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Abstract We consider the transient response of a pro-
totypical nonlinear oscillator modeled by the Duffing
equation subjected to near resonant harmonic excita-
tion. Of interest here is the overshoot problem that
arises when the system is undergoing free motion and
is suddenly subjected to harmonic excitation with a
near resonant frequency, which leads to a beating type
of transient response during the transition to steady
state. In some design applications, it is valuable to
know the peak value of this response and the manner
in which it depends on system parameters, input pa-
rameters, and initial conditions. This nonlinear over-
shoot problem is addressed by considering the well-
known averaged equations that describe the slowly
varying amplitude and phase for both transient and
steady state responses. For the undamped system, we
show how the problem can be reduced to a single pa-
rameter χ that combines the frequency detuning, force
amplitude, and strength of nonlinearity. We derive an
explicit expression for the overshoot in terms of χ ,
describe how one can estimate corrections for light
damping, and verify the results by simulations. For
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zero damping, the overshoot approximation is given
by a root of a quartic equation that depends solely on
χ , yielding a simple bound for the overshoot of lightly
damped systems.
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1 Introduction

Most studies of the response of nonlinear vibratory
systems subjected to harmonic excitation focus on
steady state response. Typical investigations consider
periodic responses, stability, and bifurcations of these
quasiperiodic responses, and chaotic responses. In this
paper, we consider the transient response of the Duff-
ing equation subjected to harmonic excitation, focus-
ing on overshoot that occurs when the excitation is
suddenly switched on. The Duffing oscillator is an
archetypical nonlinear system that models many en-
gineering systems [1, 2, 11, 12, 15, 27, 30, 32]. There
exists a large body of work on the steady state response
and its stability for this classical oscillator; see, for ex-
ample, [27]. However, in certain design scenarios, it
is useful to know the short-term transient dynamics
of the response [23]. For instance, one may have de-
sign constraints on the peak amplitude of a system re-
sponse, and the transient response amplitude may vi-
olate this constraint, even when the steady state am-
plitude does not. Such an application motivated the
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present study, specifically, the response of a vibration
absorber that starts in an inactive state and is suddenly
brought into conditions for it to be active, leading to
beating type transients. Another consideration is that
a transient can sometimes result in the system ending
up in an undesirable steady state, in situations where
multiple stable steady state responses exist.

The approach for investigating the transient re-
sponse of a linear oscillator is straightforward, since
one can express the exact solution of the differential
equation governing the system response in terms of
the system and excitation parameters and initial con-
ditions [14, 34, 37]. Another approach is to find a
constant of motion for the system that relates the po-
sition, velocity, system parameters, and initial con-
ditions, from which the peak response can be deter-
mined [5, 18, 19]. Both approaches provide exact an-
alytical results for the transient response in the linear
case. However, the constant of motion approach typi-
cally does not apply for nonautonomous systems. As
for nonlinear systems, the direct solution approach can
be used only in a few special cases [3], whereas the
latter approach can be applied to a number of nonlin-
ear systems [4, 9, 10, 29]. In addition, the constant of
motion approach is well suited for problems such as
determination of the overshoot, in which the velocity
is given (zero in this case) at some desired system po-
sition (peak amplitude in this case). A limitation with
the constant of motion approach is that it is not directly
applicable to systems with time-dependent excitation.
However, the method of averaging provides a mean
of removing this time dependence for a certain class
of systems, so that a constant of motion for the aver-
aged system can be obtained [36]. That methodology
is utilized here, and was also employed in a recent two-
part paper describing an investigation of the same gen-
eral problem considered here, namely, the transient re-
sponse of the resonantly forced Duffing oscillator [21,
22]. The distinctions of the present results from those
in [21, 22] are: (i) the focus on the nonlinear overshoot
problem, which is not directly studied in [21, 22], and
(ii) the scaling of the problem such that the undamped
(damped) problem depends on one (two) parameter(s),
χ (and D). The outcome of the present analysis is a
very simple curve of the undamped (D = 0) system
overshoot versus χ , which provides a useful bound
for system with weak damping. Other work on tran-
sient dynamics of nonlinear oscillators includes appli-
cations of energy transfer and energy pumping in sys-
tems with strong nonlinearities [16, 28, 38, 39], and

works on a variety of other, tangentially related, top-
ics [8, 11, 13, 17, 20, 24, 31].

The primary focus here is an analytical treatment
of the transient dynamics of the Duffing oscillator that
allows for predictions of the nonlinear overshoot. The
main result is a closed form expression for the over-
shoot for the case of zero damping when the sys-
tem starts with zero amplitude initial conditions. It
is shown that this undamped result provides a use-
ful, conservative bound for system overshoot; one that
is quite accurate for systems with light damping. The
analysis is aided by a convenient scaling of the posi-
tion and time such that the three system parameters,
namely the force magnitude, frequency detuning, and
nonlinearity, are combined into a single parameter χ .
The predictive result is compared against simulations
of the original nonlinear oscillator and the averaged
equations to demonstrate its accuracy.

2 The model, averaged equations, and scaling

The system of interest here is a single degree-of-
freedom oscillator with small damping, nonlinearity,
and harmonic excitation, driven near resonance, ex-
pressed as

x′′ + ω2
0x = ε

(
F sin(ωt + φ) − ξx3 − μx′), (1)

where ε is a small parameter. In order to apply the
method of averaging, we use the standard change of
coordinates,

x(t) = a(t) sin
(
ωt + ψ(t)

)
,

x′(t) = a(t)ω cos
(
ωt + ψ(t)

)
,

(2)

which will have slowly varying amplitude and phase
when ε � 1 and the forcing is near resonance, ω ≈ ωn.
Constraining the response of (1) to be in the form (2),
defining the frequency detuning as εσ = ω2 −ω2

0, and
averaging over one period of the excitation, results in
the following standard averaged equations:

r ′ = − ε

2ω

(
F sin(Φ) + μrω

)
, (3)

rΦ ′ = ε

2ω

(
3

4
ξr3 − F cos(Φ) − σr

)
, (4)

where r is the averaged amplitude and Φ = ϕ − φ

is the relative phase between the averaged oscillator
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phase ϕ and the phase of the forcing. In addition, since
the forcing phase φ is constant, we have replaced ϕ′
with Φ ′ in (4) for convenience in the subsequent anal-
ysis.

We reduce the number of system parameters by
scaling the dependent variable r and the independent
variable t as follows:

t =
(

4ω

εσ

)
τ, r = 2

(
F

σ

)
p, (5)

where it is assumed that εσ �= 0. Utilizing this scaling
in (3) and (4) results in the rescaled averaged equa-
tions,

dp

dτ
= − sin(Φ) − Dp, (6)

p
dΦ

dτ
= 4χp3 − cos(Φ) − 2p, (7)

where

χ = 3

2
ξ

(
F 2

σ 3

)
and D = 2

(
μω

σ

)
. (8)

Note that this scaling introduces a complication of the
results exactly at resonance, where σ = 0. However, it
will be shown that this is not a limitation for the over-
shoot problem since the results can be computed in the
limit σ → 0. Also, it is important to note that when
σ < 0 both position and time of the scaled system be-
come negative, since ε > 0 and ω > 0. In this case,
the system is solved in reverse time, which may lead
one to think the system amplitude response will grow
exponentially. However, the sign of the scaled damp-
ing coefficient depends on σ as well, such that solving
in reverse time will result in exponential decay, as ex-
pected. In addition, the results presented subsequently
are simplified by making use of the inherent symme-
try in the hardening vs. softening Duffing responses, in
such a manner that negative amplitude responses can
be ignored. However, it will be shown that this sym-
metry between softening vs. hardening Duffing oscil-
lators does not carry over to the phase response and,
therefore, we will need to consider the individual cases
for the phase response.

2.1 The steady-state response

The steady state response of the scaled system is ob-
tained by letting dp/dτ = 0 and dϕ/dτ = 0, which

results in the following equations for the steady state
amplitude p̄ and phase Φ̄ ,

(Dp̄)2 + (
4χp̄3 − 2p̄

)2 = 1, (9)

tan
(
Φ̄

) = −D

4χp̄2 − 2
. (10)

It is seen that this scaling has reduced the system pa-
rameter dependence of the steady state response from
four (ξ , F , σ , μ) to two (χ , D). In general, one
can solve (9) analytically to obtain six roots govern-
ing the steady state amplitude p̄ as a function of D

and χ . However, for plotting the steady state response,
we use only the three positive roots, since the other
three are symmetric with respect to p̄ = 0 and do not
provide any additional information about the steady
state amplitude. These roots are given explicitly in Ap-
pendix A. More specifically, the three ignored roots
are negative, which for σ < 0 lead to a positive r̄ (see
(5)) that match the positive roots for p̄ for σ > 0.
It is also important to note that there is a symmetry
in the steady state frequency responses of two Duff-
ing oscillators wherein one is hardening (ξ1) and the
other is softening (ξ2), such that ξ1 = −ξ2, with all
other parameters fixed. As seen by the definition of χ ,
the frequency response of these two systems are sym-
metric about σ = 0, provided the other parameters are
the same. When considering the steady state phase re-
sponse, this symmetry does not exist, that is, Φ̄1 �= Φ̄2

for σ1 = −σ2, as can be seen from (10), where the
steady state phase depends on the sign of σ through the
damping coefficient D. Therefore, in the scaled sys-
tem, for a given value of D, one distinct steady state
amplitude exists as χ is swept, an example of which
is shown in Fig. 1(a). However, the steady state phase
can take one of two forms, depending on the sign of D,
which is governed by σ ; these are shown in Figs. 1(b)
and (c). As expected, Figs. 1(a), (b), and (c) exhibit
the familiar bistable region over which three steady
state responses exist for a single value of χ , two of
which are stable. We refer to these in terms of “the
lower branch” (labeled as A), “the middle branch” (la-
beled as B), and “the upper branch” (labeled as C),
designated by their relative amplitudes. The bistable
region is given by χ�

1 < χ < χ�
2 , which depends on

the damping coefficient D. Explicit formulas for χ�
1

and χ�
2 are given in Appendix A. For the case of zero

damping (D = 0), the results simplify to χ�
1 = 0 and

χ�
2 = 8/27.
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Fig. 1 Steady-state response of the scaled averaged system as a function of χ . (a) Steady-state amplitude for |D| = 0.30; (b) steady-
state phase for D = 0.30, relevant for σ > 0; (c) steady-state phase for D = −0.30, relevant for σ < 0

Fig. 2 Sample phase portraits and transient time traces for three
values of χ , with D = 0.30. (a) Phase portrait for χ = −1 < χ�

1 ;
(b) phase portrait for χ = 0.10 ∈ (χ�

1 , χ�
2 ); (c) phase portrait for

χ = 1 > χ�
2 ; (d) transient time response for zero amplitude ini-

tial conditions IC#1 for χ = −1; (e) transient time response for

χ = 0.10 and initial conditions IC#2; (f) transient time response
for χ = 0.10 and initial conditions IC#3. Note that the initial
amplitudes p0 are the same for IC#2 and IC#3, but the different
initial phases Φ0 result in different steady state outcomes

2.2 The averaged equation phase portraits

The (p, Φ) phase portraits of the averaged equations
are very useful for analyzing the transient trajectories
of the Duffing equation [21, 22], and the remainder of
the paper will make use of this information. In fact, for
many of the results, we will focus on the undamped
case, D = 0, since this case yields analytical solu-
tions that provide a good approximation, and a useful
bound, for lightly damped systems.

Figures 2(a)–(c) show phase portraits of a lightly
damped system (D = 0.30) for three values of χ , dis-

playing the three topologically distinct cases.1 Atten-
dant sample transient time responses are shown in
Figs. 2(d)–(f) for the initial conditions (p0, Φ0) la-
beled as IC#1, IC#2, and IC#3. Figure 2(a) shows a
sample phase portrait for χ < χ�

1 . For this range of χ,

1Note that we have not shown the case when D �= 0 and χ ∈
(0, χ�

1 ), which is the case of the lower branch A existing alone.
However, as seen from Figs. 1(a)–(c), this case will be qualita-
tively similar to the case of χ < 0, which is shown in Fig. 2(a),
except that the equilibrium point C is replaced with equilib-
rium A. Also, note that this case will not exist for D = 0.
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only the upper branch (C) exists. Figure 2(d) depicts a
sample transient time response for this case with ini-
tial condition IC#1, specifically, with zero amplitude,
p0 = 0. Since p(τ) describes the amplitude envelope
of the oscillatory response with frequency near ω, the
oscillation in p demonstrates the beating nature of the
x response. Note that p and x both have a peak ampli-
tude given by ppeak , and that p decays to the steady
state amplitude p̄C of branch (C). The more interest-
ing phase portrait is for the bistable case, as shown in
Fig. 2(b), for a value of χ ∈ (χ�

1 , χ�
2 ). As depicted in

the time responses shown in Figs. 2(e) and (f), depend-
ing on the initial conditions (p0, Φ0), generic transient
trajectories approach either (A) or (C). The sample ini-
tial conditions shown have equal initial amplitudes and
different initial phases, as indicated by IC#2 and IC#3
in Fig. 2. As usual, the basins of attraction for these
two stable outcomes are separated by the stable man-
ifold of the saddle point (B). Lastly, Fig. 2(c) shows a
sample phase portrait for χ > χ�

2 , for which C is the
only possible steady state.

We now turn to an analysis that offers predictive
results for the peak of the transient response.

3 Percent overshoot for the undamped system

In this section, an analytical result for the percent over-
shoot for the undamped Duffing oscillator is derived.
In general, the percent overshoot of a system is defined
as

% Overshoot =
(

pmax − pss

pss

)
× 100, (11)

where pmax is the peak amplitude during a transient
response and pss is the resulting steady state ampli-
tude (given by one of the roots p̄). Our analysis fol-
lows in a general manner the methods presented in
[21, 22], adapted to focus on the overshoot question,
and expressed here in terms of χ . We begin by de-
riving an energy-like constant of motion for the un-
damped (D = 0) scaled averaged equations. This is
a fourth-order polynomial in p whose roots dictate
the important features of the transient response. These
roots are a function of the initial conditions (p0, Φ0),
the parameter χ , and the relative phase of the response
Φ . It will be shown that the peak amplitude of the re-
sponse occurs at a relative phase of either Φ = 0 or
Φ = π , so that the roots can be expressed in terms

of the initial conditions and χ . One feature of inter-
est will be the case where the transient response ap-
proaches the saddle point B for χ ∈ (χ�

1 , χ�
2 ), since

this will represent the basin boundary in the bistable
case.

3.1 Transient response amplitudes

The averaged equations (6) and (7) with D = 0 is con-
servative and has a constant of motion that can be
determined by combining (6) and (7) into a differen-
tial equation for p(Φ). Integrating this exact equation
leads to the following integral of motion:

−χp4 + p2 + p cos(Φ) = c1, (12)

where c1 is an arbitrary constant determined by the
initial conditions (p0,Φ0) and χ . Equation (12) al-
lows one to construct the phase portrait for the con-
servative averaged system in the usual manner: Given
initial conditions (p0,Φ0) one can obtain c1 and then
solve (12) for phase plane trajectories in the form
p(Φ) (or, simpler in this case Φ(p), since it has
only two branches). An example phase portrait is
shown in Fig. 3 for χ = 0.066 ∈ (χ�

1 , χ�
2 ), which is

an undamped version of the phase portrait shown in
Fig. 2(b).

In general, (12) will have four roots for p that can
be obtained exactly and will generate the level curves
shown in Fig. 3; these roots are presented in Ap-
pendix C. In order to generate the level curves shown
in Fig. 3, as well as the level curves when χ is outside
of the bistable region, one needs only three of the four
roots. Furthermore, it turns out that only two of these
roots involve trajectories that include the peak ampli-
tude about the steady state equilibria and, therefore,

Fig. 3 Phase plane plotted using level curves of (12) by varying
c1, for χ = 0.066 and D = 0
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the other two roots are ignored for the present study.
The two roots governing the transient trajectories of
interest are given in (23) and (24) in Appendix C.
Given a value of χ in the bistable region, and initial
conditions (p0,Φ0), the root p1 (23) will generate a
transient trajectory as a function of Φ about the steady
state equilibrium A. On the other hand, for any value
of χ and initial conditions (p0,Φ0), the root p2 (24)
will generate a transient trajectory as a function of Φ

about the steady state equilibrium C.
These results provide an analytical expression for

the percent overshoot of the undamped Duffing oscil-
lator. For χ in the bistable region, the peak amplitude
of transient trajectories approaching branch A (branch
C, respectively) can be determined by evaluating the
root p1 (p2, respectively) at Φ = π (Φ = 0, respec-
tively). Outside the bistable region, the transient peak
amplitude about the upper branch C can be determined
by evaluating root p2 at Φ = π when χ < χ�

1 = 0, and
at Φ = 0 for χ > χ�

2 = 8/27.2 Note that for a neg-
ative initial amplitude condition p0 < 0, correspond-
ing to σ < 0 according to (5), the determination of the
peak amplitude pmax is slightly modified, the details
for which are given in Appendix B.

To determine the percent overshoot, the steady state
amplitudes for A and C are also required. These can
be determined as a function of χ by solving (9) for p̄,
using the analytical expressions given in Appendix A
(15)–(16) evaluated at D = 0. From the peak and
steady state amplitudes, the percent overshoot can be
computed in an explicit form. This result is rather
cumbersome, due to the roots involved, and is there-
fore not given explicitly, but it is straightforward to
compute.

3.2 Basin separation trajectory

It is also of use to determine the location of the saddle
point B (see (17)), since this, along with the attendant
transient trajectories, determines basin boundaries for
steady-state fixed points A and C. This information is
useful if it is desired to have a system reach a par-
ticular steady state when operating in the bistable re-
gion.

2Although we have not shown the undamped portraits when χ

is outside the bistable region, the interested reader can refer to
the damped phase portraits shown in Figs. 2(a) and (c) to clarify
where Φ is evaluated.

To begin, we first derive the initial conditions that
will result in a transient trajectory on the stable or un-
stable manifolds of B when D = 0. This is done by
evaluating the initial conditions for (12) at the steady
state amplitude p0 = pB and phase Φ0 = π , resulting
in the following condition on (25),

c�
1(χ) = c1(χ,pB,π)

= 1

288χ3

(
4χ(3ν)2/3 + 1921/6δν1/3

(
9

2
ν1/3

− 32/3
)

+ 3χ2(16 − 18(3ν)1/3

+ 9(3ν)2/3)
)

, (13)

where

ν = δ
√

3 − 9χ2,

δ = χ3/2√27χ − 8,
(14)

for χ ∈ (0,8/27). One can now use c�
1 in the expres-

sions for p1 and p2 to generate stable and unstable
manifolds, as shown in Figs. 4(a)–(c). The trajectory
of particular interest is the stable manifold, which is
obtained from c�

1 in the expression for p1 (23).
In general, these undamped basin boundaries pro-

vide a good approximation for the basin boundaries of
the lightly damped system near B. These results can
be used as follows: Suppose that the steady state at A
is desired for all initial phases, then the maximum ini-
tial amplitude allowed is given by pcr = p1(χ,0, c�

1),
as indicated by the horizontal lines in Figs. 4(a) and
(b) for two different values of χ . Note that for χ ∈
(4/27,8/27), no such pcr exists, since at χ = 4/27
the homoclinic orbit to B changes character such that
all small amplitude initial conditions lie in the basin of
C, an example of which is shown in Fig. 4(c).

3.3 Numerical examples

In this section, two examples are shown to illustrate
the main overshoot results, and the benefits of in-
troducing the parameter χ . Although these exam-
ples consider only the case of zero initial amplitude
(p0 = 0, Φ0 ∈ [0,2π)), corresponding to c1 = 0, re-
sults for any initial conditions can be obtained by
varying c1. The first example compares the percent
overshoot for systems with three different sets of orig-
inal system parameters (F, ξ, σ ) that all yield the
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Fig. 4 Stable and unstable manifolds of B for three values of χ .
(a) χ = 0.02; (b) χ = 0.10; (c) χ = 0.20. (a) and (b) show lines
of constant amplitude pcr , which indicate the maximum ampli-
tude of initial conditions p0 such that the response will approach
the lower branch for all values of the initial phase Φ0. The topol-
ogy of the homoclinic orbit about A changes from (a), (b) to
that of (c) for χ > 4/27. It is seen that for χ ∈ (4/27,8/27),
small amplitude initial conditions will result in a large ampli-
tude steady state C, for all initial phases

same value of χ , and thus the same percent overshoot.
The second example shows how the percent overshoot
varies as a function of χ in the bistable region. Both
examples show the percent overshoot relative to the
lower branch A, since this is the resulting steady state
for p0 = 0 when χ < 4/27. However, in the second
example, for χ > 4/27 and χ < 0, the zero amplitude
initial conditions result in a percent overshoot relative
to C.

For the case of zero amplitude initial conditions
(c1 = 0) and zero damping (D = 0), the percent over-
shoot is a function of χ only. Figures 5(a)–(c) show
simulations of the original equation (1) for three dif-
ferent sets of system parameter values that each give
χ = 0.094. The overshoot is calculated using the ex-
plicit expressions for the peak and steady state am-
plitudes for response A in (11); these expressions are
(15), from Appendix A for the steady state amplitude,
and (23) evaluated at Φ = π for the peak amplitude,
from Appendix C. The result for χ = 0.094 is a pre-
dicted percent overshoot of 115.8%. This prediction is

Fig. 5 Numerical simulations of (1) for ε = 0.03 and ω = 2,
and three sets of system parameter values that yield χ = 0.094,
with a predicted overshoot of 115.8%. (a) F = 1/2, σ = 2,
ξ = 2, simulated percent overshoot = 116.6%; (b) F = 0.125,
σ = −1, ξ = −4, simulated percent overshoot = 115.3%;
(c) F = 0.177, σ = 1, ξ = 1, simulated percent overshoot =
116.1%

compared with the results from direct simulations of
(1), which are indicated in the figure caption, showing
the accuracy of the results. Note that the differences in
system parameters result in differences in the response
amplitudes and the transient beat frequencies, but the
percent overshoot is essentially identical in all three
cases, as predicted.

We now consider how the percent overshoot re-
sulting from zero amplitude initial conditions depends
on χ . The analytical results are shown in Fig. 6(a),
where the overshoot relative to branch C is shown



2616 R.J. Monroe, S.W. Shaw

by the gray curves and those relative to branch A are
shown by the black curve. Note that the percent over-
shoot for a linear undamped system is 100%, and there
is transition at χ = 0 from percent overshoot values
less than 100% to those larger than 100%. Due to the
nature of χ , this can be interpreted in various ways.
For example, the overshoot for a hardening system
(ξ > 0) driven below resonance (σ < 0) will be less
than 100% and it can go only to A, while that for
a softening system (ξ < 0) driven below resonance
(σ < 0) will be greater than 100% in its transition to A.
Note that the maximum possible overshoot is 173%,
for softening systems with χ just below χ∗ = 4/27.
The transition at χ∗ corresponds to the case when the
zero amplitude initial trajectory is on the stable man-
ifold of B. For χ > χ∗, zero amplitude initial con-
ditions result in transient trajectories headed toward
C, and in this case the percent overshoot is less than
100%, since the amplitude of C is significantly larger
than that of A. Lastly, note that as χ → ±∞ the per-
cent overshoot is asymptotic to the limiting value of
58.74%, which corresponds to the percent overshoot
at resonance, σ = 0, for branch (C).

Figure 6(b) shows a comparison of the analytical
results (shown in Fig. 6(a)) and simulations of both the
original Duffing equation (1) and the averaged equa-
tions (6) and (7), for the case of zero amplitude initial
conditions. These results demonstrate the accuracy of
the analytical method, and how it degrades as one in-
creases the value of ε.

4 Conclusions

We have derived an approximate analytical method for
predicting the overshoot for the transient response of
a weakly nonlinear Duffing oscillator that is harmon-
ically forced near resonance. The method makes use
of the system’s averaged equations, which yield an in-
tegral of motion in the undamped case, by which the
system parameters and initial conditions can be related
to the amplitude and phase of the system response.
The resulting equation for the amplitude is a fourth-
order polynomial, which can be solved as function
of the response phase, system parameters, and initial
conditions. This gives analytical expressions with pa-
rameter dependence for the amplitude response, with
useful information about the peak amplitude, and for
bistable systems, the ultimate steady state response

Fig. 6 (a) The analytical results for percent overshoot versus χ

for zero amplitude initial conditions. The percent overshoot is
computed relative to either the upper branch C, shown by the
solid gray curves, or the lower branch equilibria A, shown by
the solid black curve, depending on χ , as indicated in the inset.
At χ = 4/27, zero amplitude initial conditions results in a tra-
jectory on the stable manifold of B. When χ < 0 or χ > 4/27,
zero amplitude initial conditions results in transient trajectories
about equilibria C, as shown in Fig. 4(c). Note that the phase at
which (24) is evaluated to obtain pmax for the percent overshoot
is different for χ < 0 and χ > 4/27, as described in Sect. 3.1.
(b) Comparison of the analytical solution and simulations of
both the Duffing oscillator (1) and the averaged equations (6)
and (7) for the case of zero amplitude initial conditions and dif-
ferent values of ε. Parameter values used in the simulations are
F = 1/2, σ = 1.75, and ω = 2, and the nonlinearity ξ is varied
from −4 to 7 to sweep the χ domain shown. It is noted that the
percent overshoot is asymptotic to 58.74% as χ → ±∞ (i.e., as
one approaches resonance, σ → 0)

achieved. A unique scaling reduces the problem to two
parameters, χ , that combines the force magnitude F ,
the frequency detuning σ , and the nonlinearity ξ , and
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D, which involves damping. Thus, the undamped re-
sults, which provide a useful bound for the overshoot
in lightly damped systems, depend on a single param-
eter. Of course, the presence of damping will alter
these results. A correction for small D has been com-
puted, but is not shown here, as the payoff is small in
comparison with the extensive nature of the calcula-
tions [25]. It seems to be more efficient to simply ob-
tain the damped overshoot by simulating the damped
average equations. These results build on, and com-
plement, those of a recent similar study [21, 22], by
focusing on the prediction of overshoot and formulat-
ing the problem in a manner that reduces the number
of system parameters.

The results presented here are being used to pre-
dict overshoot for centrifugal pendulum vibration ab-
sorbers, which, in some applications, are activated
when suddenly subjected to near resonant excita-
tion [26, 34]. These absorbers must be designed to not
exceed specified amplitudes, even during startup, and
so transient predictions such as those derived here are
of great practical value. For the case of tautochronic
absorbers [6, 7, 33, 35], the system nonlinearities are
much more complicated than the cubic term in the
Duffing equation, yet we have shown that their aver-
aged equations are integrable in the undamped case,
so that similar predictive results can be achieved for
that system [26]. Furthermore, this percent overshoot

approach has also been applied to the case of paramet-
ric resonance and it has been found to produce simpler
formulas for the overshoot than those given here. In
fact, for the case of near zero amplitude initial con-
ditions (i.e., p0 ≈ 0) it is remarkably found that the
percent overshoot is simply 100(

√
2−1), and is there-

fore independent of the system parameters contained.
These results include experimental evidence of the
constant overshoot for near zero amplitude initial con-
ditions, as well as an outline for computing the over-
shoot for nonzero amplitude initial conditions [25].
These extensions suggest that the approach may be
quite general for weakly nonlinear systems of a more
general form, and quite possibly for classes of conser-
vative strongly nonlinear systems with periodic exci-
tation.
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Appendix A: Steady-state amplitudes

The steady state amplitudes for branch A, branch C,
and saddle branch B are given by three of the six pos-
sible roots to (9) when χ �= 0. The three roots are as
follows:

pA(χ,D) = 1√
3χ

√

1 + 1

8

(
1 + i

√
3
)(

3D2 − 4
)
λ−1/3 + 1

8

(
1 − i

√
3
)
λ1/3, (15)

pC(χ,D) = 1√
3χ

√

1 + 1

4

(
4 − 3D2

)
λ−1/3 + 1

4
λ1/3, (16)

pB(χ,D) = 1√
3χ

√

1 − 1

8

(
1 − i

√
3
)(

3D2 − 4
)
λ−1/3 − 1

8

(
1 + i

√
3
)
λ1/3, (17)

where

λ = 2
(
27χ − 4 − 9D2) + 3

√
3
√

D6 + 8D2
(
D2 + 2 − 9χ

) + 4χ(27χ − 8). (18)

The root pC is valid for all values of χ �= 0. The
roots pA and pB are valid in the bistable region χ ∈
(χ�

1 , χ�
2 ). This range is determined by the conditions

on χ for these roots to be real, specifically,

χ�
1 = 1

54

(
8 + 18D2 −

√(
4 − 3D2

)3
)
, (19)
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χ�
2 = 1

54

(
8 + 18D2 +

√(
4 − 3D2

)3
)
. (20)

For the undamped system results, roots are simply
evaluated at D = 0. The linear (ξ = 0, χ = 0) steady
state forced response steady is recovered from (9), and
is given by p̄ = 1√

4+D2
.

Appendix B: Transient response symmetry

Similar to the steady state amplitude response, the
transient amplitude response also possesses a symme-
try that allows one to use the derived results to capture
the case when p < 0, which arises when σ < 0 in the
rescaled system. To see this, substitute p = −k into
(12) to obtain

−χk4 + k2 − k cos(Φ) = c1, (21)

which, upon replacing Φ with Φ + π , one obtains

−χk4 + k2 + k cos(Φ) = c1, (22)

which is the same as (12). Therefore, the transient tra-
jectories for p < 0 are the same as those for p > 0
with a phase shift of Φ +π . The percent overshoot re-
sults for p0 < 0 are obtained by computing c1 using
initial conditions (|p0|, Φ0 + π ). The resulting c1 is
then used in the roots given in (23) and (24) to find the
peak amplitude pmax for the overshoot calculation.

Appendix C: Undamped transient response
amplitudes

Here, we give the full analytical results needed for
the percent overshoot calculation given in (11). The
percent overshoot calculation uses the peak transient
amplitude and the steady state amplitude for a given
χ and initial conditions (p0, Φ0). The two roots of the
transient equation (12) that contain the peak ampli-
tudes about steady states A and C, as explained in the
text, are given by,

p1(χ,Φ, c1) = 1

2
√

3χ

(√
2 + κ −

(
4 − κ + 6

√
3χ cos(Φ)√

2 + κ

)1/2)
, (23)

p2(χ,Φ, c1) = 1

2
√

3χ

(√
2 + κ +

(
4 − κ + 6

√
3χ cos(Φ)√

2 + κ

)1/2)
, (24)

where κ is

κ = β

(
2

α

)1/3

+
(

α

2

)1/3

,

and β and α are defined as follows:

β = 1 + 12c1χ,

α = γ +
√

γ 2 − 4β3,

γ = 9χ
(
3 cos2(Φ) + 8c1

)−2.

The constant c1 is determined by the initial conditions
(p0, Φ0) and χ , specifically,

c1(χ,p0,Φ0) = −χp4
0 + p2

0 + p0 cos(Φ0). (25)

The roots p1 and p2 give transient trajectories as a
function of the relative phase Φ , and for D = 0 the
peak occurs at Φ = 0 or Φ = π , depending on the sys-
tem parameters χ and the initial conditions (p0, Φ0).
With the transient amplitude roots given here and the
steady state amplitude roots given in Appendix A, one
can formulate the percent overshoot about equilibria A
and C by following the procedure given in Sect. 3.1.
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