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Abstract The basis for any model-based control of
dynamical systems is a numerically efficient formula-
tion of the motion equations, preferably expressed in
terms of a minimal set of independent coordinates. To
this end the coordinates of a constrained system are
commonly split into a set of dependent and indepen-
dent ones. The drawback of such coordinate partition-
ing is that the splitting is not globally valid since an
atlas of local charts is required to globally parameter-
ize the configuration space. Therefore different formu-
lations in redundant coordinates have been proposed.
They usually involve the inverse of the mass matrix
and are computationally rather complex. In this pa-
per an efficient formulation of the motion equations
in redundant coordinates is presented for general non-
holonomic systems that is valid in any regular config-
uration. This gives rise to a globally valid system of
redundant differential equations. It is tailored for solv-
ing the inverse dynamics problem, and an explicit in-
verse dynamics solution is presented for general full-
actuated systems. Moreover, the proposed formulation
gives rise to a non-redundant system of motion equa-
tions for non-redundantly full-actuated systems that do
not exhibit input singularities.
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1 Introduction

Let the configuration of the mechanical system be
represented by the coordinates qa, a = 1, . . . , n sum-
marized in q ∈ V

n, which is called the representing
point in V

n. The system’s energy is given by the La-
grangian L(q̇, q) = T (q̇, q) − U(q), T being the ki-
netic (co)energy1 and U the potential energy. Dissipa-
tive forces are omitted for simplicity but without loos-
ing generality. The system is subject to rg independent
geometric constraints gκ(q) = 0 and rv independent
completely non-holonomic constraints f λ

a(q)q̇a = 0,
where only scleronomic constraints are assumed (sum-
mation over repeated indices is assumed throughout).
They give rise to a system of r = rg + rv Pfaffian con-
straints

Ba1
a(q)q̇a = 0, |{a1}| = r (1)

1In this paper it is assumed that T is quadratic in q̇ , which covers
multibody systems and most classical electromechanical sys-
tems. Non-quadratic T lead to fundamental differences in the
control and the geometric interpretation of the system dynam-
ics (then the configuration space is no longer a Riemann but a
Finsler space) [18].

mailto:andreas-mueller@uni-due.de


2528 A. Müller

with coefficient matrix

B =
(

∂gκ

∂qa

f λ
a

)
.

Assuming ideal constraints the dynamics of a con-
trolled mechanical system is governed by the La-
grangian equations of first kind

d

dt

∂L

∂q̇a
− ∂L

∂qa
+ Ba1

aλa1 = Mi
a(q)ui, (2)

where ui, i = 1, . . . ,m are the control forces and M is
the n × m control matrix. Such control systems are
usually referred to as control-affine Euler–Lagrange
systems [34]. A good overview of different methods
for enforcing constraints in numerical formulations
can be found in [20].

With kinetic energy T (q̇, q) = 1
2 q̇T G(q)q̇ , given

in terms of the generalized mass matrix G, the La-
grangian motion equations can be written in matrix
form

G(q)q̈ + C(q̇, q)q̇ + Q(q) + BT (q)λ = Mu(t), (3)

where C(q̇, q)q̇ represents Coriolis and centrifugal
forces, and Q(q) are potential forces due to U(q).

Model-based control of constrained mechanical
systems requires computationally efficient formula-
tions of the governing equations of motions allowing
for real-time solution of the inverse dynamics prob-
lem. Formulating the motion equations in terms of
a minimal set of generalized coordinates is still the
method of choice for real-time applications. Now the
inverse dynamics problem is to determine the control
forces u for a given trajectory q(t) of the system, i.e.
input to the inverse dynamics is the state (q, q̇) and
its time derivative whereas the Lagrange multipliers
λ are not of interest. Various approaches have been
proposed to eliminate λ, and to reduce the number of
motion equations to the degree of freedom for systems
with holonomic and linear non-holonomic constraints
[3, 19, 21, 35, 39], and for non-linear non-holonomic
systems [17]. The numerical formulations of these ap-
proaches have been cultivated in several contributions
using coordinate partitioning methods [6, 11, 30, 33,
40] and pseudoinverse solutions [38].

The reduction of the number of equations, and the
elimination of Lagrange multipliers, requires selec-
tion of independent position and velocity coordinates.
More precisely, in the general case of non-holonomic

constraints, the generalized position and velocity coor-
dinates are partitioned separately. This is usually done
explicitly by coordinate partitioning methods or im-
plicitly by decomposing the constraint Jacobian in the
current configuration. Apparently the crucial point in
the coordinate partitioning method is the selection of a
proper set of independent coordinates. For most prac-
tical multibody systems there is no such selection that
is globally valid. To cope with this shortcoming multi-
body simulation codes using coordinate partitioning
are equipped with strategies to switch between differ-
ent sets of independent coordinates. However, since to
each particular selection corresponds one specific sys-
tem of motion equations, such a switching requires a
complete change of the dynamic model. Moreover, the
switching condition must be monitored numerically,
which adds computational burden to the code. On the
other hand a decomposition, e.g. using a singular value
decomposition (SVD), in every evaluation step is also
computationally very expensive.

Solving the inverse dynamics does not require re-
duction the number of equations. Moreover, the La-
grange multipliers can be eliminated without introduc-
tion of independent coordinates and without reducing
the number of equations. This formulation is still com-
putationally complex since it requires inversion of the
generalized mass matrix.

A projection method, in which the constrained mo-
tion equations are projected to the cotangent space of
the configuration space, was developed in [9], where
orthogonality is measured with respect to the general-
ized mass matrix. This projection does not reduce the
number of equations. It rather yields a redundant sys-
tem, which makes its application to forward dynamics
simulation difficult.

In this paper another formulation in terms of de-
pendent coordinates is presented that does not involve
inversion of the mass matrix. It is computationally ef-
ficient and tailored for the inverse dynamics. This in-
verse dynamics solution yields a singularity-free non-
redundant system of motion equations if the system
is non-redundantly actuated and does not exhibit in-
put singularities. Hence this formulation may also be
applied to the forward dynamics problem. A formula-
tion similar to that presented in this paper, which does
not involve the mass matrix in the projection, was pro-
posed in [1] where the forward dynamics problem was
addressed.

In Sect. 2 the minimal coordinate formulation is
recalled, and the coordinate partitioning method is
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briefly discussed. A formulation in terms of redundant
coordinates is presented in Sect. 3. The actual inverse
dynamics problem is addressed in Sect. 4, and differ-
ent actuation schemes are distinguished for complete-
ness. An explicit solution is presented for redundantly
full-actuated systems. The proposed formulation is ap-
plied in Sect. 5 to two simple non-holonomic systems
first. It is shown that the method can be used to de-
rive a minimal set of independent motion equations
for such nun-redundantly actuated mechanisms. Fur-
ther numerical results are presented for a 2-DOF re-
dundantly actuated parallel manipulator.

2 Motion equations in minimal coordinates

Not all q ∈ V
n are admissible configurations. The con-

figuration space (c-space) of the system is defined by
the geometric constraints:

V := {
q|gκ(q) = 0

}
. (4)

This variety is locally a smooth submanifold of V
n.

The motion of the system is represented by the motion
of its representing point q in this c-space. The local de-
gree of freedom (DOF) is δloc := dimV = n − rg—the
number of independent finite motions. If only geomet-
ric constraints are present, the δ-dimensional tangent
space to V at q , denoted TqV , reveals possible ve-
locities at q . The system dynamics would thus evolve
on the 2δloc-dimensional tangent bundle T V (the state
space). Since the system is subject to additional non-
holonomic constraints, the instantaneous motions, i.e.
the velocities, are further restricted. At any point q the
vector space of admissible velocities is

TqV := {
q̇|B(q)q̇a = 0

} ⊂ TqV . (5)

Its dimension is the differential DOF at q: δdiff :=
dimTqV = n − r < δloc = dimV —the number of
independent generalized velocities [22, 25]. Conse-
quently, the motion of the system evolves on the non-
holonomic tangent bundle T V of dimension δloc +
δdiff = 2δloc − rv ; a subvariety of T V .

Now the elimination of λ is achieved by project-
ing the motion equations (2) to the non-holonomic
tangent bundle. To this end a subset of δdiff gen-
eralized velocities, q̇a2 , is selected as local coordi-
nates on TqV . This induces the coordinate partition-
ing q̇ = (q̇a1, q̇a2),|{a2}| = δdiff. If the constraints (1)

are non-holonomic, this partitioning cannot be trans-
ferred to q , since then δloc > δdiff. Only for holonomic
systems qa2 would represent local coordinates on V .
The constraints (1) can now be written in matrix form,
denoting q̇1 = (q̇a1) and q̇2 = (q̇a2),

B1q̇1 + B2q̇2 = 0. (6)

Since q̇2 are locally valid independent velocity coor-
dinates, B1 is full rank r , and the constraints can be
resolved as

q̇a = Fa
a2 q̇

a2 (7)

where

F =
(−B−1

1 B2

I

)
(8)

is an orthogonal complement to B , i.e. BF ≡ 0. Hence
premultiplication of (3) with FT eliminates λ. Intro-
ducing (7) and q̈ = F q̈2 + Ḟ q̇2 into (3) yields

G(q)q̈2 + C(q̇, q)q̇2 + Q(q) = M(q)u(t) (9)

with

G := FT GF, C :=FT (CF + GḞ )

Q := FT Q, M := FT M.

This is a system of δdiff independent motion equations
without Lagrange multipliers that is often referred to
as the minimal coordinate formulation. Notice, how-
ever, that only the number of generalized velocities
and accelerations is reduced, but (9) involves all gener-
alized coordinates that must be determined according
to the geometric constraints. The equations (9) can be
traced back to the work of Voronets [39], at least, and
are a special kind of Maggi’s equations [21].

Remark 1 The computation of the orthogonal com-
plement (8) requires r2(n − r) multiplications, r(n −
r)(r − 1) additions, and the inversion of the dense
r × r matrix B1. The problematic step in this con-
struction is the actual selection of independent veloc-
ity coordinates. Since the c-space V is non-Euclidean,
any such choice is only locally valid in general. This
is a severe limitation of the formulation (9). More-
over, F becomes numerically ill-conditioned closed
to such parameter singularities. Coordinate partition-
ing methods have been introduced at the outset of
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computational multibody dynamics to tackle the in-
creasing complexity by reducing the size of the nu-
merical problem and eliminating the Lagrange mul-
tipliers [2, 14, 31, 33, 40]. The critical point is how
the independent coordinates are actually chosen. Ad-
vanced multibody simulation codes, using a coordi-
nate partitioning, are usually equipped with a strat-
egy for switching between different independent coor-
dinates. The latter requires monitoring the numerical
condition of F , which increases the numerical com-
plexity. Coordinate partitioning has been used in rela-
tive and absolute coordinate formulations [3], and also
in conjunction with the natural coordinates approach
[11, 13]. Currently, absolute or natural coordinates for-
mulation including Lagrange multipliers are preferred
over the minimal coordinates formulation (coordinate
partitioning), mainly because of the density of the sys-
tem matrices, but also due to the lack of a globally
valid coordinate partitioning. Also the augmented La-
grangian formulation [5], which needs no minimal co-
ordinates, is deemed more robust and efficient for for-
ward dynamics simulation. Nevertheless formulations
without Lagrange multipliers are desirable for use in
model-based control. Further methods to reduce the
constraint violation during numerical time integration
have been the subject of intensive research [4, 6, 37].

Remark 2 Interestingly the equations (9) are seeing a
renaissance in analytical mechanics [8] and for model-
based control [7]. They can also be derived via a con-
strained variational principle. Inserting (7) into the La-
grangian yields the so-called constrained Lagrangian

L(q, q̇2) := L(q,F q̇2). (10)

The equations of motion can then be expressed as the
(Voronets) equations

d

dt

∂L

∂q̇a2
− ∂L

∂qa2
+ ∂L

∂q̇a1
A

a1
b2a2

q̇b2= M
i

a2
ui (11)

with ∂
∂qa2 = Fa

a2
∂

∂qa , where the terms

A
a1
b2a2

= Fc
a2

∂

∂qc
F a1

b2 − Fc
b2

∂

∂qc
F a1

a2

= ∂

∂qa2
Fa1

b2−
∂

∂qb2
Fa1

a2

+ Fc1
a2

∂

∂qc1
Fa1

b2 − Fc1
b2

∂

∂qc1
Fa1

a2 (12)

indicate that the constraints (1) are non-holonomic,
since A

a1
b2a2

≡ 0 if and only if (1) is holonomic. For
this reason A has been called the object of non-
holonomy [22]. It appears as a central object in
non-holonomic mechanics. Expressing (11) explic-
itly in matrix form, with kinetic the energy T (q̇, q) =
1
2 q̇T G(q)q̇ , gives (9). The terms (12) can also be ex-
pressed as Lie-bracket of the vector fields Fa2 on V :

[Fa2 ,F b2 ]a = Fc
a2

∂

∂qc
F a

b2 − Fc
b2

∂

∂qc
F a

a2

= A
a1
b2a2

δa
a1

.

In the non-holonomic setting, writing the constraints
(1) in the form

q̇1 + B−1
1 B2q̇2 = 0, (13)

B−1
1 B2 can be interpreted as Ehresmann connection

on the non-holonomic tangent bundle T V , and A is
the corresponding curvature [7, 8].

Remark 3 (Non-ideal constraints) The generalized
constraint forces K := Ba1

aλa1 in (3) are only cor-
rect if the constraints are ideal, i.e. perform no work
and the constraint reactions can be modeled by the
Lagrange multipliers. In case of non-ideal constraints,
represented by some constraint forces K on the left-
hand side of (3), the non-vanishing term K := FT K ,
which embodies the working constraint forces, would
remain in the Voronets equations (9). Many practical
systems are subject to non-ideal constraints with gen-
eral K(q, q̇, q̈). For instance frictional contact can be
modeled as K = Ba1

aλa1 + Kf (q̇, λ) where Kf may
be non-linear in its arguments. Then λ cannot be elim-
inated from (3) by projection. Moreover K(q, q̇, q̈)

may be non-linear in its arguments so that (9) is an
implicit system in q̈ .

3 Projected motion equations in redundant
coordinates

It is known that the Lagrange multipliers λ can be
eliminated from (3) without reducing the number of
equations [31, 32]. This proceeds by solving (3) for
q̈ , inserting this in Bq̈ + Ḃq̇ = 0, and solving for λ,
leading to

λ = (
BGBT

)−1(
Ḃq̇ + BG−1(Mu − Cq̇ − Q)

)
. (14)
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Replacing the Lagrange multipliers in (3) yields

Gq̈ + Cq̇ + Q + BT
(
BGBT

)−1

×(
Ḃq̇ + BG−1(Mu − Cq̇ − Q)

) = Mu. (15)

These are n motion equations in the n generalized co-
ordinates. This formulation is applicable for the for-
ward dynamics, as it can be evaluated in an admissible
state (q, q̇) ∈ T V , and be solved for the generalized
accelerations q̈ . It does not yield a simple solution for
the control forces u, however. From a computational
point of view (15) is rather expensive due to the ap-
pearance of the inverse mass matrix.

Equations (15) are clearly redundant due to the im-
posed constraints. Using Ḃq̇ = −Bq̈ , the expression
for the Lagrange multipliers (14) can be rewritten as

λ = −(
B+

G

)T
(Gq̈ + Cq̇ + Q − Mu), (16)

where

B+
G := G−1BT

(
BG−1BT

)−1 (17)

is the weighted right pseudoinverse of B with respect
to the metric G, i.e. BB+

G = Ir . The pseudoinverse al-
lows for two interpretations.

1. The right pseudoinverse gives a solution q̈ of Bq̈ +
Ḃq̇ = 0 such that the Gibbs–Appell function S =
1
2 q̈T Gq̈ is minimized.

2. (B+
G)T is also the left pseudoinverse of BT that

yields a solution λ of (3) such that J = 1
2‖Gq̈ +

Cq̇ + BT λ + Q − Mu‖ is minimized. Clearly, if
the state and the applied forces Mu are compatible,
then J = 0, which is the desired case (compare to
Gauss’ principle of least constraints). Otherwise, if
J �= 0, i.e. the system is not in a dynamic equilib-
rium, λ is such that the error in the dynamic balance
(the generalized constraint forces) is minimized.

Using the symmetry of G, (15) can be rewritten as

NT
B,G(Gq̈ + Cq̇ + Q − Mu) = 0, (18)

where

NB,G := In − B+
GB (19)

is a projector to the null-space (kernel) of B since
BNB,G ≡ 0. The null-space of B has dimension
rankNB,G = n − rankB = n − r = δdiff. Thus only

δdiff equations in (18) are independent. This is clear
since substitution of the reactions λ introduces the
dependencies according to the constraints. One could
stop at this point since (18) provides motion equations
free of Lagrange multipliers, but from a computational
point of view the pseudoinverse (17) is rather expen-
sive since it involves the inverse of the mass matrix G.

Remark 4 Udwadia and Kalaba [38] presented a for-
mulation, without Lagrange multipliers, in terms of n

coordinates. This formulation, making use of the prin-

cipal square root B
1
2 , is

Gq̈ = f + G
1
2 D+(

b − BG−1f
)

(20)

with D := G
1
2 B , b := −Ḃq̇ , and f := Mu−Cq̇ −Q.

Because of G
1
2 D+ = BT (BGBT )−1 = GB+

G this is
identical to (15) and thus equivalent to (18). Its ac-

tual evaluation requires determination of G
1
2 and G−1,

which is numerically even more expensive than (18).

The projector to the null-space of B is not unique,
and moreover any positive definite matrix can be used
as weight in (19). In particular with the identity ma-
trix as weight, NB = NT

B = In − B+B , where B+ :=
BT (BBT )−1. Therewith the final form of the pro-
jected motion equations is

NB(Gq̈ + Cq̇ + Q) = M̃u (21)

with the n × m control matrix M̃ := NBM .
In contrast to (9) the projected equations do not re-

quire explicit selection of independent generalized ve-
locities. However, (18), respectively, (21) is a redun-
dant system of equations and not directly applicable to
the forward dynamics simulation. Nevertheless if M̃

is full rank on V (21) may be transformed to a sys-
tem with regular coefficient matrix as shown for the
examples in Sects. 5.1 and 5.2.

Remark 5 A similar formulation was derived by
Aghili [1]. In that publication a projected form of the
motion equations was derived that can be written in
the form

Gcq̈ = NBf − GṄBq̇, (22)

where Gc := G + NBG − GNB , and f := M̃u −
Cq̇ − Q. Since Gc is positive definite and symmet-
ric (22) is directly applicable to the forward dynamics
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simulation. It requires the time derivative of the null-
space projector, however.

Remark 6 The evaluation of the null-space projector
NB requires rn(n+ 2r) multiplications, n2r + 2r2n−
rn− r2 additions, and the inversion of the r × r matrix
BBT . The latter is always regular, as long as the sys-
tem does not encounter c-space singularities, where V

is not a smooth manifold.

Remark 7 The right pseudoinverse B+ exists only
if B has full rank r . The independence of the con-
straints (1) is not always guaranteed. In case of redun-
dant constraints B+ is the generalized inverse deter-
mined, e.g. via a SVD. A major source of redundant
constraints are permanently redundant cut-joint con-
straints in MBS with kinematic loops that have been
addressed in [23, 27, 36, 41].

Remark 8 Taking B+ is a purely algebraic operation
that does not respect the physical units, unlike B+

G .
Hence the projector and (21) are generally not con-
sistent in terms of physical units, unlike (9). From a
numerical point of view this aspect may only be rele-
vant when the equations involve elements with differ-
ent scales.

4 Inverse dynamics in redundant coordinates

4.1 The control problem

The inverse dynamics problem is to solve the mo-
tion equations for the control forces u, given a desired
trajectory q(t). Depending on the number of control
forces the solution may not be unique. On the other
hand the system dynamics may by unaffected by some
of the control forces. To be precise different actuation
schemes must be distinguished. W.l.o.g. local coordi-
nates can be used and the control system be formulated
upon (9).

The constrained mechanical system represents a
control-affine control system

ẋ = f (x) +
m∑

i=1

gi(x)ui (23)

on the state space T V with state vector x := (q, q̇),
where

f :=
(

F q̇2

−FG
−1(

Cq̇2 + Q
) + Ḟ q̇2

)
(24)

is the drift vector field, and the columns gi, i =
1, . . . ,m of

g :=
(

0

FG
−1

M

)
(25)

are the control vector fields that determine how the
control forces affect the system’s state. For non-
holonomic systems accessibility and controllability
must be addressed separately for position and state
[10]. The latter describe the effect of the control forces
over a finite period of time. The actuation on the other
hand determines the immediate effect of control forces
in a given state of the PKM. Apparently the degree of
actuation has to do with the number of independent
control vector fields, but also with the vector space
spanned by gi .

Now the degree of actuation (DOA) can be defined
as the number of independent input vector fields in the
control system (23). With regular G and F , the DOA
is

α(q) := rankM(q). (26)

If α(q) < δdiff, the system is called underactuated, and
if α(q) = δdiff, it is called full-actuated at q . The sys-
tem is called redundantly actuated at q , if m−α(q) >

0 and non-redundantly actuated at q , if m = α(q). Ap-
parently a system can be redundantly underactuated.
Notice further that a non-holonomically constrained
system can be redundantly actuated even if the num-
ber of control forces equals the local DOF since δloc >

δdiff.
Actuation is a pointwise property in contrast to con-

trollability, which is a local property. Configurations q

where the DOA changes, i.e. when α is not constant
in a neighborhood of q , are called input singularities
[25, 42].

4.2 Inverse dynamics of full-actuated systems

Equations (21) are tailored for the inverse dynamics as
they do not involve Lagrange multipliers (like the min-
imal coordinate formulation (9)), and they are valid in
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all regular configurations (unlike (9)) since B+, and
thus the null-space projector, exists along any regular
trajectory. Their advantage over the formulation (15)
and (20) is that only a single matrix must be inverted
in order to solve for u. The inverse dynamics solution
for u is

u = M̃+NB

(
G(q)q̈ + C(q, q̇)q̇ + Q(q, q̇, t)

)
. (27)

The crucial final step is to express the pseudoinverse
of M̃ explicitly taking into account the properties of
the projected control matrix. The rank of M̃ depends
on the DOA, but it cannot exceed δdiff. Assuming full
actuation, then m ≥ δdiff, and M̃ has rank δdiff, which
may only fail at input singularities. If δdiff = m (non-
redundant actuation), M̃+ = (M̃T M̃)−1M̃T is simply
the left pseudoinverse. It remains to treat the situation
when m > δdiff.

M̃ is a n × m matrix with rank δdiff ≤ m < n.
Now for any matrix exists a pseudoinverse. Its actual
computation is numerically expensive if the standard
SVD procedure is applied. However, the assumption
that the system is full-actuated, i.e. rank M̃ = δdiff, im-
plies that there is always a full rank n × δdiff subma-
trix M̃1 such that the control matrix can be partitioned
as M̃ = (M̃1, M̃2) with n × (m − δdiff) matrix M̃2. It
is shown in [26] that the pseudoinverse is then deter-
mined by

M̃+ =
(

M̃+
1

(
In − M̃2

(
Im−δ + RT R

)−1
RT

1 M̃+
1

)(
Im−δ + RT R

)−1
RT M̃+

1

)

(28)

abbreviating R = M̃+
1 M̃2, and M̃+

1 = (M̃T
1 M̃1)

−1M̃T
1 .

In summary in the formulation (21) the control ma-
trix M̃ is partitioned instead of the set of the general-
ized velocity coordinates. This is computationally ad-
vantageous since the motion equations are unaltered
and not affected by the lack of a globally valid co-
ordinate partitioning. That is, instead of monitoring
the conditioning of the orthogonal complement (7) (to
detect switching points for independent velocity co-
ordinates q̇2) the submatrix M̃1 is considered and M̃

is repartitioned. The left-hand side of (21) is globally
valid in all configurations, except at c-space singulari-
ties where the rank of B drops.

Remark 9 In (21) the dynamic balance (Lagrange
equations) is projected to TqV

∗
and the q̇ and q̈ are

assumed to satisfy the constraints. If this is not guar-
antied, e.g. when using measured values q0(t) that
may not evolve in T V , the velocity q̇0 must be pro-
jected to TqV via q̇ = NBq̇0, and the accelerations via
q̇ = NBq̈0 + ṄBq̇0. This leads to

G̃(q)q̈ + C̃(q̇, q)q̇ + Q̃(q) = M̃(q)u(t) (29)

with

G̃ := NT
B GNB, C̃ := NT

B

(
CNB + GṄB

)
Q̃ := NT

B Q. (30)

This is formally similar to (9), but (29) is a sys-
tem of n equations of which only δdiff are indepen-
dent. The time derivative is readily found to be ṄB =
−(B+ḂNB) − (B+ḂNB)T , which is obviously sym-
metric.

Remark 10 If rank M = δdiff = m for all q ∈ V , i.e.
there are no input singularities, then (27) is a system
of δdiff independent equations governing the system’s
dynamics. Clearly if the system’s motion is globally
uniquely determined by the actuator motion, the actua-
tor coordinates represent globally valid minimal coor-
dinates. The latter are not always contained in q , how-
ever. The formulation provides thus a method for de-
riving globally valid motion equations even if no glob-
ally valid coordinate partitioning of q exists but the
motion is globally determined be the actuator coordi-
nates. This corresponds to a projection to the cotan-
gent bundle of the actuator coordinate manifold (Ref.
Sects. 5.1 and 5.2).

In particular if the actuator coordinates are included
in q , it can be split as q = (qp, qa), with qp and qa

being the vector of passive and actuated coordinates,
respectively. Then qa represent globally valid (possi-
bly dependent) parameters, and M = ( 0

Im

)
. Then the

motion equations can be formulated in terms of qa as
presented in [28]. As special case, when m = δdiff, this
leads to the minimal coordinate formulation (9) with
q2 := qa.

5 Examples and application

5.1 Actuated skate

Figure 1 shows a simplified model of an actuated
skate. For illustration purposes the skate is only al-
lowed to move on a horizontal plane without tilting
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Fig. 1 Simple model of an actuated skate

and rolling. The configuration is parameterized with
q = (ϕ, x, y) where x, y describe the position of the
contact point, and ϕ the rotation angle about the verti-
cal axis through the contact point. The body is actuated
by the drive force K in direction of motion and the
steering torque T about the vertical axis. The skate is
subject to rv = 1 non-holonomic knife edge constraint
ẋ sinϕ − ẏ cosϕ = 0, with corresponding coefficient
matrix in (1)

B = (0 sinϕ − cosϕ ). (31)

There are no position constraints (rg = 0), hence the
system has DOF δloc = 3 and δdiff = 2. Since there
are m = δdiff generalized actuation forces the system
is non-redundantly full-actuated.

Denote the mass of the skate with ms , and with Θs

the inertia moment about the vertical axis through the
contact point. Then the three equations of motion of
the skate are

Θsϕ̈ = T

msẍ − msẏϕ̇ + λ1 sinϕ = K cosϕ (32)

msÿ + msẋϕ̇ − λ2 cosϕ = K sinϕ

with Lagrange multipliers λ1, λ2. Written in the form
(3) the control matrix is

M =
⎛
⎝1 0

0 cosϕ

0 sinϕ

⎞
⎠ . (33)

The inverse dynamics problem consists in finding the
drive force K and steering torque T for a given trajec-
tory.

The pseudoinverse of B is B+ ≡ BT , and the null-
space projector

NB =
⎛
⎝1 0 0

0 cos2 ϕ sinϕ cosϕ

0 sinϕ cosϕ sin2 ϕ

⎞
⎠ . (34)

The projector has constant rank 2. The projected con-
trol matrix is M̃ = NBM = M , and the projected sys-
tem (21) of 2 independent equations is

⎛
⎝ Θϕ̈

ms cosϕ(cosϕ(ẍ − ẏϕ̇) + sinϕ(ÿ + ẋϕ̇))

ms sinϕ(cosϕ(ẍ − ẏϕ̇) + sinϕ(ÿ + ẋϕ̇))

⎞
⎠

= M̃

(
T

K

)
. (35)

This is a globally valid system of 3 independent mo-
tion equations. Since rank M̃ = δdiff = m = 2 the pseu-
doinverse of M̃ is

M̃+ = (
M̃T M̃

)−1
M̃T =

(
1 0 0
0 cosϕ sinϕ

)
(36)

and the inverse dynamics solution follows by premul-
tiplication of (35) with M̃+

(
T

F

)
=

(
Θϕ̈

ms(cosϕ(ẍ − ẏϕ̇) + sinϕ(ÿ + ẋϕ̇))

)
.

(37)

This is an everywhere regular system of two motion
equations. Due to the non-redundant actuation (m =
δdiff) and the absence of input singularities (always
rank M̃ = δdiff) they represent a set of independent
equations governing the dynamics. That is, they are
equally applicable to solve the forward and inverse dy-
namics problem (remark 10). In fact, the transforma-
tion M̃+NB corresponds to a projection to the mani-
fold of actuator coordinates (the convective tangential
coordinate along the forward motion and the steering
angle). This would actually represent globally valid
coordinates on T V , and the described method is a way
to make use of this fact without explicit reference to
these coordinates.

For comparison consider the minimal coordinate
formulation using independent velocities q̇2 = (ϕ̇, ẋ).
Then, with q̇ = (ϕ̇, ẋ, ẏ) the orthogonal complement
(8) is

F =
⎛
⎝1 0

0 1
0 tanϕ

⎞
⎠ . (38)

Clearly this is not valid for ϕ = 1
2kπ, k ∈ Z. The same

would be observed at ϕ = kπ if ẋ is replaced by ẏ.
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Fig. 2 Simple model of a car. Kf is the driving force at the
front wheels, and Kr is that at the rear wheels

5.2 Front driven car

The second example is the simplified car model in
Fig. 2 consisting of the chassis body (including rear
wheels) and the front wheelset. The two bodies are
connected by a revolute joint. The front wheels gen-
erate a traction force Kf in rolling direction of the
wheels (Kr is zero when front driven). For simplicity
the wheels are not considered explicitly, and the kine-
matic rolling condition is replaced by sliding condi-
tion. The car is thus actuated by the drive force K and
the steering torque T . Restricted to planar motions the
system has n = 4 coordinates q = (x, y,ϑ,ϕ) where
x, y are position coordinates of the point P1 on the rear
axis. The system is subject to the two non-holonomic
edge constraints

sϑ ẋ − cϑ ẏ = 0

sϑ+ϕẋ − cϑ+ϕẏ − Lcϕϑ̇ = 0 (39)

where sa = sina and ca = cosa. They can be written
as (1) with

B =
(

sϑ −cϑ 0 0
sϑ+ϕ −cϑ+ϕ −Lcϕ 0

)
. (40)

This matrix has always full rank 2 so that δdiff = 2.
There are no geometric constraints. The problem of
parameterization of the motion in terms of indepen-
dent coordinates was discussed in [12] in context of
manipulator control.

Denoting with m1 and m2 the mass of chassis and
front wheelset, respectively, with Θ1 the inertia mo-
ment of the chassis about the point P1, and with Θ2

that of the wheelset about P2. The equations of mo-

tion are in matrix form (3)⎛
⎜⎜⎝

m1 + m2 0 −Lm2sϑ 0
0 m1 + m2 Lm2cϑ 0

−Lm2sϑ Lm2cϑ L2m2 + Θ1 0
0 0 0 Θ2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ẍ1

ÿ1

ϑ̈

ϕ̈

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0 0 −Lm2cϑ ϑ̇ 0
0 0 −Lm2sϑ ϑ̇ 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ẋ1

ẏ1

ϑ̇

ϕ̇

⎞
⎟⎟⎠ + BT λ = Mu

(41)

with λ = (λ1, λ2). The control matrix for the front
driven car is

M =

⎛
⎜⎜⎝

cϑ+ϕ 0
sϑ+ϕ 0
Lsϕ 0

0 1

⎞
⎟⎟⎠ , (42)

and u = (Kf ,T ) comprises the traction force and
steering torque. The car is non-redundantly full-
actuated (δdiff = m). The pseudoinverse B+ = BT ×
(BBT )−1 exists for all q , and the null-space projector
to B is

NB = 1

a

⎛
⎜⎜⎝

2L2c2
ϑc2

ϕ L2c2
ϕs2ϑ Lcϑs2ϕ 0

L2c2
ϕs2ϑ 2L2c2

ϕs2
ϑ Lsϑs2ϕ 0

Lcϑs2ϕ Lsϑs2ϕ 2s2
ϕ 0

0 0 0 a

⎞
⎟⎟⎠ (43)

with a = L2 + (L2 − 1)c2φ + 1. NB has constant
rank δdiff = m = 2. Hence (21) is a globally valid sys-
tem of n = 4 equations of which δdiff are indepen-
dent. The pseudoinverse of the full rank n × m matrix
M̃ = NBM is

M̃+ =
(

cϑcϕ sϑcϕ sϕ/L 0
0 0 0 1

)
(44)

which has constant rank 2. Premultiplication of (41)
with M̃+ yields a system of two independent globally
valid motion equations (27).

In the minimal coordinate formulation (9) either
q̇2 = (ẋ, ϕ̇) or q̇2 = (ẏ, ϕ̇) could be used as indepen-
dent coordinates. In the first case (8) is

F =

⎛
⎜⎜⎝

1 0
− tanϑ 0

− sin(ϑ+ϕ)
L cosϕ

cos(ϑ+ϕ) tanϑ
L cosϕ

0 1

⎞
⎟⎟⎠ . (45)



2536 A. Müller

For ϑ = k
2π and ϕ = k

2π this F is not defined. For
the second choice of q̇2 this happens at ϑ = k

k
π and

ϕ = k
2π . Thus there is no globally valid partitioning of

q̇ , and the system (9) exhibits parameterization singu-
larities that have no physical significance.

5.3 Rear driven car

The above car equipped with a rear drive can be mod-
eled by a drive forces Kr perpendicular to the rear axle
as in Fig. 2 (now Kf is zero). The corresponding con-
trol matrix is

M =

⎛
⎜⎜⎝

cϑ 0
sϑ 0
0 0
0 1

⎞
⎟⎟⎠ (46)

and u = (Kr, T ). Now the right pseudoinverse of M̃ =
NBM is

M̃+ =
(

cosϑ sinϑ tanϕ/L 0
0 0 0 1

)
. (47)

This pseudoinverse does not exist at ϕ = k
2π , which

happens when the steering wheels are perpendicular
to the direction of forward motion dictated by the con-
straints of the rear wheels. These configurations are
the input singularities of the rear driven car, i.e. they
are observable in reality. Now the model cannot be re-
duced to a globally valid system of two equations by
premultiplication with M̃+. Yet the motion equations
(41) are valid independently of such singularities and
globally governs the dynamics of a system with input
singularities.

5.4 Inverse dynamics of redundantly full-actuated
parallel manipulators

Parallel kinematics machine (PKM) form a large class
holonomically constrained mechanical control sys-
tems. A major problem of PKM is the abundance
of input singularities within the workspace. Redun-
dant actuation has been proposed to tackle this phe-
nomenon [24]. A redundantly actuated PKM (RA-
PKM) with DOF δ = δloc = δdiff is equipped with
m > δ redundant actuators. The benefit is clear by not-
ing that if a non-redundantly actuated PKM, controlled
by δ actuators, would exhibit an input singularity, one
of the m − δ redundant actuators of the RA-PKM can

Fig. 3 Multibody model of the planar 2RRR/RR RA-PKM

replace those that are instantaneously not influencing
the PKM motion.

A PKM is a holonomically constrained system, and
its motion equations are naturally expressed in terms
of actuator coordinates as they are measurable. In the
minimal coordinate formulation δ out of the m ac-
tuator coordinates are selected as independent coor-
dinates. Then clearly these minimal coordinates fail
in input singularities of the non-redundantly actuated
PKM with these δ actuators. As an example consider
the planar RA-PKM in Fig. 3. Details of this proto-
type and its real-time control are reported in [16]. It
has the DOF δ = 2, and could be controlled by actu-
ating two of the base revolute joints. This would lead
to the input singularities shown in Fig. 4. Figure 4(a)
shows the input singularities when joints 1 and 2 are
actuated and the end-effector is controlled along a cir-
cular path. They occur whenever the two middle links
are parallel. In these configurations the motion orthog-
onal to the middle links cannot be controlled by the
two joints, thus the motion equations (9) expressed in
terms of these two joint angles are not feasible. Clearly
this can be avoided using the coordinates of joint 1
and 3 instead. Then, however, the configurations in
Fig. 4(b) are singular. Thanks to the redundant actu-
ation the RA-PKM does not possess these input sin-
gularities, and there is always a local parameterization
in terms of δ actuator coordinates. However, to cover
the entire motion range of the RA-PKM it is necessary
to switch between different minimal (actuator) coor-
dinates as proposed in [15]. The redundant formula-
tion (21), respectively, (29) does not need local coor-
dinates.
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Fig. 4 Different input
singularities if the
2RR/RRR PKM is
non-redundantly actuated.
The mechanism shown in
red color is the equivalent
non-redundantly actuated
mechanisms being
instantaneously in an input
singularity

Fig. 5 Actuator trajectories
for the circular path in
Fig. 4

For illustration the PKM is steered along a circular
end-effector (EE) path as shown in Fig. 4. The cor-
responding actuator trajectories are shown in Fig. 5.
If the motion equations (9) are expressed in terms of
the joint angles of the first and second drive, with q1

and q2, respectively, as independent generalized co-
ordinates q2 = (q1, q2), the model is not valid at the
poses in Fig. 4(a) (and any pose with the middle links
aligned parallel) where its configuration cannot be de-
termined uniquely by q1 and q2. In these configura-
tions q1, q2 fail as minimal coordinates, and matrix
B1 becomes singular so that the orthogonal comple-
ment F in (8) does not exists. Then the actuator forces

u deduced from (9) tend to infinity—an artifact due to
the minimal coordinate model.

Application of (27) together with (28) requires to
monitor the numerical conditioning of the 2 × 2 ma-
trix M̃1M̃

T
1 , which is easily implemented. δ = 2 in-

dependent coordinates, and the corresponding sub-
matrix M̃1, is selected from the m = 3 actuator co-
ordinates. Only the combinations q

(1)
2 = (q1, q2),

q
(2)
2 = (q1, q3) and q

(3)
2 = (q2, q3) are considered.

Figure 6 shows the determinant for different choices
of independent coordinates when tracing the circular
EE path. For each selection the determinant becomes
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Fig. 6 Determinant of
M̃T

1 M̃1 for different
selections of independent
coordinates q2. The points
� indicate the singularities
of the respective
parameterization

Fig. 7 Actuator torques
obtained from the inverse
dynamics (27) when tracing
the circular EE path in
Fig. 4

zero in the two configurations where the equivalent
non-redundantly actuated PKM passes an input singu-
larity. As a simple criterion, whenever the determinant
of M̃1 drops below a specified threshold ε another
combination with maximum determinant is selected.
The motion starts with q2 := (q2, q3), as shown in
Fig. 6.

The selection of minimal coordinates is only nec-
essary for the pseudoinverse of M̃ . Equations (21) are
not affected and globally valid. The control torques
u1, u1, and u3 for the circular EE-trajectory calculated
with (27) are smooth as shown in Fig. 7.

The presented inverse dynamics formulation can
directly be incorporated in standard model-based con-
trol schemes such as computed torque and augmented

PD controllers [29]. Crucial for the latter is the skew
symmetry of ˙̃G − 2C̃.

6 Summary

A formulation of the motion equations in terms of
redundant coordinates without Lagrange multipli-
ers for constrained mechanical systems is presented.
This formulation is applicable to holonomic and non-
holonomic systems. The use of redundant coordinates
ensures a globally valid parameterization. That is, in
contrast to minimal coordinate formulations, relying
on the partitioning of generalized velocity coordinates,
the Lagrange multipliers are eliminated without reduc-
ing the number of equations, leading to a redundant
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system of motion equations that are globally valid.
This formulation is tailored for efficiently solving the
inverse dynamics problem. Due to the redundancy it
cannot be used directly for forward dynamics sim-
ulation. However, for non-redundantly actuated sys-
tems it can give rise to a system of independent mo-
tion equations induced by the inverse dynamics solu-
tion. It is shown for two simple non-holonomic ex-
amples how the proposed method can be applied to
solve the inverse and forward dynamics problems of
non-redundantly actuated control systems. Numeri-
cal results are also reported for the inverse dynamics

of a redundantly actuated 2-DOF parallel manipula-
tor.

Future work will focus on the integration of the
presented inverse dynamics solution in model-based
controllers. Such control schemes would not ex-
hibit parameterization singularities like those based
on the minimal coordiantes formulations. The mo-
tion equations are derived in terms of the holonomic
velocity coordinates q̇ , but can be easily extended
to non-holonomic velocities ω linearly related by
ω = Dq̇ .

Appendix: List of symbols

V configuration space defined by geometric constraints

TqV (non-holonomic) tangent space defined by kinematic constraints

TqV
∗

(non-holonomic) cotangent space defined by kinematic constraints

δloc local degree of freedom (δloc = dimV )

δdiff differential degree of freedom (δdiff(q) = dimTqV )

n number of generalized coordinates of unconstrained system

r number of kinematic constraints

m number of generalized actuator forces

{a} index set of the n generalized coordinates of unconstrained system

{a1} index set of r dependent generalized velocities of constrained system

{a2} index set of δdiff independent generalized velocities of constrained system

q̇1 ≡ (q̇a1 ) vector of r dependent generalized velocities

q̇2 ≡ (q̇a2 ) vector of δdiff independent generalized velocities

ui generalized control forces, i = 1, . . . ,m

B r × n coefficient matrix of the system of Pfaffian constraints

F n × δdiff orthogonal complement to B (BF = 0)

B+
G G-weighted pseudoinverse of matrix B

NB,G n × n projection matrix to null-space of B defined by B+
G (BNB,G)

M n × m control matrix relating m actuation forces to n generalized forces

M δdiff × m control matrix relating m actuation forces to δdiff independent

generalized forces

M̃ n × m control matrix relating m actuation forces to n generalized forces

satisfying the constraints

G n × n generalized mass matrix of unconstrained system

C n × n Coriolis and centrifugal matrix of unconstrained system

Q n vector of generalized forces of unconstrained system

G δdiff × δdiff generalized mass matrix in δdiff minimal coordinates

C δdiff × δdiff Coriolis and centrifugal matrix in δdiff minimal coordinates

Q δdiff vector of generalized forces in δdiff minimal coordinates

G̃ n × n generalized mass matrix projected to null-space of B

C̃ n × n Coriolis and centrifugal matrix projected to null-space of B

Q̃ n vector of generalized forces projected to null-space of B

Ik k × k identity matrix
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