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Abstract In this paper, the Hopf bifurcations and
limit cycle oscillations (LCOs) of an airfoil with cu-
bic nonlinearity in supersonic\hypersonic flow are in-
vestigated. The harmonic balance method and mul-
tivariable Floquet theory are applied to analyze the
LCOs of the airfoil. Four distinct cases of the LCOs
response are detected in this system: (I) supercritical
Hopf bifurcation, (II) a single subcritical Hopf bifur-
cation, (III) two subcritical Hopf bifurcations, and (IV)
no Hopf bifurcation. Furthermore, the parameter vari-
ations domains separating the supercritical and sub-
critical Hopf bifurcations are presented using singu-
larity theory.

Keywords Supercritical and subcritical Hopf
bifurcation · LCO · Harmonic balance method ·
Floquet theory · Singularity theory

1 Introduction

Strong interactions may occur between high speed
flow fields and aerospace structural components, re-
sulting in several remarkable aeroelastic phenom-
ena. These may dramatically influence the perfor-
mance of flight vehicles. Moreover, the tendency of

H. Guo (�) · Y. Chen
School of Astronautics, Harbin Institute of Technology,
Harbin 150001, China
e-mail: hulunguo@yahoo.cn

the next generation of aeronautical and space vehicles
is towards low weight and high structural flexibility
[1–3]. However, these will enhance nonlinearities in
both structure and aerodynamic loads. Limit cycle os-
cillations (LCOs) may appear instead of flutter due
to such nonlinearities. Properties of a LCO provide
important information on the behavior of the aeroe-
lastic system. This can be examined via Hopf bifurca-
tions [4] of the associated nonlinear aeroelastic system
[5–7]. Such Hopf bifurcations can be classed as super-
critical and subcritical. In the former (benign) case, the
LCO appears at speed greater than the flutter speed. In
the latter (catastrophic) case, the LCO may appear be-
low the flutter speed [1].

Lee [5] and Dowell [8] have given a detailed review
of structural and aerodynamic nonlinearities. Gener-
ally, the structural nonlinearity can be described as ei-
ther cubic, freeplay, or hysteretic. In addition, aero-
dynamic nonlinearity can have a significant influence
on aeroelastic characteristics of the airfoil response in
supersonic\hypersonic flow. Such influence can cause
catastrophic structural failure. Therefore, the preven-
tion of bifurcation and LCO is an important technol-
ogy in wing design of flight vehicles.

The first attempt to study nonlinear aeroelastic-
ity was carried out by Woolston et al. [9, 10]. In
their work, attention was focused on the hard and soft
spring character in a nonlinear two-degree-of-freedom
system (2-DOF). They found that the soft spring has
a destabilizing effect. Liu and Zhao [11] studied the
bifurcations of airfoils in incompressible flow with
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nonlinear pitching stiffness by a harmonic balance
method, an asymptotic expansion method, an averag-
ing method and a numerical integration method. Lee et
al. [12] also came to the same conclusion that the soft
spring property destabilizes the subcritical Hopf bifur-
cation in a 2-DOF airfoil system. The harmonic bal-
ance method was also used to investigate the LCOs of
a 2-DOF airfoil with cubic nonlinearity in the restor-
ing forces by Lee et al. [13]. They derived analytical
expressions for the amplitudes of the pitch and plunge
motions. Liu and Dowell [14] used the same method
to higher order to study a secondary bifurcation of the
airfoil.

The center manifold procedure and normal form
theory also play important roles in studying the Hopf
bifurcation of a nonlinear system [15]. They were used
to study the subcritical and supercritical Hopf bifur-
cation of a 2-DOF airfoil with structural nonlinearity
[16, 17], aerodynamic nonlinearity [18], or time-delay
[19]. However, the results obtained by these proce-
dures are satisfactory only in the neighborhood of crit-
ical points [20]. Therefore, they are rather limited for
an airfoil system.

It should be stressed that the effect of system pa-
rameters on Hopf bifurcations and LCOs in an air-
foil system with structural and aerodynamic nonlinear-
ities remains unclear. To address this issue, the present
investigation focuses on the LCOs of an airfoil in a
supersonic\hypersonic flow undergoing Hopf bifurca-
tion. The harmonic balance method and multi-variable
Floquet theory are applied to analyze the LCOs of this
system. In this paper, a new singularity theory is de-
veloped to study the supercritical and subcritical Hopf
bifurcations in a structural parameter space.

2 Model equations

We consider the vibration of a 2-DOF plunging/pit-
ching double wedge airfoil as shown in Fig. 1. The
nonlinear aeroelastic governing equations can be writ-
ten as [1–3]:
⎧
⎨

⎩

mḧ + Sαα̈ + chḣ + Khh = −L,

Sαḧ + Iαα̈ + cαα̇ + Kαα + K̂αα3 = MEA,
(1)

where h is the plunging displacement (positive down-
ward), α is the pitch angle (positive nose up), super-
posed dots denote derivatives with respect to time t ,

Fig. 1 Two degree-of-freedom airfoil geometry

m is the structural mass per unit span, Sα is the static
unbalance about the elastic axis, Iα is the mass mo-
ment of inertia about the elastic axis of the airfoil,
ch, cα , Kh, and Kα are linear viscous damping and
stiffness coefficients and K̂α is the structural nonlin-
ear stiffness coefficient in pitch DOF. The surplus L

and MEA denote an unsteady aerodynamic lift and mo-
ment respectively. They will be found by the piston
theory aerodynamics (PTA) [21]. The PTA is an in-
viscid unsteady aerodynamic theory, used extensively
in the case of supersonic\hypersonic flow (M∞ ≥√

2) and for moderate angles (|α| ≤ π/6). It pro-
vides a point-function relationship between the local
pressure on the surface of the vehicle and the com-
ponent of fluid velocity normal to the moving sur-
face [22].

In this paper, a third order piston theory is applied.
Thus, the unsteady aerodynamic lift L and moment
MEA of a 2-DOF plunging/pitching double wedge air-
foil are expressed as [23, 24]:

L = 4p∞γM∞b

(
ḣ

V∞
− ba

α̇

V∞
+ α

)

− p∞γ (γ + 1)M2∞b2τ̂

(
α̇

V∞

)

+ 1

3
p∞γ (γ + 1)M3∞b

×
{(

ḣ

V∞
− ba

α̇

V∞
+ α

)

×
((

ḣ

V∞
− ba

α̇

V∞
+ α

)2

+ 3τ̂ 2

+
(

b
α̇

V∞

)2)}

, (2)
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MEA = 4p∞γM∞b2

×
(

a
ḣ

V∞
−
(

b

3
+ ba2

)
α̇

V∞
+ aα
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+ p∞γ (γ + 1)M2∞b2τ̂

×
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×
((

ḣ

V∞
− ba

α̇

V∞
+ α
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+ 3τ̂ 2
)

+ b
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V∞

((
ḣ

V∞
− ba

α̇
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+ α
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+ τ̂ 2

− ba
α̇

V∞

(
ḣ

V∞
− ba

α̇

V∞
+ α

))}

. (3)

In addition to the standard parameters that appear in
the classical PTA model, τ̂ here denotes the thickness
ratio (≡ th/b).

It is convenient to introduce the following di-
mensionless parameters: ξ = h/b, τ = V∞t/b, χα =
Sα/(mb), r2

α = Iα/(mb2), ωξ = √
Kh/m, ωα =√

Kα/Iα , ζξ = ch/2(Khm)1/2, ζα = cα/2(KαIα)1/2,
V ∗ = V∞/(bωα), ω̄ = ωξ/ωα , η̂α = K̂α/Kα , μ =
m/(4ρ∞b2), p∞ = ρ∞c2∞/γ . In terms of these, the
governing equations of a supersonic\hypersonic dou-
ble wedge airfoil, featuring plunging-pitching coupled
motion, can be written:
⎧
⎪⎪⎨

⎪⎪⎩

ξ ′′ + χαα′′ + 2 ζξ ω̄

V ∗ ξ ′ + ω̄2

V ∗2 ξ = −L̄(τ ),
χα

r2
α
ξ ′′ + α′′ + 2 ζα

V ∗ α′ + 1
V ∗2 (α + η̂αα3)

= M̄EA(τ ),

(4)

where

L̄(τ ) = 1

12M∞μ

{
12(ξ ′ − aα′ + α) − 3(γ + 1)τ̂M∞α′

+ (γ + 1)M2∞
{
(ξ ′ − aα′ + α)

× [(ξ ′ − aα′ + α)2 + 3τ̂ 2 + (α′)2]}},

M̄EA(τ ) = 1

12μM∞r2
α

{

12

[

aξ ′ −
(

1

3
+ a2

)

α′ + aα

]

+ 3(γ + 1)τ̂M∞(ξ ′ − 2aα′ + α)

− (γ + 1)M2∞
{

1

5
(α′)3 − a(ξ ′ − aα′ + α)

× [(ξ ′ − aα′ + α)2 + 3τ̂ 2]

+ α′[(ξ ′ − aα′ + α)2 + τ̂ 2

− aα′(ξ ′ − aα′ + α)
]
}}

.

Note that the ratio of the amplitude of α′ and α is ω,
where ω is a dimensionless frequency. If the frequency
of the LCO of the airfoil is ω̂, then this dimensionless
frequency can be written as

ω = ω̂b

V∞
= ω̂b

M∞c∞
. (5)

From (5), one concludes that ω is a small quantity for
supersonic\hypersonic flow. Moreover, the amplitude
of ξ ′ is the same order as the amplitude of α′. Thus
higher order (nonlinear) damping, in the aerodynamic
lift and moment terms can be omitted resulting in

L̄(τ ) = 1

12M∞μ

{
12(ξ ′ − aα′ + α)

− 3(γ + 1)τ̂M∞α′ + (γ + 1)M2∞
× [3τ̂ 2(ξ ′ − aα′ + α) + α3]},

M̄EA(τ ) = 1

12μM∞r2
α

{

12

[

aξ ′ −
(

1

3
+ a2

)

α′ + aα

]

+ 3(γ + 1)τ̂M∞(ξ ′ − 2aα′ + α)

− (γ + 1)M2∞
[
τ̂ 2α′ − 3aτ̂ 2(ξ ′ − aα′ + α)

− aα3]
}

.

The dimensionless aerodynamic equations take the
following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r̂ξ ′′ + N11ξ + N12ξ
′ + N13α

+ N14α
′ + N15α

3 = 0,

r̂α′′ + N21ξ + N22ξ
′ + N23α

+ N24α
′ + N25α

3 = 0,

(6)

where the coefficients r̂ and Nij (i = 1,2; j =
1,2,3,4,5) are functions of the system parameters
and the Mach number given by the expressions in Ap-
pendix A.
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3 Harmonic balance analysis

The harmonic balance method has been used to study
the airfoil system in subsonic flow in the literature
[13, 14]. Liu and Zhao [11] have confirmed the use-
fulness of the harmonic balance method in an air-
foil system by comparing with three other meth-
ods: the asymptotic expansion method, the averag-
ing method and the numerical integration method.
In the following, the harmonic balance method is
used to predict the LCOs amplitude of an airfoil in
a supersonic\hypersonic flow. Since the aeroelastic
model of the airfoil described in (6) is a nonlinear au-
tonomous system, a periodic solution of (6) is assumed
to take the form:

α = a0 + a1 cosωτ,

ξ = b0 + b1 cosωτ + b2 sinωτ
(7)

where a0 and b0 denote the static equilibrium position
in the pitch and plunge DOF respectively and a1 and√

b2
1 + b2

2 denote the amplitude of the LCO in the pitch
and plunge DOF, respectively.

Substituting (7) into (6) leads to

−ω2r̂(b1 cosωτ + b2 sinωτ)

+ N11(b0 + b1 cosωτ + b2 sinωτ)

− ωN12(b1 sinωτ − b2 cosωτ)

+ N13(a0 + a1 cosωτ) − N14ωa1 sinωτ

+ N15

(

a3
0 + 3

2
a0a

2
1

)

+ N15

(

3a2
0a1 + 3

4
a3

1

)

× cosωτ + higher harmonics = 0, (8)

−ω2r̂a1 cosωτ + N21(b0 + b1 cosωτ + b2 sinωτ)

− ωN22(b1 sinωτ − b2 cosωτ)

+ N23(a0 + a1 cosωτ) − N24ωa1 sinωτ

+ N25

(

a3
0 + 3

2
a0a

2
1

)

+ N25

(

3a2
0a1 + 3

4
a3

1

)

× cosωτ + higher harmonics = 0.

Collecting the constant and the coefficients of sinωτ

and cosωτ , one obtains algebraic equations for a0, b0,
a1, b1, b2, and ω:

N11b0 + N13a0 + N15

(

a3
0 + 3

2
a0a

2
1

)

= 0, (9)

N21b0 + N23a0 + N25

(

a3
0 + 3

2
a0a

2
1

)

= 0, (10)

ω2r̂b2 − N11b2 + ωN12b1 + ωN14a1 = 0, (11)

ω2r̂b1 − N11b1 − ωN12b2 − N13a1 − 3N15a
2
0a1

− 3

4
N15a

3
1 = 0, (12)

N21b2 − ωN22b1 − ωN24a1 = 0, (13)

ω2r̂a1 − N21b1 − ωN22b2 − N23a1 − 3N25a
2
0a1

− 3

4
N25a

3
1 = 0. (14)

In order to solve (9)–(14), the following four cases will
be considered: (1) a0 = 0, a1 = 0; (2) a0 = 0, a1 	= 0;
(3) a0 	= 0, a1 = 0; and (4) a0 	= 0, a1 	= 0.

Case (1) a0 = 0, a1 = 0.
This corresponds to the zero solution of (6).

Case (2) a0 = 0, a1 	= 0.
Substituting a0 = 0 into (12) and (14), yields

ω2r̂b1 − N11b1 − ωN12b2 − N13a1 − 3

4
N15a

3
1 = 0,

(15)

ω2r̂a1 − N21b1 − ωN22b2 − N23a1 − 3

4
N25a

3
1 = 0.

(16)

Substituting (13) into (11), (15), and (16), and elimi-
nating b2, gives

(
ω2r̂ − N11

)
(N22b1 + N24a1)

+ N21(N12b1 + N14a1) = 0, (17)
(

ω2r̂b1 − N11b1 − N13a1 − 3

4
N15a

3
1

)

N21

− N12ω
2(N22b1 + N24a1) = 0, (18)

(

ω2r̂a1 − N21b1 − N23a1 − 3

4
N25a

3
1

)

N21

− N22ω
2(N22b1 + N24a1) = 0. (19)

Equation (18) and (19) implies:

(

ω2r̂b1 − N11b1 − N13a1 − 3

4
N15a

3
1

)

N22

=
(

ω2r̂a1 − N21b1 − N23a1 − 3

4
N25a

3
1

)

N12. (20)
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From (17) and (20), the square dimensionless fre-
quency can be expressed as

ω2 = P2 + P3a
2
1

P1
. (21)

So, (17) and (18) yields

P4ω
4 + (P5 + P6a

2
1

)
ω2 + P7 + P8a

2
1 = 0. (22)

The expressions for the coefficients Pi (i = 1,2, . . . ,8)

are given in Appendix B.
Substituting (21) into (22), yields

Q1a
4
1 + Q2a

2
1 + Q3 = 0, (23)

where the expressions for the coefficients Qi (i =
1,2,3) are given in Appendix C.

The flutter Mach number MF follows from

Q3 = 0. (24)

From (23), the amplitude of the LCO in the pitch DOF
is obtained as

a1 =

√
√
√
√−Q2 ±

√

Q2
2 − 4Q1Q3

2Q1
. (25)

Case (3) a0 	= 0, a1 = 0.
Substituting a1 = 0 into (9) and (10), gives

a0 =√N0, (26)

where N0 = N11N23−N13N21
N15N21−N11N25

.

Case (4) a0 	= 0, a1 	= 0.
Combining (9) and (10), yields

a2
0 = N0 − 3

2
a2

1 . (27)

Substituting (27) into (12) and (14), gives

ω2r̂b1 − N11b1 − ωN12b2 − N̄13a1 − 3

4
N̄15a

3
1 = 0,

(28)

ω2r̂a1 − N21b1 − ωN22b2 − N̄23a1 − 3

4
N̄25a

3
1 = 0,

(29)

where N̄13 = N13 + 3N0N15, N̄23 = N23 + 3N0N25,
N̄15 = −5N15 and N̄25 = −5N25.

Similar to case (2), one has

Q̄1a
4
1 + Q̄2a

2
1 + Q̄3 = 0. (30)

And the amplitude of the LCO in the pitch DOF can
also be solved from (30). Moreover, a2

0 = N0 − 3
2a2

1 >

0 should be satisfied.

4 Stability analysis

In terms of y1 = ξ , y2 = ξ ′, y3 = α, y4 = α′, Y =
{y1, y2, y3, y4}T (6) can be written as a system of four
first-order ordinary differential equations

Y ′ = f (Y ), (31)

where

f (Y )

= 1

r̂

⎛

⎜
⎝

r̂y2
−N11y1 − N12y2 − N13y3 − N14y4 − N15y3

3
r̂y4

−N21y1 − N22y2 − N23y3 − N24y4 − N25y3
3

⎞

⎟
⎠ .

(32)

The T -period steady state solution Y0 of (31) is de-
termined by the solution (7). The parameters in this
solution have been determined in the previous section.
Thus, Y0 can be written as

Y0 =

⎛

⎜
⎜
⎝

y1

y2

y3

y4

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

b0 + b1 cosωτ + b2 sinωτ

−ωb1 sinωτ + ωb2 cosωτ

a0 + a1 cosωτ

−ωa1 sinωτ

⎞

⎟
⎟
⎠ . (33)

The local stability of Y0 will be determined by mul-
tivariable Floquet theory. Substituting the perturbation
solution Y = Y0 +δY into (31), and ignoring higher or-
der terms in δY , one obtains a linear variational equa-
tion with periodic coefficients:

δY ′ = A(τ)δY, (34)

where A(τ) = DY f (Y0).
In terms of the Jacobian matrix DY f , the stability

of the periodic solution of system (31) is equivalent to
the stability of the zero solution of system (34). Fur-
thermore, the stability of the zero solution of system
(34) is determined by the transition matrix Φ accord-
ing to the Floquet theory [25, 26].

Each period T = 2π
ω

is divided into N intervals.
The size of each interval is Δ = T

N
, and the kth inter-

val is denoted by ( (k − 1)Δ, Δ). In the kth interval
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the periodic coefficient matrix A(τ) can be replaced
by a constant matrix Bk defined by

Bk = 1

Δ

∫ kΔ

(k−1)Δ

A(τ)dτ

= 1

r̂

⎡

⎢
⎢
⎣

0 r̂ 0 0
−N11 −N12 −N13 − RN15 −N14

0 0 0 r̂

−N21 −N22 −N23 − RN25 −N24

⎤

⎥
⎥
⎦ ,

(35)

where R = 3a2
0 + 3

2a2
1 + 6N

π
a0a1 sin π

N
cos(2k−1) π

N
+

3π
4N

a2
1 sin 2π

N
cos(2k − 1) 2π

N
.

Hence, the approximate transition matrix Φ is
given as

Φ =
N∏

i=1

[

I +
Nj∑

j=1

(ΔBi)
j

j !

]

, (36)

where Nj is the number of terms in the approxima-
tion of the constant exponential matrix Bi and I is the
identity matrix.

The eigenvalues of the monodromy matrix Φ (Flo-
quet multipliers) can be used to determine the stability
of a steady state solution. If all eigenvalues have mod-
ulus less than unity, the solution is stable. If the mod-
ulus of one of the eigenvalues is larger than unity, the
solution is unstable.

5 Results analysis

In this section, different LCOs with various system
parameters are discussed. The critical Mach number
(critical reversal Mach number, flutter Mach number)
is also investigated.

The system parameters under consideration are
given in Table 1.

In the following numerical simulations, the system
parameters listed in Table 1 are fixed, and the remain-
ing parameters ω̄, χα , τ̂ , and η̂α are varied.

5.1 The critical reversal Mach number analysis

If we take ω̄ = 1.7, χα = 0.25, τ̂ = 0.05, and η̂α = 50,
the static equilibrium position in pitch DOF a0 is in-
dicated in Fig. 2. Since N0 − 3

2a2
1 < 0 in case (4), the

nonzero solution of a0 and a1 does not exist. There-
fore, the only solution of a1 is zero, when a0 is not

Table 1 System parameters

Parameter Value Parameter Value

rα 0.5 γ 1.4

ςξ , ςα 0.05, 0.05 μ 100

ωα 60 c∞ 300 m/s

a −0.15 b 1 m

Fig. 2 Static equilibrium position vs. Mach number

equal to zero. Figure 2 shows that a0 is unstable when
M∞ > Mcr (Mcr = 9.25). Hence, there is no stable so-
lution when M∞ > Mcr. Thus, Mcr can be defined as
a critical reversal Mach number. Furthermore, in order
to investigate the LCOs responses, the Mach number
should be smaller than the critical reversal Mach num-
ber.

From (26), one concludes that the critical reversal
Mach number can be solved from

N0 = 0 (37)

or

1

V ∗2
+ 1

4M∞μr2
α

[
4a + (γ + 1)τ̂M∞

+ a(γ + 1)τ̂ 2M2∞
]= 0. (38)

From (38), one concludes that Mcr is independent
of ω̄, χα , and η̂α . From Fig. 3, it follows that Mcr de-
creases as τ̂ increases. Thus, the critical reversal Mach
number increases as the thickness of the airfoil de-
creases.
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Fig. 3 The critical Mach number vs. the thickness ratio of the
airfoil

5.2 LCOs responses analysis

The following study focuses on the cases where χα =
0.25, τ̂ = 0.05, and η̂α = 50, while the value of the
frequency ratio ω̄ is taken as 0.8, 1.7, 2.0, and 2.2,
respectively. Since the critical reversal Mach num-
ber is independent of the frequency ratio, it remains
Mcr = 9.25 for these four cases. These cases are shown
in Fig. 4. They correspond to a supercritical Hopf bi-
furcation, one subcritical Hopf bifurcation, two sub-
critical Hopf bifurcations, and no Hopf bifurcation, re-
spectively. The solid curve depicts a stable LCO and
the dashed curve depicts an unstable LCO.

The supercritical Hopf bifurcation means that the
nonzero solution is on the other side of the stable zero
solution in a neighborhood of the Hopf bifurcation. On
the other hand, the nonzero solution is on the same side
of the stable zero solution, that is corresponding to the
subcritical Hopf bifurcation [27, 28].

Figure 4(a) shows that a supercritical Hopf bifurca-
tion exists. There is a stable zero solution for M∞ <

MF (MF = 1.24). For MF < M∞ < Mcr, the zero so-
lution becomes unstable, and a stable LCO appears.
The LCO amplitude increases as the Mach number in-
creases.

In Fig. 4(b), it can be seen that there is a transition
from the supercritical Hopf bifurcation to a subcriti-
cal Hopf bifurcation as ω̄ increases. A LCO can ap-
pear at ML(ML = 2.79), which is smaller than MF

(MF = 3.51). For ML < M∞ < MF , there are two
LCOs. The one with larger amplitude is stable and the
other is unstable. When the disturbance is smaller than

the unstable LCO, the dynamic response will stabilize
at zero. Otherwise, the response will finally evolve into
a stable LCO with large amplitude. This implies that
LCO also exists below the flutter Mach number. Such
a subcritical Hopf bifurcation is catastrophic for an air-
foil.

In Fig. 4(c), there are two Hopf bifurcation points
(MF and MF2), and both of the nonzero solutions are
on the same side of the stable zero solutions in the
neighborhood of these two Hopf bifurcation points.
Thus, these two points are subcritical Hopf bifurca-
tions. From Fig. 4(c), one sees that there is a stable
LCO and an unstable zero solution for MF < M∞ <

MF2 (MF = 7.13, MF2 = 7.95). For MF2 < M∞ <

Mcr, a new unstable LCO bifurcates from the zero so-
lution, and the zero solution becomes stable.

Figure 4(d) shows an interesting case. For ML <

M∞ < Mcr (ML = 4.21), there are three solutions,
i.e., a stable LCO, an unstable LCO, and a stable zero
solution. Moreover, the Hopf bifurcation does not ap-
pear below the critical reversal Mach number.

5.3 The flutter Mach number analysis

The flutter Mach number MF can be solved from (24).
Actually, for all the coefficients of (6), η̂α appears only
in N15 and N25. According to Appendix B, the param-
eters P1, P2, P4, P5, and P7 are independent of η̂α .
Thus, the parameter Q3 is also independent of η̂α . And
the flutter Mach number is independent of η̂α .

In the following, various cases are discussed to in-
vestigate the effect of the structural parameters ω̄, χα ,
and τ̂ on the flutter Mach number. (See Figs. 5–7.)

For χα = 0.25, τ̂ = 0.05, and η̂α = 50, the MF − ω̄

curve is shown in Fig. 5. It is shown that the flutter
Mach number decreases as the pitch-plunge frequency
ratio ω̄ approaches unity. Woolston et al. [9, 10] have
drawn a similar conclusion for an airfoil in subsonic
flow. To the best of our knowledge, it is unclear in
the open literatures what there happens with increas-
ing frequency ratio. In the following, we focus on a
detailed answer to this question. From Fig. 5, it can
be seen that the flutter Mach number MF exceeds the
critical reversal Mach number for ω̄ > 2.1. This im-
plies that a Hopf bifurcation does not exist in cases
when the relation between the amplitude of the LCO
and Mach number is shown in Fig. 4(d).

For ω̄ = 1.2, τ̂ = 0.05, and η̂α = 50, the MF − χα

curve is shown in Fig. 6. It is seen that the flutter Mach
number increases with increasing χα .
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Fig. 4 The LCOs amplitude in pitch vs. Mach number

For χα = 0.25, ω̄ = 1.2, and η̂α = 50, the MF − τ̂

curve is shown in Fig. 7. It is seen that the flutter
Mach number decreases with increasing τ̂ . This can
be expressed the modern airfoil becoming more and
more thin, especially in the supersonic\hypersonic
flow.

6 Supercritical and subcritical Hopf bifurcation

Two typical Hopf bifurcations, i.e., supercritical and
subcritical Hopf bifurcation, arise in the airfoil sys-
tem. However, how the structural parameters ω̄, χα , τ̂ ,
and η̂α determine these two Hopf bifurcations remains
unclear.

Singularity theory offers an extremely useful ap-
proach to solve bifurcation problems. It can be used
to determine the critical parameter of different types
of bifurcations. Golubitsky and Schaeffer [27, 28]
gave a detailed introduction of the singularity the-
ory in mathematics. Chen and Leung [15] intro-
duced the singularity theory in simple language, and
gave some examples in engineering. In the Math-
ieu system [29], six typical bifurcations were ob-
tained in the parameter area by singularity theory.
In the following, singularity theory is developed to
investigate the supercritical Hopf bifurcation and
the subcritical Hopf bifurcation of the airfoil sys-
tem.
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Fig. 5 The flutter Mach number vs. the frequency ratio

Fig. 6 The flutter Mach number vs. the dimensionless static
unbalance

Firstly, the bifurcation equation is introduced as

G(a1,M∞, β) = Q1(M∞, β)a4
1 + Q2(M∞, β)a2

1

+ Q3(M∞, β) = 0, (39)

where β = {χα, ω̄, τ̂ , η̂α }T is the unfolding parame-
ter.

Figure 8 depicts both a supercritical and subcritical
Hopf bifurcation. Point A represents a Hopf bifurca-
tion point, where

dM∞
da1

= 0. (40)

Fig. 7 The flutter Mach number vs. the thickness ratio

Fig. 8 Supercritical and subcritical Hopf bifurcation

Point B represents an inflection point, where

dM∞
da1

= 0 and
d2M∞

da2
1

= 0. (41)

When point A and point B coincide, i.e., ML =
MF , a small perturbation of the structure parameter
will change the nature of the Hopf bifurcation (super-
critical Hopf bifurcation or subcritical Hopf bifurca-
tion).

From (39), one has

dG

da1
= ∂G

∂a1
+ ∂G

∂M∞
dM∞
da1

= 0, (42)

d2G

da2
2

= ∂2G

∂a2
2

+ 2
∂2G

∂a2∂M∞
dM∞
da2

+ ∂G

∂M∞
d2M∞

da2
2

+ ∂2G

∂M2∞

(
dM∞
da2

)2

= 0. (43)

Then, substituting (39), (40), and (41) into (42) and
(43), a simplified critical condition for a supercritical
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Hopf bifurcation to convert to a subcritical Hopf bifur-
cation is obtained:

∂G

∂a1
= 4Q1a

3
1 + 2Q2a1 = 0, (44)

∂2G

∂a2
1

= 12Q1a
2
1 + 2Q2 = 0. (45)

If a1 	= 0,ML can be determined from (39), (44), and
(45). In this case, one has
⎧
⎪⎨

⎪⎩

Q1(M∞, β) = 0,

Q2(M∞, β) = 0,

Q3(M∞, β) = 0.

(46)

If aerodynamic nonlinearity is neglected, the parame-
ters N15 and N25 can be expressed as

N15 = −χα

η̂α

V ∗2
and N25 = η̂α

V ∗2
. (47)

Then (46) becomes
⎧
⎪⎨

⎪⎩

Q1(M∞, β) = η̂2
αq1(M∞, β ′) = 0,

Q2(M∞, β) = η̂αq2(M∞, β ′) = 0,

Q3(M∞, β) = q3(M∞, β ′) = 0,

(48)

where β ′ = {χα, ω̄, τ̂ }T .
Equation (48) suggests that ML is independent

of η̂α . As shown in Fig. 9, the amplitude of the LCOs
with different η̂α is obtained, where the aerodynamic
nonlinearity is neglected. From Fig. 9, it can be seen
that with either a hard spring or a soft spring the LCO

Fig. 9 The LCOs amplitude with different structural nonlinear-
ity

amplitude increases with decreasing |η̂α|; neverthe-
less, ML remains unchanged.

At the Hopf bifurcation point, the amplitude a1 is 0.
In this case, the unfolding parameter β determined by
(39), (44), and (45) is defined as the hysteresis set by
the singularity theory [15], and the bifurcation dia-
gram of G will change its property under a small per-
turbation of β . It implies that a supercritical Hopf bi-
furcation and a subcritical Hopf bifurcation can inter-
change under a small perturbation of β . According to
(39), (44), and (45), the hysteresis set can be expressed
as

H =
{

β ∈ R4|∃(a1,M∞),

s.t. G = ∂G

∂a1
= ∂2G

∂a2
1

= 0, at a1 = 0

}

. (49)

The flutter Mach number should be lower than the
critical reversal Mach number. Thus, (49) can be sim-
plified to

H = {
β ∈ R4|∃M∞ < Mcr

s.t. Q2(M∞, β) = Q3(M∞, β) = 0
}
. (50)

Recalling that the unfolding parameter β is com-
posed of ω̄, χα , τ̂ , and η̂α , the hysteresis set can be
obtained when two parameters in β are fixed, while the
other two vary. Then the parameter domains of the su-
percritical and subcritical Hopf bifurcation are shown
in Fig. 10. Substituting one of the points in the pa-
rameter domain into (39), yields a bifurcation diagram
where the type of the Hopf bifurcation can be iden-
tified. Note that the type of the bifurcation of all the
points in one parameter domain is consistent. From
Figs. 10(a), (b), and (c), it can be seen how the su-
percritical and subcritical Hopf bifurcations exchange
when the structural nonlinearity is changed.

If aerodynamic nonlinearity is neglected, the hys-
teresis set can be obtained from

η̂α = 0. (51)

Equation (51) suggests that the hard spring (η̂α > 0)

and the soft spring (η̂α < 0) represent the supercritical
Hopf bifurcation and the subcritical Hopf bifurcation,
respectively. This conclusion has also been given in
the literature [1, 5]. Note that ML and MF are inde-
pendent of η̂α . Thus, neither a hard spring nor a soft
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Fig. 10 The parameter domains for supercritical and subcritical Hopf bifurcations (HB)
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spring η̂α can affect the flutter boundary without aero-
dynamic nonlinearity. Moreover, from Figs. 10(a), (b),
and (c), it is seen that a subcritical Hopf bifurcation
can also exist in the hard spring system if aerodynamic
nonlinearity is taken into account.

From Figs. 10(a), (d), and (f), it is clear that a sub-
critical Hopf bifurcation can change to a supercriti-
cal Hopf bifurcation as the frequency ratio decreases.
From Figs. 10(b), (e), and (f), it is also clear that a sub-
critical Hopf bifurcation can change to a supercritical
Hopf bifurcation as the dimensionless static unbalance
increases. Furthermore, from Figs. 10(c), (d), and (e),
one sees a subcritical Hopf bifurcation can change to
a supercritical Hopf bifurcation as the thickness ratio
decreases.

7 Conclusion

In this paper, the LCOs of an airfoil with cubic non-
linearity in a supersonic\hypersonic flow are investi-
gated. The method of multiple scales is applied to the
equation of motion to derive approximate solutions of
the LCOs. It is shown that a supercritical Hopf bifurca-
tion, a single subcritical Hopf bifurcation, two subcrit-
ical Hopf bifurcations, or no Hopf bifurcation occur in
this system. It is also proved that the frequency ratio,
the static unbalance, and the structural nonlinearity are
independent of the critical reversal Mach number. For
the supercritical and subcritical Hopf bifurcation, sin-
gularity theory is employed as a powerful tool to deter-
mine their parameter domains analytically. A subcrit-
ical Hopf bifurcation can appear when the airfoil sys-
tem exhibits a hard spring character, if aerodynamic
nonlinearity is taken into account.
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Appendix A: Expressions for the coefficients in (6)

r̂ = 1 − χ2
α

r2
α

, N11 =
(

ω̄

V ∗

)2

,

N12 = 2ζξ ω̄

V ∗ + 1

4M∞μr2
α

[(
r2
α + aχα

)

× (4 + (γ + 1)τ̂ 2M2∞
)+ χα(γ + 1)τ̂M∞

]
,

N13 = − χα

V ∗2
+ 1

4M∞μr2
α

[(
r2
α + aχα

)

× (4 + (γ + 1)τ̂ 2M2∞
)+ χα(γ + 1)τ̂M∞

]
,

N14 = −2χαζα

V ∗ − 1

12M∞μr2
α

×[3(r2
α + 2aχα

)
(γ + 1)τ̂M∞

+(χα + 3ar2
α + 3χαa2)(4 + (γ + 1)τ̂ 2M2∞

)]
,

N21 = −χα

r2
α

(
ω̄

V ∗

)2

,

N22 = −2ζξχαω̄

r2
αV ∗ − 1

4M∞μr2
α

× [(χα + a)
(
4 + (γ + 1)τ̂ 2M2∞

)

+ (γ + 1)τ̂M∞
]
,

N23 = 1

V ∗2
− 1

4M∞μr2
α

× [(χα + a)
(
4 + (γ + 1)τ̂ 2M2∞

)

+ (γ + 1)τ̂M∞
]
,

N24 = 2ζα

V ∗ + 1

12M∞μr2
α

[
3(2a + χα)(γ + 1)τ̂M∞

+ (1 + 3aχα + 3a2)(4 + (γ + 1)τ̂ 2M2∞
)]

,

N15 = −χα

η̂α

V ∗2
+ (γ + 1)M∞

12μr2
α

(
r2
α + aχα

)
,

N25 = η̂α

V ∗2
− (γ + 1)M∞

12μr2
α

(a + χα).

Appendix B: Expressions for the coefficients in
(21) and (22)

P1 = r̂(N24 + N12),

P2 = N11N24 + N23N12 − N21N14 − N22N13,

P3 = 3

4
(N12N25 − N22N15),

P4 = r̂2N24,

P5 = N12(N12N24 − N14N22

+ r̂(N21N14 + N22N13 − 2N11N24),
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P6 = 3

4
r̂N22N15,

P7 = N11(N11N24 − N14N21)

+ N13(N12N21 − N11N22),

P8 = 3

4
N15(N12N21 − N11N22).

Appendix C: Expressions for the coefficients
in (23)

Q1 = P1P3P6 + P 2
3 P4,

Q2 = P 2
1 P8 + P1P2P6 + P1P3P5 + 2P2P3P4,

Q3 = P 2
1 P7 + P1P2P5 + P 2

2 P4.
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