positive smooth functions hj (xj ) : R → R+, j =
1,2, . . . , n, such that

|f (x)| ≤
n∑

j=1

|xj |hj (xj ). (4)

Proof Inequality (4) can be proved directly by
Lemma 2.1 in [6] and Lemma 2 of [9]. Hence, the
details are omitted. �

Remark 2 Lemma 3 implies that, for a continuous
function ψi(·) in (1) there exists non-negative un-
known smooth functions φil : R → R+ (l = 1, . . . , i),

such that for i = 1,2, . . . , n,

‖ψi(x̄i)‖ ≤
i∑

l=1

|xl |φil(xl). (5)

To develop a novel adaptive neural control ap-
proach, the following assumptions are imposed on the
system (1).

Assumption 1 There exist constants bm and bM such
that for 1 ≤ i ≤ n,

0 < bm ≤ |gi(x̄i)| ≤ bM < ∞, ∀x̄i ∈ Ri. (6)

Remark 3 Assumption 1 means that the unknown
functions gi(x̄i) are strictly either positive or nega-
tive. Without loss generality, it is further assumed that
0 < bm ≤ gi(x̄i). In addition, because the constants bm

and bM are not used for the controller design, their true
values are unnecessary to be known. This assumption
relaxes the ones in [24] and [25].

In this research, the following RBF neural networks
will be used to approximate any continuous function
f (Z) : Rn → R,

fnn(Z) = WT S(Z), (7)

where Z ∈ �Z ⊂ Rq is the input vector with q being
the neural networks input dimension, weight vector
W = [w1,w2, . . . ,wl]T ∈ Rl , l > 1 is the neural net-
works node number, and S(Z) = [s1(Z), s2(Z), . . . ,

sl(Z)]T means the basis function vector with si(Z) be-
ing chosen as the commonly used Gaussian function of
the form

si(Z) = exp

[

− (Z − μi)
T (Z − μi)

η2
i

]

,

i = 1,2, . . . , l, (8)

where μi = [μi1,μi2, . . . ,μiq ]T is the center of the
receptive field and ηi is the width of the Gaussian
function. In [27], it has been indicated that with suf-
ficiently large node number l the RBF neural net-
works (7) can approximate any continuous function
f (Z) over a compact set �Z ⊂ Rq to arbitrary any
accuracy ε > 0 as

f (Z) = W ∗T
S(Z) + δ(Z), ∀z ∈ �z ∈ Rq, (9)
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where W ∗ is the ideal constant weight vector and is
defined as

W ∗ := arg min
W∈Rl

{
sup

Z∈�Z

|f (Z) − WT S(Z)|
}
,

and δ(Z) denotes the approximation error and satisfies
| δ(Z) |≤ ε.

Lemma 4 [10] Consider the Gaussian RBF networks
(7) and (8). Let ρ := 1

2 mini �=j ‖μi − μj‖, then an up-
per bound of ‖S(Z)‖ is taken as

‖S(Z)‖ ≤
∞∑

k=0

3q(k + 2)q−1e−2ρ2k2/η2 := s. (10)

In [10], the constant s has been proved to be a
limited value. Moreover, it is independent of Z (the
neural networks input) and l (the dimension of neural
weights W ).

3 Main results

In this section, a backstepping-based design procedure
will be proposed to construct the adaptive neural con-
troller. The main idea lies in that the RBF neural net-
works are used to approximate the unknown nonlinear
functions, the conventional adaptive technique is used
to estimate the upper bound of the norms of neural
networks weight vectors, and then backstepping is uti-
lized to construct the control Lyapunov function. For
simplicity, we first introduce the unknown constant θ

which is specified as

θ = max

{
1

bm

‖W ∗
i ‖2; i = 1,2, . . . , n

}

, (11)

where bm is defined in Assumption 1, and ‖ W ∗
i ‖ de-

notes the norm of the ideal weight vector of the neural
network, which will be specified at the ith design step.

3.1 Adaptive neural control design

In the following part, for the purpose of simplicity, the
time variable t and the state vector x̄i will be omitted
from the corresponding functions.

Step 1: Let z1 = x1, the first stochastic differential
equation of system (1) gives

dz1 = (g1x2 + f1)dt + ψ1dw. (12)

To stabilize this subsystem, take a stochastic Lyapunov
function candidate as

V1 = 1

4
z4

1 + 1

2λ
bmθ̃2, (13)

where θ̃ = θ − θ̂ with θ̂ being the estimation of θ and
λ being a positive design parameter. By (3) and (12),
one has

LV1 ≤ z3
1(g1x2 + f1) + 3

2
z2

1ψ1ψ
T
1 − λ−1bmθ̃

˙̂
θ. (14)

Notice that ψ1(0) = 0, thus there exists a function
φ11(.) such that ψ1(z1) = z1φ11(z1). Furthermore, the
following holds:

3

2
z2

1ψ1ψ
T
1 = 3

2
z2

1‖ψ1‖2 = 3

2
z4

1φ
2
11.

Substituting this inequality into (14) yields

LV1 ≤ z3
1

(

g1x2 + f1 + 3

2
z1φ

2
11

)

− λ−1bmθ̃
˙̂
θ

≤ z3
1(g1x2 + f̄1) − 3

4
g

4
3
1 z4

1 − λ−1bmθ̃
˙̂
θ, (15)

where f̄1 = f1 + 3
2z1φ

2
11 + 3

4g
4
3
1 z1. To stabilize this

subsystem, view x2 as the control signal. Then a de-
sired feedback control signal is

α̂1 = −k1z1 − g−1
1 f̄1

with k1 being a positive design constant. Further, add
and subtract g1α̂1 in the last bracket in (15) produces
the following inequality.

LV1 ≤ −k1g1z
4
1 + z3

1g1(x2 − α̂1) − 3

4
g

4
3
1 z4

1 − bm

λ
θ̃

˙̂
θ.

(16)

Remark 4 Apparently, since g−1
1 f̄1 is an unknown

smooth function, α̂1 cannot be implemented in prac-
tice. To solve this problem, RBF neural network
WT

1 S1(Z1) can be utilized to model the unknown
g−1

1 f̄1. This technique based on neural networks ap-
proximation will be repeated in later design steps to
deal with the unknown nonlinearities.

Based on the neural networks universal approxi-
mation capability, for any given ε1 > 0, the function
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g−1
1 f̄1 can be expressed as

h1(Z1) � g−1
1 f̄1 = W ∗T

1 S1(Z1) + δ1(Z1),

|δ1(Z1)| ≤ ε1, (17)

where Z1 = x1, and δ1(Z1) refers to the approximation
error. By using (17), Lemma 2, Assumption 1 and (11),
one has

z3
1g1h1(Z1) = z3

1g1
W ∗T

1

‖W ∗
1 ‖‖W ∗

1 ‖S1(Z1) + z3
1g1δ1(Z1)

≤ bm

2a2
1

z6
1
‖W ∗

1 ‖2

bm

ST
1 (Z1)S1(Z1)

+ 1

2
a2

1b2
M + 3

4
g

4
3
1 z4

1 + 1

4
ε4

1

≤ bm

2a2
1

z6
1θST

1 (Z1)S1(Z1) + 1

2
a2

1b2
M

+ 3

4
g

4
3
1 z4

1 + 1

4
ε4

1, (18)

where a1 is a design parameter. Now choose the feasi-
ble virtual control law as

α1 = −k1z1 − 1

2a2
1

z3
1θ̂ST

1 (Z1)S1(Z1). (19)

Thus, the following inequality can be obtained by us-
ing (18) and (19):

z3
1g1(α1 − α̂1)

= z3
1g1

(

− 1

2a2
1

z3
1θ̂ST

1 (Z1)S1(Z1) + h1(Z1)

)

≤ − bm

2a2
1

z6
1θ̂ST

1 (Z1)S1(Z1)

+ bm

2a2
1

z6
1θST

1 (Z1)S1(Z1)

+ b2
M

2
a2

1 + 3

4
g

4
3
1 z4

1 + 1

4
ε4

1

= bm

2a2
1

z6
1θ̃ST

1 (Z1)S1(Z1) + 1

2
b2
Ma2

1

+ 3

4
g

4
3
1 z4

1 + 1

4
ε4

1. (20)

Furthermore, from (16), (20), and Lemma 2, one has

LV1 ≤ −k1g1z
4
1 + z3

1g1(x2 − α̂1) − 3

4
g

4
3
1 z4

1 − bm

λ
θ̃

˙̂
θ

= −k1g1z
4
1 + z3

1g1(x2 − α1 + α1 − α̂1)

− 3

4
g

4
3
1 z4

1 − bm

λ
θ̃

˙̂
θ

≤ −k1g1z
4
1 + z3

1g1(x2 − α1) − 3

4
g

4
3
1 z4

1 − bm

λ
θ̃

˙̂
θ

+ bm

2a2
1

z6
1θ̃ST

1 (Z1)S1(Z1) + 1

2
b2
Ma2

1

+ 3

4
g

4
3
1 z4

1 + 1

4
ε4

1

= −k1g1z
4
1 + z3

1g1z2 + 1

2
b2
Ma2

1 + 1

4
ε4

1

+ bm

λ
θ̃

(
λ

2a2
1

z6
1S

T
1 (Z1)S1(Z1) − ˙̂

θ

)

≤ −
(

k1 − 3

4

)

g1z
4
1 + 1

2
b2
Ma2

1 + 1

4
ε4

1

+ bm

λ
θ̃

(
λ

2a2
1

z6
1S

T
1 (Z1)S1(Z1) − ˙̂

θ

)

+ 1

4
g1z

4
2

≤ −c1z
4
1 + 1

2
b2
Ma2

1 + 1

4
ε4

1

+ bm

λ
θ̃

(
λ

2a2
1

z6
1S

T
1 (Z1)S1(Z1) − ˙̂

θ

)

+ 1

4
g1z

4
2,

(21)

where z2 = x2 − α1 and c1 = (k1 − 3
4 )bm > 0.

Remark 5 In Step 1, to stabilize the first subsystem,
the desired control signal α̂1 is first found. Because it
contains the unknown nonlinearities, it cannot be im-
plemented in practice. The RBF neural networks are
thus utilized to model the unknown nonlinear part in
α̂1. Furthermore, a feasible control signal α1 is con-
structed. Such a design approach will be used in the
posterior design steps.

Step 2: This step focuses on finding a feasible control
signal, i.e., α2, such that x2 follows α1. To this end,
choose the following stochastic Lyapunov function as

V2 = V1 + 1

4
z4

2. (22)

By Itô formula,

LV2 = LV1 + z3
2(g2x3 + f2 − Lα1)

+ 3

2
z2

2

(

ψ2 − ∂α1

∂x1
ψ1

)(

ψ2 − ∂α1

∂x1
ψ1

)T

,(23)
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where

Lα1 = ∂α1

∂x1
(g1x2 +f1)+ ∂α1

∂θ̂

˙̂
θ + 1

2

∂2α1

∂x2
1

ψ1ψ
T
1 . (24)

Remark 6 The main difficulty for control design in
this step is that the term ψ2 − ∂α1

∂x1
ψ1 is unknown and

cannot be acted by the virtual control x3 directly. In
the following, the variable separation approach will be
applied to solve this problem.

Using (5), it follows:
∥
∥
∥
∥ψ2 − ∂α1

∂x1
ψ1

∥
∥
∥
∥ ≤ ‖ψ2‖ +

∥
∥
∥
∥
∂α1

∂x1
ψ1

∥
∥
∥
∥

≤
2∑

l=1

|xl |φ2l + |x1|
∣
∣
∣
∣
∂α1

∂x1

∣
∣
∣
∣φ11

≤ |z1|φ21 + |z2|φ22 + |α1|φ22

+ |z1|
∣
∣
∣
∣
∂α1

∂x1

∣
∣
∣
∣φ11 ≤

2∑

l=1

|zl |ϕ2l , (25)

where ϕ21 = | ∂α1
∂x1

|φ11 + φ21 + (k1 + z2
1

2a2
1
θ̂ ×

ST
1 (Z1)S1(Z1))φ22 and ϕ22 = φ22. Consequently,

by (25), the inequality (a + b)2 ≤ 2a2 + 2b2 and
Lemma 2, one has

3

2
z2

2

∥
∥
∥
∥ψ2 − ∂α1

∂x1
ψ1

∥
∥
∥
∥

2

≤ 3

2
z2

2

(
2∑

l=1

|zl |ϕ2l

)2

≤ 3z4
2ϕ

2
22 + 3

4
r2

2 + 3

r2
2

z4
1z

4
2ϕ

4
21

(26)

with r2 > 0 is a constant. Then, substituting (21), (24)–
(26) into (23) becomes

LV2 ≤ −c1z
4
1 + 1

2
a2

1b2
M + 1

4
ε4

1 + 3

4
r2

2

+ bm

λ
θ̃

(
λ

2a2
1

z6
1S

T
1 (Z1)S1(Z1) − ˙̂

θ

)

− z3
2
∂α1

∂θ̂

˙̂
θ + z3

2

(

g2x3 + f2

− ∂α1

∂x1
(g1x2 + f1) − 1

2

∂2α1

∂x2
1

ψ1ψ
T
1 + 3z2ϕ

2
22

+ 3

r2
2

z4
1z2ϕ

4
21 + 1

4
g1z2

)

≤ −c1z
4
1 + 1

2
a2

1b2
M + 1

4
ε4

1 + 3

4
r2

2

+ bm

λ
θ̃

(
λ

2a2
1

z6
1S

T
1 (Z1)S1(Z1) − ˙̂

θ

)

+ z3
2(g2x3 + f̄2)

−3

4
g

4
3
2 z4

2 + z3
2

(

ϕ2(Z2) − ∂α1

∂θ̂

˙̂
θ

)

, (27)

where

f̄2 = f2 − ∂α1

∂x1
(g1x2 + f1) − 1

2

∂2α1

∂x2
1

ψ1ψ
T
1

+ 3z2ϕ
2
22 + 3

r2
2

z4
1z2ϕ

4
21 + 1

4
g1z2

+ 3

4
g

4
3
2 z2 − ϕ2(Z2) (28)

and

ϕ2(Z2) = −k0θ̂
∂α1

∂θ̂
− λs2

2a2
2

z3
2

∣
∣
∣
∣z

3
2
∂α1

∂θ̂

∣
∣
∣
∣

+ ∂α1

∂θ̂

λ

2a2
1

z6
1S

T
1 (Z1)S1(Z1)

with Z2 = [x1, x2, θ̂ ]T , k0 and a2 being design param-

eters. The term z3
2(ϕ2(Z2) − ∂α1

∂θ̂

˙̂
θ) will be considered

in Sect. 3.2.

Remark 7 The adaptive law ˙̂
θ , which will be given in

(67), contains not only the current error variables z1

and z2, but also the latter ones, namely zi, i = 3, . . . , n.

Therefore, the term ∂α1

∂θ̂

˙̂
θ in (24) can’t be utilized di-

rectly to construct the packaged uncertain function f̄2

in (28) as the previous backstepping-based adaptive
neural control approaches. Here, a function ϕ2(Z2)

is introduced to simplify the design procedure and is

mainly used to compensate for ∂α1

∂θ̂

˙̂
θ . This method will

be repeated at the following design step by introducing
a function ϕi(Zi), i = 3,4, . . . , n.

To control the first two subsystems, view x3 as a
virtual control input and the desired control signal is

α̂2 = −k2z2 − g−1
2 f̄2,
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where k2 is a positive design parameter. Obviously, un-
der the action of α̂2, one has

z3
2(g2x3 + f̄2) = z3

2

(
g2(x3 − α̂2 + α̂2) + f̄2

)

= −k2g2z
4
2 + z3

2g2(x3 − α̂2). (29)

Further, the following inequality can be obtained:

LV2 ≤ −c1z
4
1 + 1

2
a2

1b2
M + 1

4
ε4

1 + 3

4
r2

2

+ bm

λ
θ̃

(
λ

2a2
1

z6
1S

T
1 (Z1)S1(Z1) − ˙̂

θ

)

−k2g2z
4
2 + z3

2g2(x3 − α̂2)

− 3

4
g

4
3
2 z4

2 + z3
2

(

ϕ2(Z2) − ∂α1

∂θ̂

˙̂
θ

)

. (30)

Since h2(Z2) = g−1
2 f̄2 is the unknown part of α̂2, by

repeating the way used in Step 1 an RBF neural net-
work WT

2 S2(Z2) is currently employed to approxi-
mate h2(Z2) such that for the given precise ε2 > 0,

h2(Z2) = W ∗T
2 S2(Z2) + δ2(Z2), |δ2(Z2)| ≤ ε2,

(31)

where δ(Z2) denotes the approximation error. At the
present stage, by exploring the method utilized in (17),
one has

z3
2g2h2(Z2) ≤ bm

2a2
2

z6
2θST

2 (Z2)S2(Z2)

+ 1

2
b2
Ma2

2 + 3

4
g

4/3
2 z4

2 + 1

4
ε4

2. (32)

Choose the feasible virtual control signal as

α2 = −k2z2 − 1

2a2
2

z3
2θ̂ST

2 (Z2)S2(Z2). (33)

With the similar method used in (20), the following
inequality can be obtained:

z3
2g2(α2 − α̂2) ≤ bm

2a2
2

z6
2θ̃ST

2 (Z2)S2(Z2)

+ 1

2
b2
Ma2

2 + 3

4
g

4
3
2 z4

2 + 1

4
ε4

2. (34)

By using (31)–(34), (30) can be rewritten as

LV2 ≤ −c1z
4
1 + 1

2
a2

1b2
M + 1

4
ε4

1 + 3

4
r2

2

+ bm

λ
θ̃

(
λ

2a2
1

z6
1S

T
1 (Z1)S1(Z1) − ˙̂

θ

)

−k2g2z
4
2 + z3

2g2(x3 − α2 + α2 − α̂2)

− 3

4
g

4
3
2 z4

2 + z3
2

(

ϕ2(Z2) − ∂α1

∂θ̂

˙̂
θ

)

≤ −
2∑

j=1

cj z
4
j + 1

2
b2
M

2∑

j=1

a2
j + 1

4

2∑

j=1

ε4
j

+ 3

4
r2

2 + bm

λ
θ̃

(
2∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj )− ˙̂

θ

)

+ z3
2

(

ϕ2(Z2) − ∂α1

∂θ̂

˙̂
θ

)

+ 1

4
g2z

4
3, (35)

where z3 = x3 − α2, cj = (kj − 3
4 )bm > 0, j = 1,2.

Step i (3 ≤ i ≤ n − 1): The ith feasible virtual con-
trol law αi will be constructed at this step. Define a
variable zi = xi − αi−1, one has

dzi = (gixi+1 + fi − Lαi−1)dt

+
(

ψi −
i−1∑

j=1

∂αi−1

∂xj

ψj

)

dw, (36)

where

Lαi−1 =
i−1∑

j=1

∂αi−1

∂xj

(gj xj+1 + fj )

+ ∂αi−1

∂θ̂

˙̂
θ + 1

2

i−1∑

p,q=1

∂2αi−1

∂xp∂xq

ψpψT
q . (37)

Consider a stochastic Lyapunov function as

Vi = Vi−1 + 1

4
z4
i . (38)

It follows immediately from (3) that

LVi = LVi−1 + z3
i (gixi+1 + fi − Lαi−1)

+ 3

2
z2
i

(

ψi −
i−1∑

j=1

∂αi−1

∂xj

ψj

)

×
(

ψi −
i−1∑

j=1

∂αi−1

∂xj

ψj

)T

, (39)
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where the term LVi−1 in (39) can be obtained in the
following form by repeating the same process as for-
mer steps:

LVi−1 ≤ −
i−1∑

j=1

cj z
4
j + 1

2
b2
M

i−1∑

j=1

a2
j

+ 1

4

i−1∑

j=1

ε4
j + 3

4

i−1∑

j=2

r2
j

+ bm

λ
θ̃

(
i−1∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) − ˙̂

θ

)

+
i−1∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

+ 1

4
gi−1z

4
i .

(40)

Subsequently, we will deal with the last term in (39).
Following the same procedure as (25), we can obtain

∥
∥
∥
∥
∥
ψi −

i−1∑

j=1

∂αi−1

∂xj

ψj

∥
∥
∥
∥
∥

≤
i∑

j=1

|xj |φij +
i−1∑

j=1

∣
∣
∣
∣
∂αi−1

∂xj

∣
∣
∣
∣

j∑

k=1

|xk|φjk. (41)

For the last term in (41), by rearranging the sequence,
it follows

i−1∑

j=1

∣
∣
∣
∣
∂αi−1

∂xj

∣
∣
∣
∣

j∑

k=1

|xk|φjk

=
∣
∣
∣
∣
∂αi−1

∂x1

∣
∣
∣
∣|x1|φ11

+
∣
∣
∣
∣
∂αi−1

∂x2

∣
∣
∣
∣(|x1|φ21 + |x2|φ22) + · · ·

+
∣
∣
∣
∣
∂αi−1

∂xi−1

∣
∣
∣
∣(|x1|φ(i−1)1 + |x2|φ(i−1)2 + · · ·

+ |xi−1|φ(i−1)(i−1))

=
i−1∑

j=1

|xj |
i−1∑

k=j

∣
∣
∣
∣
∂αi−1

∂xk

∣
∣
∣
∣φkj , (42)

substituting the above equation into (41) yields

∥
∥
∥
∥
∥
ψi −

i−1∑

j=1

∂αi−1

∂xj

ψj

∥
∥
∥
∥
∥

≤
i∑

j=1

|xj |φij +
i−1∑

j=1

|xj |
i−1∑

k=j

∣
∣
∣
∣
∂αi−1

∂xk

∣
∣
∣
∣φkj

≤
i∑

j=1

|xj |ϕ∗
ij

≤
i∑

j=1

|zj + αj−1|ϕ∗
ij ≤

i∑

j=1

|zj |ϕij , (43)

where ϕii =ϕ∗
ii =φii, ϕij =ϕ∗

ij(1+ kj−1 + 1
2a2

j−1
z2
j−1 ×

θ̂ST
j−1(Zj−1)Sj−1(Zj−1))= (φij +∑i−1

k=j | ∂αi−1
∂xk

|φkj )×
(1 + kj−1 + 1

2a2
j−1

z2
j−1θ̂ST

j−1(Zj−1)Sj−1(Zj−1)),

j = 2,3, . . . , i − 1, ϕi1 =ϕ∗
i1 =φi1 +∑i−1

k=1| ∂αi−1
∂xk

|φk1.
Take the same procedures as (26), the last term in

(39) can be rewritten as

3

2
z2
i

∥
∥
∥
∥
∥
ψi −

i−1∑

j=1

∂αi−1

∂xj

ψj

∥
∥
∥
∥
∥

2

≤ 3

2
z2
i

(
i∑

j=1

|zj |ϕij

)2

≤ 3

2
iz4

i ϕ
2
ii + 3

4
r2
i + 3

4
r−2
i i2z4

i

(
i−1∑

j=1

z2
j ϕ

2
ij

)2

. (44)

Combining (39) with (40) and (44), the inequality be-
low holds.

LVi ≤ −
i−1∑

j=1

cj z
4
j + 1

2
b2
M

i−1∑

j=1

a2
j

+ 1

4

i−1∑

j=1

ε4
j + 3

4

i∑

j=2

r2
j

+ bm

λ
θ̃

(
i−1∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) − ˙̂

θ

)

+
i∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

+ z3
i (gixi+1 + f̄i ) − 3

4
g

4
3
i z4

i , (45)
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where

f̄i = fi −
i−1∑

j=1

∂αi−1

∂xj

(gj xj+1 + fj )

− 1

2

i−1∑

p,q=1

∂2αi−1

∂xp∂xq

ψpψT
q + 3

2
iziϕ

2
ii

+ 3

4
r−2
i i2zi

(
i−1∑

j=1

z2
j ϕ

2
ij

)2

+ 1

4
gi−1zi + 3

4
g

4
3
i zi − ϕi(Zi), (46)

and ϕi(Zi) is introduced as

ϕi(Zi) = −k0θ̂
∂αi−1

∂θ̂
− z3

i

λs2

2a2
i

i∑

j=2

∣
∣
∣
∣z

3
j

∂αj−1

∂θ̂

∣
∣
∣
∣

+ ∂αi−1

∂θ̂

i−1∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) (47)

with Zi = [x̄i , θ̂ ]T . Taking the intermediate control
signal as

α̂i = −kizi − g−1
i f̄i (48)

with ki being a positive design constant. Similar
to (29), the equation below can be produced.

z3
i (gixi+1 + f̄i ) = −kigiz

4
i + z3

i gi(xi+1 − α̂i ). (49)

Then (45) can be rewritten as

LVi ≤ −
i−1∑

j=1

cj z
4
j + 1

2
b2
M

i−1∑

j=1

a2
j

+ 1

4

i−1∑

j=1

ε4
j + 3

4

i∑

j=2

r2
j

+ bm

λ
θ̃

(
i−1∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) − ˙̂

θ

)

+
i∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

− kigiz
4
i

+ z3
i gi(xi+1 − α̂i) − 3

4
g

4
3
i z4

i . (50)

By following the same line used in procedure from
(31) to (32), an RBF neural network WT

i Si(Zi) is ap-
plied to approximate the unknown function hi(Zi) =
g−1

i f̄i in (48) such that for any given positive constant
εi , the following holds:

z3
i gihi(Zi) ≤ bm

2a2
i

z6
i θST

i (Zi)Si(Zi) + 1

2
b2
Ma2

i

+ 3

4
g

4/3
i z4

i + 1

4
ε4
i . (51)

Choose the virtual control αi as

αi = −kizi − 1

2a2
i

z3
i θ̂ST

i (Zi)Si(Zi). (52)

Similar to (34), the following inequality can be ob-
tained.

z3
i gi(αi − α̂i ) ≤ bm

2a2
i

z6
i θ̃ST

i (Zi)Si(Zi) + 1

2
b2
Ma2

i

+ 3

4
g

4
3
i z4

i + 1

4
ε4
i . (53)

Substituting (51)–(53) into (45) gives

LVi ≤ −
i−1∑

j=1

cj z
4
j + 1

2
b2
M

i−1∑

j=1

a2
j

+ 1

4

i−1∑

j=1

ε4
j + 3

4

i∑

j=2

r2
j

+ bm

λ
θ̃

(
i−1∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) − ˙̂

θ

)

+
i∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

− kigiz
4
i

+ z3
i gi(xi+1 − αi + αi − α̂i) − 3

4
g

4
3
i z4

i

≤ −
i∑

j=1

cj z
4
j + 1

2
b2
M

i∑

j=1

a2
j + 1

4

i∑

j=1

ε4
j + 3

4

i∑

j=2

r2
j

+ bm

λ
θ̃

(
i∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) − ˙̂

θ

)

+
i∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

+ 1

4
giz

4
i+1,

(54)
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where zi+1 = xi+1 −αi and cj = (kj − 3
4 )bm > 0, j =

1,2, . . . , i.

Step n: This is the final step. The actual control input
u will be constructed to stabilize the system (1). By
zn = xn − αn−1 and Itô formula, we have

dzn = (gnu + fn − Lαn−1)dt

+
(

ψn −
n−1∑

j=1

∂αn−1

∂xj

ψj

)

dw, (55)

where

Lαn−1 =
n−1∑

j=1

∂αn−1

∂xj

(gj xj+1 + fj ) + ∂αn−1

∂θ̂

˙̂
θ

+ 1

2

n−1∑

p,q=1

∂2αn−1

∂xp∂xq

ψpψT
q . (56)

Take the stochastic Lyapunov function candidate as

Vn = Vn−1 + 1

4
z4
n. (57)

Repeating the method used in the process from (39) to
(46) yields

LVn ≤ −
n−1∑

j=1

cj z
4
j + 1

2
b2
M

n−1∑

j=1

a2
j

+ 1

4

n−1∑

j=1

ε4
j + 3

4

n∑

j=2

r2
j

+ bm

λ
θ̃

(
n−1∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) − ˙̂

θ

)

+
n∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

+ z3
n(gnu + f̄n) − 3

4
g

4
3
n z4

n, (58)

where f̄n and ϕn(Zn) are defined in (46) and (47), re-
spectively, with i = n. Apparently, to stabilize this sys-
tem, a desired control law is

α̂n = −knzn − g−1
n f̄n. (59)

By adding and subtracting α̂n, (58) can be rewritten as

LVn ≤ −
n−1∑

j=1

cj z
4
j + 1

2
b2
M

n−1∑

j=1

a2
j

+ 1

4

n−1∑

j=1

ε4
j + 3

4

n∑

j=2

r2
j

+ bm

λ
θ̃

(
n−1∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) − ˙̂

θ

)

+
n∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

+ z3
ngn

[
(u − α̂n + α̂n) + f̄n

] − 3

4
g

4
3
n z4

n

≤ −
n−1∑

j=1

cj z
4
j + 1

2
b2
M

n−1∑

j=1

a2
j

+ 1

4

n−1∑

j=1

ε4
j + 3

4

n∑

j=2

r2
j

+ bm

λ
θ̃

(
n−1∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) − ˙̂

θ

)

+
n∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

− kngnz
4
n + z3

ngn(u − α̂n) − 3

4
g

4
3
n z4

n. (60)

Again, an RBF neural network WT
n Sn(Zn) is used to

model hn(Zn) � g−1
n f̄n which is the unknown part of

α̂n in (59). α̂n can be rewritten as

α̂n = −knzn − W ∗T
n Sn(Zn) − δn(Zn), (61)

where δn(Zn) denotes the approximation error and sat-
isfies |δn(Zn)| ≤ εn.

Next, the actual control input u can be constructed
as

u = −knzn − 1

2a2
n

z3
nθ̂ST

n (Zn)Sn(Zn). (62)
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Notice that the following inequalities are true:

z3
ngnhn(Zn) ≤ bm

2a2
n

z6
nθST

n (Zn)Sn(Zn) + 1

2
b2
Ma2

n

+ 3

4
g

4/3
n z4

n + 1

4
ε4
n, (63)

z3
ngnu ≤ −knbmz4

n − bm

2a2
n

z6
nθ̂ST

n (Zn)Sn(Zn). (64)

By using the formulas (59)–(64), we have

z3
ngn(u − α̂n) = z3

ngnu − z3
ngnα̂n

≤ −knbmz4
n − bm

2a2
n

z6
nθ̂ST

n (Zn)Sn(Zn)

+ kngnz
4
n + z3

ngnhn(Zn)

≤ −knbmz4
n + kngnz

4
n

+ bm

2a2
n

z6
nθ̃ST

n (Zn)Sn(Zn) + 1

2
b2
Ma2

n

+ 3

4
g

4/3
n z4

n + 1

4
ε4
n. (65)

Substituting the inequality (65) into (60) gives

LVn ≤ −
n∑

j=1

cj z
4
j + 1

2
b2
M

n∑

j=1

a2
j

+ 1

4

n∑

j=1

ε4
j + 3

4

n∑

j=2

r2
j

+ bm

λ
θ̃

(
n∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) − ˙̂

θ

)

+
n∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

, (66)

where cj = (kj − 3
4 )bm > 0, j = 1,2, . . . , n − 1, cn =

knbm > 0.
So far, the real controller u has been constructed.

At the present stage, we summarize the main result in
the following theorem.

Theorem 1 Consider the stochastic nonlinear system
(1) with Assumption 1. Suppose that for 1 ≤ i ≤ n, the
packaged unknown functions in α̂i (1 ≤ i ≤ n) can be
approximated by the RBF neural networks in the sense
that the approximating errors are bounded. If a control

law is constructed in (62) with the virtual control sig-
nals αi being defined in (19), (33) and (52), and the
adaptive law

˙̂
θ =

n∑

i=1

λ

2a2
i

z6
i S

T
i (Zi)Si(Zi) − k0θ̂ , (67)

where the design parameters λ > 0, k0 > 0 and ai > 0
(i = 1,2, . . . , n), then all the signals in the closed-loop
system remain bounded in probability.

The proof of Theorem 1 will be obtained in the fol-
lowing subsection.

3.2 Analysis of stability

For the stability analysis of the closed-loop system,
choose the stochastic Lyapunov function as V = Vn,
from (66), it follows

LV ≤ −
N∑

j=1

cj z
4
j + 1

2
b2
M

n∑

j=1

a2
j

+ 1

4

n∑

j=1

ε4
j + 3

4

n∑

j=2

r2
j

+ bm

λ
θ̃

(
n∑

j=1

λ

2a2
j

z6
j S

T
j (Zj )Sj (Zj ) − ˙̂

θ

)

+
n∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

. (68)

Substituting the adaption law ˙̂
θ in (67) into the penul-

timate term in (68) results in

LV ≤ −
n∑

j=1

cj z
4
j + b2

M

2

n∑

j=1

a2
j + 1

4

n∑

j=1

ε4
j

+ 3

4

n∑

j=2

r2
j + k0bm

λ
θ̃ θ̂

+
n∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

. (69)

In the following, it will be proved that the last term in
(69) is negative. By using the fact of 0 < ST

j Sj ≤ s2 in
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Lemma 4 and the definition of ˙̂
θ in (67), we have

−
n∑

j=2

z3
j

∂αj−1

∂θ̂

˙̂
θ

=
n∑

j=2

k0z
3
j

∂αj−1

∂θ̂
θ̂

−
n∑

j=2

z3
j

∂αj−1

∂θ̂

(
n∑

i=1

λ

2a2
i

z6
i S

T
i (Zi)Si(Zi)

)

=
n∑

j=2

k0z
3
j

∂αj−1

∂θ̂
θ̂

−
n∑

j=2

z3
j

∂αj−1

∂θ̂

(
j−1∑

i=1

λ

2a2
i

z6
i S

T
i (Zi)Si(Zi)

+
n∑

i=j

λ

2a2
i

z6
i S

T
i (Zi)Si(Zi)

)

=
n∑

j=2

k0z
3
j

∂αj−1

∂θ̂
θ̂

−
n∑

j=2

z3
j

∂αj−1

∂θ̂

(
j−1∑

i=1

λ

2a2
i

z6
i S

T
i (Zi)Si(Zi)

)

−
n∑

j=2

z3
j

∂αj−1

∂θ̂

(
n∑

i=j

λ

2a2
i

z6
i S

T
i (Zi)Si(Zi)

)

.

(70)

For the last term of (70), by rearranging the sequence
and using the fact 0 < ST

i Si ≤ s2 for all i, the follow-
ing inequality holds:

−
n∑

j=2

z3
j

∂αj−1

∂θ̂

(
n∑

i=j

λ

2a2
i

z6
i S

T
i (Zi)Si(Zi)

)

≤
n∑

j=2

∣
∣
∣
∣z

3
j

∂αj−1

∂θ̂

∣
∣
∣
∣

(
n∑

i=j

λs2

2a2
i

z6
i

)

=
∣
∣
∣
∣z

3
2
∂α1

∂θ̂

∣
∣
∣
∣
λs2

2a2
2

z6
2

+
∣
∣
∣
∣z

3
2
∂α1

∂θ̂

∣
∣
∣
∣
λs2

2a2
3

z6
3 + · · · +

∣
∣
∣
∣z

3
2
∂α1

∂θ̂

∣
∣
∣
∣
λs2

2a2
n

z6
n + · · ·

+
∣
∣
∣
∣z

3
n−1

∂αn−2

∂θ̂

∣
∣
∣
∣

λs2

2a2
n−1

z6
n−1

+
∣
∣
∣
∣z

3
n−1

∂αn−2

∂θ̂

∣
∣
∣
∣
λs2

2a2
n

z6
n +

∣
∣
∣
∣z

3
n

∂αn−1

∂θ̂

∣
∣
∣
∣
λs2

2a2
n

z6
n

=
n∑

j=2

λs2

2a2
j

z6
j

(
j∑

i=2

∣
∣
∣
∣z

3
i

∂αi−1

∂θ̂

∣
∣
∣
∣

)

. (71)

Combining (70) with (71) and using the definition of
ϕi(Zi) in (47) with j = i shows

−
n∑

j=2

z3
j

∂αj−1

∂θ̂

˙̂
θ

≤
n∑

j=2

k0z
3
j

∂αj−1

∂θ̂
θ̂

−
n∑

j=2

z3
j

∂αj−1

∂θ̂

(
j−1∑

i=1

λ

2a2
i

z6
i S

T
i (Zi)Si(Zi)

)

+
n∑

j=2

λs2

2a2
j

z6
j

(
j∑

i=2

∣
∣
∣
∣z

3
i

∂αi−1

∂θ̂

∣
∣
∣
∣

)

=
n∑

j=2

z3
j

(

k0θ̂
∂αj−1

∂θ̂

− ∂αj−1

∂θ̂

(
j−1∑

i=1

λ

2a2
i

z6
i S

T
i (Zi)Si(Zi)

)

+ λs2

2a2
j

z3
j

(
j∑

i=2

∣
∣
∣
∣z

3
i

∂αi−1

∂θ̂

∣
∣
∣
∣

))

= −
n∑

j=2

z3
j ϕj (Zj ), (72)

which implies

n∑

j=2

z3
j

(

ϕj (Zj ) − ∂αj−1

∂θ̂

˙̂
θ

)

≤ 0. (73)

As for the term k0bm

λ
θ̃ θ̂ in (69), the following result

can be obtained.

k0bm

λ
θ̃ θ̂ = −k0bm

λ
θ̃2 + k0bm

λ
θ̃θ

≤ −bm

2λ
k0θ̃

2 + bm

2λ
k0θ

2. (74)

Substituting (73) and (74) into (69) results in

LV ≤ −
n∑

j=1

cj z
4
j − bm

2λ
k0θ̃

2 + bm

2λ
k0θ

2
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+ b2
M

2

n∑

j=1

a2
j + 1

4

n∑

j=1

ε4
j + 3

4

n∑

j=2

r2
j . (75)

Furthermore, let a0 = min{4cj , k0, j = 1,2, . . . , n}
and b0 = bmk0

2λ
θ2 + 1

2b2
M

∑n
j=1 a2

j + 1
4

∑n
j=1 ε4

j +
3
4

∑n
j=2 r2

j , it follows

LV ≤ −a0V + b0, t ≥ 0. (76)

Therefore, according to Lemma 1, zj , j = 1,2, . . . , n,
and θ̃ are bounded in probability. Since θ is a con-
stant, θ̂ is bounded in probability. Based on the result
of ST

j (Zj )Sj (Zj ) ≤ s2, it can be seen that αj is a func-

tion of zj and θ̂ . So, αj is also bounded in probabil-
ity. Hence, we conclude that all the signals xj in the
closed-loop system (1) remain bounded in the sense of
probability.

Remark 8 In this note, we have proposed a direct
adaptive neural control approach for stochastic nonlin-
ear systems. The primary difference between the in-
direct adaptive neural control and the direct one lies
in that the indirect one utilizes the neural networks to
approximate the unknown nonlinear functions in the
system dynamics while the latter one applies neural
networks to model the unknown dynamics in the de-
sired control signals. Thus, the direct adaptive neural
controller has a simpler structure.

4 Simulation example

Example 1 In order to demonstrate the effectiveness
of our result, we consider the following second-order
stochastic nonlinear system:

dx1 = ((
1 + x2

1

)
x2 + x1 sin(x1)

)
dt + x3

1dw,

dx2 =
((

2 + x2
2

1 + x2
1

)

u + x1x
2
2

)

dt

+ (1 + sinx1)x2dw,

y = x1,

where x1 and x2 denote the state variables and u is
the system control input. It is obvious that the system
satisfies Assumption 1. Now, by using Theorem 1, the
virtual control law,the actual control law, and the adap-
tive laws are chosen as

α1 = −k1z1 − 1

2a2
1

z3
1θ̂ST

1 (Z1)S1(Z1),

Fig. 1 States of closed-loop system (dash-dot line) x1 and x2
(solid line)

u = −k2z2 − 1

2a2
2

z3
2θ̂ST

2 (Z2)S2(Z2),

˙̂
θ =

2∑

k=1

λ

2a2
k

z6
kS

T
k (Zk)Sk(Zk) − k0θ̂ ,

where z1 = x1, z2 = x2 − α1,Z1 = z1 and Z2 =
[z1, z2, θ̂ ]T . The simulation is run under the ini-
tial conditions [x1(0), x2(2)]T = [−0.2,0.2]T , and
θ̂ (0) = 0.3. In the simulation,design parameters are
taken as follows: k1 = k2 = 15, a1 = a2 = 8, k0 = 10,
and λ = 0.1, and RBF neural networks are chosen in
the following way. Neural network WT

1 S1(Z1) con-
tains eleven nodes with centers spaced evenly in the
interval [−5,5] and widths equal to two. Neural net-
work WT

2 S2(Z2) also contains eleven nodes with cen-
ters spaced evenly in the interval [−5,5] × [−5,5] ×
[−5,5] and widths still equal to two. The simulation
results are shown by Figs. 1–3. Figure 1 shows that x1

and x2 converge to zero within less than one second.
Figure 2 shows the control input signal u, and Fig. 3
shows the response curve of the adaptive parameter θ̂ .
Apparently, simulation results show that good conver-
gence performances are achieved and all the signals in
the closed-loop system are bounded.

Example 2 To further show the control capability of
the proposed scheme, we consider the third-order non-
linear system below:

dx1 = ((
0.3 + x2

1

)
x2 − 0.8 sinx1

)
dt + x1 sinx1dw,

dx2 = ((
1 + x2

2

)
x3 − x2 − 0.5x3

2 − x3
1 − √

x1
)
dt
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Fig. 2 The control input u

Fig. 3 Adaptive laws θ̂

+ x1 cosx2dw,

dx3 =
(

(
1.5 + sin(x1x2)

)
u − 0.5x3 − 1

3
x2

3

− x2
2x3 − x1

1 + x2
1

)

dt + 3x1e
−x2

2 dw,

y = x1.

Similarly, Theorem 1 is used to design the direct adap-
tive neural controller for this system. Therefore, the
virtual control laws and the true control law are cho-
sen as

α1 = −k1z1 − 1

2a2
1

z3
1θ̂ST

1 (Z1)S1(Z1),

α2 = −k2z2 − 1

2a2
2

z3
2θ̂ST

2 (Z2)S2(Z2),

Fig. 4 States of x1 (dash-dot line), x2 (solid line), and x3 (dot
line)

Fig. 5 The control input u

u = −k3z3 − 1

2a2
3

z3
3θ̂ST

3 (Z3)S3(Z3),

with the adaption law as follows:

˙̂
θ =

3∑

k=1

λ

2a2
k

z6
kS

T
k (Zk)Sk(Zk) − k0θ̂ ,

where z1 = x1, z2 = x2 − α1, z3 = x3 − α2, Z1 = z1

and Z2 = [z1, z2, θ̂ ]T , Z3 = [z1, z2, z3, θ̂ ]T . and the
design parameters are adopted respectively as k1 = 4,
k2 = 3, k3 = 4, a1 = 12, a2 = 14, a3 = 15, k0 =
2, λ = 2. Moreover, the initial conditions are given by
[x1(0), x2(0), x3(0)]T = [0.1,0.4,0.2]T , and θ̂ (0) =
0. Simulation results indicate that the proposed con-
troller works well and guarantees the boundedness of
all the signals in the closed-loop system. The details
are shown in Figs. 4, 5, 6.
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Fig. 6 Adaptive laws θ̂

5 Conclusion

Based on the backstepping technique, a direct adap-
tive control approach has been proposed for a class
of stochastic nonlinear systems. The main contribu-
tion of this article is that only one adaptive parameter
is needed to be estimated online no matter how many
neural networks nodes are used and how large the or-
der of systems is. The stability analysis in this note
guarantees that all the signals in the closed-loop sys-
tems are bounded in probability. Two simulation ex-
amples are given to illustrate the effectiveness of the
proposed approach.
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