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Abstract This paper investigates the adaptive-impuls-
ive projective synchronization of drive-response de-
layed complex dynamical networks with time-varying
coupling, in which the weights of links between two
connected nodes are time varying. By the stability
analysis of the impulsive functional differential equa-
tion, the sufficient conditions for achieving projective
synchronization are obtained, and a hybrid controller,
that is, an adaptive feedback controller with impulsive
control effects is designed. The numerical examples
are presented to illustrate the effectiveness and advan-
tage of the proposed synchronization criteria.

Keywords Drive-response delayed networks ·
Adaptive-impulsive control · Projective
synchronization

1 Introduction

Complex dynamical network has attracted signifi-
cant attention because it can be used to describe
many nature and artificial systems, such as the World
Wide Web, various wireless communication networks,
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metabolic networks, biological neural works, scientific
citation webs, epidemic network, traffic network, and
so on. In a complex dynamical network, each node
represents a dynamical system according to the dif-
ferent situation of the concerned problem, while the
edges represent the connections between nodes. Since
the discovery of small-world property [1] and scale-
free feature [2] of complex network, complex network
has been developed particular rapidly and gradually
become a focal subject.

Synchronization, one of the typical collective be-
haviors of complex dynamical networks has been ex-
tensively investigated in different fields of engineering
and sociology [3–19]. During the last decades, many
kinds of synchronization have been proposed, such as
complete synchronization, phase synchronization, lag
synchronization, cluster synchronization, generalized
synchronization, as well as projective synchronization.
Correspondingly, various control schemes including
pinning control [5–8], adaptive control [9–12], impul-
sive control [13–19], etc.; have been used to study the
different kinds of synchronization. Among all kinds
of synchronization, projective synchronization which
was first studied in two coupled partially linear sys-
tems by Mainer and Reface [20], is one of the most
noticeable problems because of its proportionality be-
tween the synchronized dynamical states with a scal-
ing factor. Later, the projective synchronization has
been extremely investigated in recent years, including
chaotic systems [21–23] and complex dynamical net-
works [12, 24–27]. Hu et al. [24] discussed the pro-
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jective synchronization of a drive-response dynamical
network model via pinning control. Guo et al. [25]
investigated the projective synchronization in drive-
response networks via impulsive control. The impul-
sive projective synchronization between the drive sys-
tem and response dynamical network without the time
delay was investigated in [26]. Time delays are ubiq-
uitous in natural and artificial systems. The delay in-
creases the dimensionality and the complexity of the
systems. Consequently, time delay case should be con-
sidered. Sun et al. studied the projective synchro-
nization in drive-response dynamical networks of par-
tially linear systems with time-varying coupling delay
in [27]. However, in many practical situations, some
complex networks are time-varying networks. For this
kind of network, the weights of links are time vary-
ing, which results in variations of the network topol-
ogy and coupling configuration over time [28–33]. To
simulate more realistic networks, time-varying cou-
pling should be taken into account. Recently, some au-
thors presented hybrid control strategy to investigate
the synchronization of chaotic systems [34] and com-
plex networks [35–37]. Compared to the conventional
control method, the hybrid control method is more ef-
fective to the networks with evolutionary properties.
Very recently, in [38], Cao et al. proposed the projec-
tive synchronization of a class of delayed chaotic sys-
tems via impulsive control, where the drive-response
system can be synchronized to within a desired scaling
factor. As far as the authors know, the projective syn-
chronization of a drive-response dynamical network
model with time delays dynamical nodes and time-
varying coupling has not been reported via adaptive-
impulsive control, which motivates the current study.

Inspired by the above previous works, this paper
aims to handle the problem of the projective syn-
chronization for a drive-response delayed dynami-
cal network model with time-varying coupling via
adaptive-impulsive control. The sufficient conditions
for the projective synchronization are derived analyt-
ically by the stability analysis of the impulsive func-
tional differential equation, and a hybrid controller,
which contains an adaptive controller and an impul-
sive controller, is designed. Analytical results show
that drive-response delayed dynamical networks with
time-varying coupling can realize the projective syn-
chronization within a desired scaling factor.

Notations Throughout this paper, let Sρ = {x ∈
Rn|‖x‖ < ρ}, where ‖ · ‖ denotes the Euclidean norm

on Rn. K = {ϕ ∈ C(R+,R+)|ϕ(t) is strictly increas-
ing and ϕ(0) = 0}, κ = {ϕ ∈ K|ϕ(t) < t , t > 0},
Σ = {ϕ ∈ C(R+,R+)|ϕ(0) = 0, ϕ(t) > 0, t > 0},
PC = {ϕ : [−τ,0] → Rn, ϕ(t) is continuous every-
where except at the finite number of points t̄ , where
ϕ(t̄+), ϕ(t̄−), exist and ϕ(t̄+) = ϕ(t̄)}, PCδ(t) = {ϕ ∈
PC : ‖ϕ‖ < δ}. λmax(A), λmin(A) denote the minimum
and maximum eigenvalue of matrix A, respectively.
sup denotes the upper bound. I denotes an appropri-
ate dimensional identity matrix. A−1 expresses an in-
vertible matrix of A.

The rest of this paper is organized as follows: In
Sect. 2, preliminaries and the model of drive-response
delayed dynamical networks with time-varying cou-
pling are given. In Sect. 3, the projective synchroniza-
tion criteria are obtained. Numerical simulations are
shown in Sect. 4. The conclusion is finally drawn in
Sect. 5.

2 Preliminaries and model description

Consider the following impulsive control system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = f (t, x), t �= tk, t ≥ 0,

	x(tk) = x(t+k ) − x(t−k )

= Ikx(t−k ), t = tk,

x(t+0 ) = x(t0), t0 ≥ 0, k = 1,2, . . . ,

(1)

where x(t) ∈ Rn is the state variable, xt (θ) = x(t + θ)

for θ ∈ [−τ,0]. f : Rn × R+ → Rn is a right con-
tinuous function. x(t−k ) = limt→t−k

x(t) and x(t+k ) =
x(tk). The instant sequence {tk} satisfies 0 < t1 < t2 <

· · · < tk < · · · , tk → ∞ as k → ∞. Ik ∈ C[Rn,Rn]
denotes the incremental change of the state at time tk
with Ik(0) = 0.

Before proceeding, we give some necessary defi-
nitions and lemmas to derive the main results of this
paper.

Definition 1 Let V : Rn × R
+ → R

+ , then V is said
to belong to class V0 if

(i) V is continuous in each of the sets Rn ×[tk−1, tk),
and for each x ∈ Rn, k = 1,2, . . . ,

lim(y,t)→(x,t−k ) V (y, t) = V (x, t−k ) exists,
(ii) V is locally Lipschitzian in x ∈ Rn.

Definition 2 For (x, t) ∈ Rn ×[tk−1, tk), the right and
upper Dini’s derivative of V (x, t) ∈ V0 is defined as



Adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks 2623

follows:

D+V (x, t)

	= lim
h→0

sup
1

h

[
V

(
x + hf (x, t), t + h

) − V (x, t)
]
.

Lemma 1 The matrix inequality 2xT y ≤ xT Qx +
yT Q−1y holds, for any vectors and a positive-definite
matrix Q ∈ Rn×n.

Lemma 2 [39] Assume that there exist V ∈ υ0, ω1,
ω2 ∈ K,ϕ ∈ κ and H ∈ Σ such that

(i) ω1(‖x‖) ≤ V (t, x) ≤ ω2(‖x‖) for (t, x) ∈
[t0,+∞] × Sρ ;

(ii) For all x ∈ Sρ,0 < ρ1 ≤ ρ, V (tk, Ik(x)) ≤
ϕ(V (t−k , x)) for all k;

(iii) For any solution x(t) of (1), V (t + s, x(t + s)) ≤
ϕ−1(V (t, x(t))),−τ ≤ s ≤ 0, implies that
D+V (t, x(t)) ≤ g(t)H(V (t, x(t))), where g :
[t0,+∞] → R+ is locally integrable, ϕ−1 is the
inverse function of ϕ;

(iv) H is nondecreasing and there exist constants l2 ≥
l1 > 0 and r > 0 such that for any μ > 0, l1 ≤
tk − tk−1 ≤ l2 and

∫ μ

ϕ(μ)
ds

H(s)
− ∫ tk

tk−1
g(s) ds ≥ r ,

k = 1,2, . . . .

Then the zero solution of (1) is uniformly asymptoti-
cally stable.

Inspired by [38], the drive-response delayed net-
work model with time-varying coupling, in which
time delays dynamical nodes are partially linear time-
delayed chaotic systems, is introduced by the follow-
ing equation:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇d = M(z) · ud(t) + γ Γ (ud(t − τ) − ud(t)),

ż(t) = f (ud(t), ud(t − τ), z(t), z(t − τ)),

u̇ri = M(z) · uri(t) + γ Γ (uri(t − τ) − uri(t))

+ c
∑N

j=1 cij (t)A(t)urj (t),

(2)

where the drive system and the response network
systems are linked through the variable z(t) ∈ R1.
ud(t) = (u1

d(t), u2
d(t), . . . , un

d(t)) ∈ Rn, uri(t) =
(u1

ri(t), u
2
ri (t), . . . , u

n
ri(t))

T ∈ Rn, the d and r stand
for the drive system and response system, respec-
tively. The constant c > 0 is the coupling strength to
be adjusted, τ ≥ 0 is the time delay. M(z) ∈ Rn×n is
a matrix which depends on the variable z(t). A(t) ∈
Rn×n is the time-varying inner-coupling link matrix at

time t . C(t) = (cij (t))N×N is the outer-coupling con-
figuration matrix, in which cij (t) �= 0 if there is a link
from node i to node j (i �= j), and cij (t) = 0 (i �= j)

otherwise, the diagonal elements of matrix C(t) are
given by cii(t) = −∑N

j=1,j �=i cij (t), i = 1,2, . . . ,N .
Here, let the coupling matrices A(t) and C(t) be
bounded and continuous.

If there exists a constant α(α �= 0) such that
limt→∞ = ‖ei(t)‖ = ‖uri(t) − αud(t)‖ = 0 for all
i = 1,2, . . . ,N , then the projective synchronization
of the drive-response delayed network (2) is achieved,
where α is a desired scaling factor. In [24–27], the
authors investigated the projective synchronization of
the drive-response dynamical network model, but the
time-varying coupling was not considered. The aim of
this paper is to discuss the adaptive-impulsive control
of projective synchronization in the drive-response de-
layed complex dynamical networks with time-varying
coupling. And we choose proper the adaptive feedback
controller Ui , i = 1,2, . . . ,N , the impulsive controller
Bik which is a n × n constant matrix, and the impul-
sive distances 	k = tk − tk−1, k = 1,2, . . . , such that
the projective synchronization of system (2), that is,
limt→∞ ‖ei(t)‖ = 0.

Therefore, based on adaptive-impulsive control
method, the drive-response delayed network (2) can be
rewritten as the following impulsive differential equa-
tion:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇d = M(z) · ud(t) + γ Γ (ud(t − τ) − ud(t)),

ż(t) = f (ud(t), ud(t − τ), z(t), z(t − τ)),

u̇ri = M(z) · uri(t) + γ Γ (uri(t − τ) − uri(t))

+ c
∑N

j=1 cij (t)A(t)urj (t) + Ui, t �= tk,

	uri = uri(t
+
k ) − uri(t

−
k ) = Bik [uri − αud ],

t = tk, k = 1,2, . . . ,

(3)

where Bik ∈ Rn×n is a gain matrix, Ui ∈ Rn is the
control inputs, uri(t

+
k ) = limt→t+k

uri(t), uri(t
−
k ) =

limt→t−k
uri(t), k = 1,2, . . . . Moreover, any solution

of (3) is right continuous at each tk , that is, uri(t
+
k ) =

uri(tk).
Here, the adaptive controller Ui and updating laws

are designed as follows:

Ui = −diei(t), i = 1,2, . . . ,N, (4)

ḋi = kie
T
i (t)ei(t), ki > 0. (5)
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3 Main results

In this section, the criteria for the adaptive-impulsive
projective synchronization of the drive-response de-
layed dynamical networks with time-varying coupling
will be established.

Let the projective synchronization error ei(t) =
uri(t) − αud(t) (i = 1,2, . . . ,N), we can derive the
error dynamical network:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ėi (t) = M(z)ei(t) + γ Γ (ei(t − τ) − ei(t))

+ c
∑N

j=1 cij (t)A(t)ej (t) + Ui,

t �= tk,

ż(t) = f (ud(t), ud(t − τ), z(t), z(t − τ)),

	ei = Bik ei(t
−
k ), t = tk, k = 1,2, . . . .

(6)

Then, one has the following results.

Theorem 1 If there exist positive definite matrices Pi

and positive definite diagonal matrices Ri , such that
the following conditions hold:

(i) maxk(‖I + Bik‖2) = ρk, ρk‖Pi‖λmax(P
−1
i ) ≤

βk < 1,
(ii) sup[λmax(P

−1
i Ωi)] > 0,

(iii) sup[λmax(P
−1
i Ωi)](tk − tk−1) + lnβk < 0,

where Ωi = MT (z)Pi + PiM(z) + c
∑N

j=1 c2
ij (t) ×

‖PiA(t)‖2I + cNI + γPiΓ RiΓ
T Pi − 2γPiΓ +

γ λmax(P−1
i R−1

i )

βk
Pi − 2d∗Pi, d

∗ is the minimum value
of the initial feedback strength di0, i = 1,2, . . . ,N ,
then the trivial solution of the error system (6) is glob-
ally asymptotically stable, which implies the drive-
response delayed network with time-varying coupling
(2) achieves the projective synchronization under the
adaptive-impulsive control, and the scaling factor α is
the desired value in advance.

Proof Since ḋi = kie
T
i (t)ei(t), ki > 0, then, we have

di ≥ di0, di0 is the initial feedback strength di .
Considering the following Lyapunov function:

V
(
t, ei(t)

) =
N∑

i=1

eT
i (t)Piei(t).

Then, we have

min
1≤i≤N

(
λmin(Pi)

)
N∑

i=1

eT
i (t)iei(t)

≤ V
(
t, ei(t)

)

≤ max
1≤i≤N

(
λmax(Pi)

)
N∑

i=1

eT
i (t)ei(t).

For all ei ∈ S(ρ1),0 < ρ1 ≤ ρ,

V
(
tk, ei(tk)

)

= 1

2

N∑

i=1

eT
i

(
t−k

)
(I + Bik )

T Pi(I + Bik )ei

(
t−k

)

≤ ρk‖Pi‖λmax
(
P −1

i

)
N∑

i=1

eT
i

(
t−k

)
Piei

(
t−k

)

≤ βkV
(
t−k , ei

(
t−k

))
, k = 1,2, . . . .

Let ϕ(s) = βks, then ϕ ∈ κ . For any solution of (6), if

V
(
t + s, ei(t + s)

) ≤ ϕ−1(V
(
t, ei(t)

))
,

∀s ∈ [−τ,0],
that is,

N∑

i=1

eT
i (t + s)Piei(t + s) ≤ 1

βk

N∑

i=1

eT
i (t)Piei(t),

∀s ∈ [−τ,0].
Especially, for s = −τ , one has

N∑

i=1

eT
i (t − τ)Piei(t − τ) ≤ 1

βk

N∑

i=1

eT
i (t)Piei(t).

The Dini derivative of V (t, ei(t)) along the trajec-
tories of (6) is

D+V
(
t, ei(t)

)

=
N∑

i=1

ėT
i (t)Piei(t) +

N∑

i=1

eT
i (t)Pi ėi(t)

=
N∑

i=1

[

M(z)ei(t) + γ Γ
(
ei(t − τ) − ei(t)

)

+ c

N∑

j=1

cij (t)A(t)ej (t) − diei(t)

]T

Piei(t)
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+
N∑

i=1

eT
i (t)Pi

[

M(z)ei(t)

+ γ Γ
(
ei(t − τ) − ei(t)

)

+ c

N∑

j=1

cij (t)A(t)ej (t) − diei(t)

]

=
N∑

i=1

eT
i (t)

[
MT (z)Pi + PiM(z)

− 2γPiΓ − 2diPi

]
ei(t)

+ 2c

N∑

i=1

N∑

j=1

cij (t)e
T
i (t)PiA(t)ej (t)

≤
N∑

i=1

eT
i (t)

[
MT (z)Pi + PiM(z)

− 2γPiΓ − 2di0Pi

]
ei(t)

+ 2c

N∑

i=1

N∑

j=1

eT
i (t)cij (t)PiA(t)ej (t)

+ 2γ

N∑

i=1

eT
i (t)PiΓ ei(t − τ).

From Lemma 1, one has

2c

N∑

i=1

N∑

j=1

cij (t)e
T
i (t)PiA(t)ej (t)

≤ c

N∑

i=1

N∑

j=1

c2
ij (t)e

T
i (t)PiA(t)AT (t)Piei(t)

+ c

N∑

i=1

N∑

j=1

eT
j (t)ej (t)

≤ c

N∑

i=1

N∑

j=1

c2
ij (t)

∥
∥PiA(t)

∥
∥2

eT
i (t)ei(t)

+ cN

N∑

i=1

eT
i (t)ei(t),

2γ

N∑

i=1

eT
i (t)PiΓ ei(t − τ)

≤ γ

N∑

i=1

eT
i (t)PiΓ RiΓ

T Piei(t)

+ γ

N∑

i=1

eT
i (t − τ)R−1

i iei(t − τ)

≤ γ

N∑

i=1

eT
i (t)PiΓ RiΓ

T Piei(t)

+ γ λmax(P
−1
i R−1

i )

βk

N∑

i=1

eT
i (t)Piei(t).

Then we have

D+V
(
t, e(t)

)

≤
N∑

i=1

eT
i (t)

[

MT (z)Pi + PiM(z)

+ c

N∑

j=1

c2
ij (t)

∥
∥PiA(t)

∥
∥2

I + cNI

+ γPiΓ RiΓ
T Pi + γ λmax(P

−1
i R−1

i )

βk

Pi

− 2γPiΓ − 2d∗Pi

]

ei(t)

=
N∑

i=1

eT
i (t)Ωiei(t)

≤ sup
[
λmax

(
P −1

i Ωi

)]
N∑

i=1

eT
i (t)Piei(t).

Let g(t) = 1, H(s) = sup[λmax(P
−1
i Ωi)]s, then

∫ μ

ϕ(μ)

ds

H(s)
−

∫ tk

tk−1

g(s) ds

= − lnβk

sup[λmax(P
−1
i Ωi)]

− (tk − tk−1) > 0.

This implies that the error system (6) is glob-
ally asymptotically stable about zero. Therefore, the
adaptive-impulsive projective synchronization of the
drive-response delayed dynamical networks (2) is
achieved. The proof is completed. �

Let the impulses be equidistant and separated by
interval tk − tk−1 = 	,Pi = Ri = Γ = I,Bik = bI in
Theorem 1, the following Corollary 1 holds.
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Corollary 1 Let ω = sup[λmax(M
T (z) + M(z))]. If

there exist a constant b such that the following con-
ditions hold:

(i) −2 < b < 0, βk = (1 + b)2,
(ii) Ω > 0,

(iii) Ω	 + ln(1 + b)2 < 0,

where Ω = ω + sup[c∑N
j=1 c2

ij (t)‖PiA(t)‖2]+ cN −
γ −2d∗ + γ

(1+b)2 , then the drive-response delayed net-
works with time-varying coupling can realize the pro-
jective synchronization with the desired scaling fac-
tor α.

When the time delay τ = 0, the following Corol-
lary 2 is easily obtained.

Corollary 2 Let ω = sup[λmax(M
T (z) + M(z))]. If

there exist a constant b such that the following con-
ditions hold:

(i) −2 < b < 0, βk = (1 + b)2,
(ii) Ω ′ > 0,

(iii) Ω ′	 + ln(1 + b)2 < 0,

where Ω ′ = ω + sup(c
∑N

j=1 c2
ij (t)‖PiA(t)‖2 + cN −

2d∗), then the drive-response networks with time-
varying coupling can realize the projective synchro-
nization with the desired scaling factor α.

The proof of Corollary 2 is more or less similar with
the proof of Theorem 1, thus we omit it.

Remark 1 The conditions given by Theorem 1 and
corollaries do not assume that the coupling matrix
C(t) is symmetric and irreducible and its off-diagonal
elements are nonnegative, which can be applied to
more real-world dynamical networks.

Remark 2 In [26], the authors discussed the impulsive
control of the projective synchronization of the drive-
response dynamical network model without time de-
lay, where the network is static and undirected. How-
ever, this paper investigates the projective synchro-
nization of a drive-response delayed dynamical net-
work with time-varying coupling by employing the
adaptive-impulsive control. Moreover, it is clear that if
τ = 0, A(t) = In and C(t) = C is a constant symmet-
ric irreducible matrix with nonnegative off-diagonal
elements, then the time-varying coupled network be-
come the static coupled network. Therefore, we can
regard Theorem 3 in [26] as the special case of Theo-
rem 1.

4 Numerical simulation

In this section, we give three examples to illustrate
the theoretical results obtained in the previous section,
that is, the drive-response time-varying coupling net-
works can be synchronized to within a desired scaling
factor α via adaptive-impulsive control. To verify and
demonstrate the effectiveness of the proposed meth-
ods, we consider the time-delay Lorenz chaotic system
as the drive system.

The Lorenz system with a time-delay is described
by

⎛

⎜
⎝

ẋ

ẏ

ż

⎞

⎟
⎠ =

⎛

⎜
⎝

σ(y − x)

(a − z)x − y

xy − ez

⎞

⎟
⎠ + γ

⎛

⎜
⎝

x(t − τ) − x

y(t − τ) − y

z(t − τ) − z

⎞

⎟
⎠ , (7)

where γ = 10, τ = 5, σ = 16, a = 40, e = 4.
Firstly, the drive-response delayed network systems

with time-varying coupling are described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇d (t) = M(z) · ud(t) + 10(ud(t − 5) − ud(t)),

ż(t) = x(t)y(t) − ez(t) + 10(z(t − 5) − z(t)),

u̇ri(t) = M(z) · uri(t) + 10(uri(t − 5) − uri(t))

+ c
∑5

j=1 cij (t)A(t)urj (t)−diei,

t �= tk,

	uri = uri(t
+
k ) − uri(t

−
k ) = Bik [uri − αud ],

t = tk, k = 1,2, . . . ,

i = 1,2, . . . ,5, (8)

where

M(z) =
(

−σ σ

a − z −1

)

.

Choosing the time-varying coupling configuration ma-
trices:

C(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−3 sin t −1 0 3 sin t 1

sin t − sin t − 2 cos t 0 0 2 cos t

0 sin t 0 − sin t 0

0 sin t cos t 1 − sin t cos t −1

−2 2 sin t 0 −1 3 − 2 sin t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and

A(t) =
(

1 + e−t 0

0 −0.5 cos t

)

.
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Fig. 1 The trajectories of projective synchronization in the x–y

plane with α = 2, τ = 5. The dash line and the solid line repre-
sent phase graph of drive system and response system, respec-
tively

For simplicity, in the numerical simulations, we
assume c = 0.1, ki = 1, Pi = Ri = I2, Bik =
diag{−0.79,−0.79}, ρk = (1 + b)2 = 0.0441 > 0,
di0 = 5. After calculations, getting λmax(M

T (z) +
M(z)) = −(σ +1)+√

(σ − 1)2 + (σ + a − z)2 < 41,
ω = 41, Ω = ω + sup(c

∑N
j=1 c2

ij (t)‖A(t)‖2) +
cN − γ − 2d∗ + γ

(1+b)2 = 250.9574, then one has

0 < 	 < − ln(1+b)2

Ω
< − ln 0.0441

250.9574 = 0.0124. Taking
the impulsive interval 	 = tk+1 − tk = 0.01, then it
is easy to verify that all conditions in Corollary 1
are satisfied. Thus, the drive system and the re-
sponse networks synchronized to within a desired
scaling factor α. Figure 1 displays the projective
synchronization trajectory of the drive-response dy-
namical networks with desired scaling factor α = 2.
Figure 2 shows the error between projection tra-
jectories ‖e(t)‖ = √

(xi1 − αx1)2 + (yi2 − αy2)2,
i = 1,2, . . . ,N . The evolution of the feedback
strength di is shown in Fig. 3. Figure 4 displays the
trajectories of state variables. The numerical results
show that the adaptive-impulsive controlling scheme
for the drive-response delayed complex dynamical
network model with time-varying coupling is effec-
tive.

Remark 3 Furthermore, if we only adopt impul-
sive control strategy, the other conditions are cho-
sen as the mentioned above, the synchronization error
‖e(t)‖ is shown in Fig. 5. Clearly, from the Figs. 2

Fig. 2 Projective synchronization error α = 2, τ = 5

Fig. 3 The evolution of the feedback strength di , i = 1,2, . . . ,5

and 5, it is easy to find that the impulsive control ef-
fect is not as well as the adaptive-impulsive control
method.

Particularly, if τ = 0, the delayed system (7) be-
comes the Lorenz system. By Corollary 2, the projec-
tive synchronization can be achieved via the adaptive-
impulsive control. The other numerical conditions are
the same as above, one has Ω ′ = 34.2, we choose
impulsive interval 0 < 	 < − ln(1+b)2

Ω ′ = 0.0913, the
conditions in Corollary 2 are satisfied, the projec-
tive synchronization can be obtained with the de-
sired scaling factor α = −2, as shown in Figs. 6, 7,
and 8.
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Fig. 4 State trajectories of drive system (the dash line) and re-
sponse system (the solid line) α = 2, τ = 5

Fig. 5 Projective synchronization error under the impulsive
control

Then we consider a small-world drive-response dy-
namical network with time delays dynamical nodes
and time-varying coupling

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇d (t) = M(z) · ud(t) + 10(ud(t − 5) − ud(t)),

ż(t) = x(t)y(t) − ez(t) + 10(z(t − 5) − z(t)),

u̇ri(t) = M(z) · uri(t) + 10(uri(t − 5) − uri(t))

+ c
∑100

j=1 cijA(t)urj (t) − diei,

t �= tk,

	uri = uri(t
+
k ) − uri(t

−
k ) = Bik [uri − αud ],

t = tk, k = 1,2, . . . ,

i = 1,2, . . . ,100. (9)

Fig. 6 The trajectories of projective synchronization in the x–y

plane with α = −2, τ = 0. The dash line and the solid line rep-
resent phase graph of drive system and response system, respec-
tively

Fig. 7 State trajectories of drive system (the dash line) and re-
sponse system (the solid line) α = −2, τ = 0

Fig. 8 Projective synchronization error α = −2, τ = 0
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Fig. 9 The trajectories of projective synchronization in the x–y

plane with α = −2, τ = 5. The dash line and the solid line rep-
resent phase graph of drive system and response system, respec-
tively

Fig. 10 Projective synchronization error α = −2, τ = 5

Here, let the parameters N = 100, K = 2, and p =
0.1, and network (9) with small-world connections
can be randomly generated according to the rule [40].
Then the coupling matrix C is given as follows:

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−98 0 1 · · · 1

1 −98 0 · · · 1
...

...
. . .

. . .
...

1 · · · · · · −98 0

0 · · · 1 1 −98

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

100×100

. (10)

The projective synchronization can be obtained with
the desired scaling factor α = −2 (see Figs. 9, 10, 11,
and 12).

Fig. 11 State trajectories of drive system (the dash line) and
response system (the solid line) α = −2, τ = 5

Fig. 12 The evolution of the feedback strength di , i = 1,

2, . . . ,100

5 Conclusion

In this paper, the projective synchronization of the
drive-response dynamical network model with time
delays dynamical nodes and time-varying coupling
has been investigated by using the adaptive-impulsive
control. Based on the stability analysis of impulsive
system, some sufficient conditions for realizing the
projective synchronization with the desired scaling
factor α are established. Moreover, numerical simu-
lations have also been given to show the effectiveness
and the correctness of the theoretical analysis finally.
From the simulation results, it is easy to observe that
the only impulsive control effective is not as well as
the adaptive-impulsive control strategy.
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