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Abstract This paper presents a novel bounded four-
dimensional (4D) chaotic system which can display
hyperchaos, chaos, quasiperiodic and periodic behav-
iors, and may have a unique equilibrium, three equilib-
ria and five equilibria for the different system param-
eters. Numerical simulation shows that the chaotic at-
tractors of the new system exhibit very strange shapes
which are distinctly different from those of the exist-
ing chaotic attractors. In addition, we investigate the
ultimate bound and positively invariant set for the new
system based on the Lyapunov function method, and
obtain a hyperelliptic estimate of it for the system with
certain parameters.

Keywords Hyperchaos · Ultimate bound · Positively
invariant set · Lyapunov function

1 Introduction

During the past four decades, the study of chaos the-
ory and applications has greatly developed in the fields
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such as mathematics, physics and engineering appli-
cations after the pioneering work of Lorenz [1]. In
1999, Chen and Ueta [2] developed a new chaotic
attractor called Chen’s attractor, which is topologi-
cally more complex than the Lorenz’s attractor. In
2002, Lü and Chen [3] reported a new chaotic sys-
tem named Lü system, which bridges the gap between
the Lorenz system and the Chen system. Later, Qi et
al. [4] proposed a new chaotic system with five equi-
libria. Chen et al. [5] reported a novel hyperchaotic
system only with one equilibrium. Wang [6, 7] pre-
sented a multi-scroll chaotic system generated from
a new quadratic autonomous system. A new type of
four-wing chaotic attractors in three-dimensional (3D)
quadratic autonomous systems was studied in [8]. Re-
cently, Dadras and Momeni [9–11] proposed some
interesting multi-scroll chaotic and hyperchaotic sys-
tems evolved from novel 3D and four-dimensional
(4D) smooth quadratic autonomous systems. Differ-
ently from the above chaotic systems generated us-
ing quadratic functions, the authors [12, 13] reported
some new chaotic systems evolved using hyperbolic
functions, and studied the chaos control and chaos syn-
chronization of the systems. Xu and Yu [14] presented
some multi-scroll chaotic attractors generated using
hyperbolic functions. More recently, a novel chaotic
system with infinitely many equilibria was proposed
in [15], in which the nonlinear term does not sat-
isfy Lipschitz continuity condition. Up to now, chaos
generation has attracted the sustained attention of re-
searchers. It is noted that the existing chaotic attrac-
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tors as those reported above display two types of basic
shapes, i.e. the scroll shape or the wing shape.

The estimate of the bound for a chaotic system is
of great importance for chaos control and synchroniza-
tion, which is also a technically difficult task. The con-
cepts of ultimate bound and attractive set of a system
serve as important tools for the analysis of the quali-
tative behavior of a chaotic system [16]. If it is proved
that a system has a globally attractive set, then it is
shown that the system cannot have equilibria, peri-
odic solutions, quasiperiodic solutions, or chaotic at-
tractors outside the globally attractive set [17]. This
will greatly simplify the dynamic analysis of the sys-
tem. By virtue of Lyapunov function method, the el-
lipsoidal estimates of the ultimate bound and posi-
tively invariant set for the Lorenz system were pro-
posed in [18, 19], and a butterfly-shaped localiza-
tion set for the Lorenz attractor was given in [20].
Based on a similar method, bound of the hyperchaotic
Lorenz–Stenflo system was presented in [21]. Yang
and Liu [22] designed a hyperchaotic system from a
chaotic system with one saddle and two stable node-
foci, and analyzed the ultimate boundedness. It is
noted that most of the research in this area has focused
on the family of Lorenz chaotic systems. In fact, many
chaotic systems are shown to not have a globally at-
tractive set such as those presented in [9–15]. For the
systems proposed in [5, 6, 8], it is very hard to con-
struct analytically the set by the Lyapunov functions
technique even though there may be a globally attrac-
tive set shown from numerical simulation. The study
of a chaotic system with both global attractivity and
rich dynamics is of great theoretical and practical sig-
nificance.

This paper presents a novel 4D chaotic system with
the nonlinear terms in the form of quadratic func-
tion. The complicated dynamics are studied by virtue
of theoretical analysis and numerical simulation. It is
shown that the new system can display hyperchaos,
chaos, quasiperiodic and periodic behaviors, and may
have a unique equilibrium, three equilibria and five
equilibria respectively corresponding to the different
parameters. Additionally, the chaotic attractors of the
new system have very strange shapes which are dis-
tinctly different from those of the traditional chaotic
attractors, such as scroll-shaped and wing-shaped at-
tractors. Moreover, the new system with certain pa-
rameters has a globally attractive set. Based on the
Lyapunov function method, the ultimate bound and

positively invariant set of the new system is inves-
tigated, and a hyperelliptic estimate of the ultimate
bound and positively invariant set for the system is ob-
tained.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the system model and analyzes the
complicated dynamic properties. Section 3 estimates
the bound of the new system, and Sect. 4 draws the
conclusions.

2 System model and dynamic properties

Consider the nonlinear system of the form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = a1x1 + a2x4 − x2x3,

ẋ2 = −a3x1 + a4x2 + b1x1x3,

ẋ3 = a5x3 + b2x1x2 + b3x1x4,

ẋ4 = a6x2 + a7x4 − b4x1x3,

(1)

where x1, x2, x3, x4 ∈ R are the state variables, and
ai < 0, i = 1,2, . . . ,7, bj > 0, j = 1,2,3,4 are con-
stant parameters of the system.

Note that when a2 = a3 = b4 = 0, system (1) would
reduce to the form of the chaotic system proposed
in [10]. Nevertheless, system (1) will display a com-
pletely different dynamics with that of the chaotic sys-
tem in [10].

With different parameters ai and bi , it is shown that
system (1) can display hyperchaos, chaos, quasiperi-
odic and periodic behaviors. Figures 1, 2, 3 show
the strange attractors such as hyperchaos and chaos.
The quasiperiodic and periodic orbits are shown in
Figs. 4–5, respectively. It needs to be mentioned that
the phase portraits of system (1) have very strange and
complex shapes. The shapes of the chaotic attractors
in Figs. 1–3 are distinctly different from those of the
traditional chaotic attractors, such as the scroll-shaped
and wing-shaped attractors displayed in the existing
chaotic systems. The quasiperiodic and periodic orbits
in Figs. 4–5 also have complex and interesting shapes
which correspond to the long-periodic motion. For ex-
ample, the period of the smile-face-shaped periodic or-
bit in Fig. 5(b) is approximately equal to 81 by simu-
lation. Furthermore, it is shown from simulation that
the systems in Figs. 1–5 have the property of global
attractivity, and the boundedness of the system will be
investigated analytically in Sect. 3. As an important
method, Poincaré map can reflect folding properties of
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Fig. 1 Phase portraits of system (1) with a2 = −0.35,
a3 = −0.75, a4 = −0.15, a5 = −0.45, a6 = −0.5, a7 = −0.4,
b1 = 1.5, b3 = 1, b4 = 1.15; (a) and (b) correspond to the hy-

perchaotic attractor with a1 = −0.16, b2 = 1.1; (c) and (d) cor-
respond to the chaotic attractor with a1 = −0.4, b2 = 0.55

chaos. Figure 6 shows the projections of the Poincaré
map of system (1) with the parameters in Fig. 3 on
different planes.

Additionally, it is obvious that system (1) has the
symmetry persisting for all values of the system pa-
rameters under the coordinate transform
(x1, x2, x3, x4) → (−x1,−x2, x3,−x4), i.e. under re-
flection about the coordinate axis x3, and system (1)
is not symmetrical about the coordinate axis x1, x2 or
x4.

2.1 Equilibria

The equilibria of system (1) can be obtained by solv-
ing the following nonlinear algebraic equations simul-
taneously:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1x1 + a2x4 − x2x3 = 0,

−a3x1 + a4x2 + b1x1x3 = 0,

a5x3 + b2x1x2 + b3x1x4 = 0,

a6x2 + a7x4 − b4x1x3 = 0.

(2)

Obviously the origin S0(0,0,0,0) is an equilibrium
of system (1). For the nonzero equilibria, we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 = ±
√

(kia3−a4)a5a7
(a6b3−a7b2)b1−(kia3−a4)b3b4

,

x2 = 1
ki

x1,

x3 = −a6b1b3−a7b1b2−(kia3−a4)b3b4
kia5a7b1

x2
1 ,

x4 = (kia3−a4)b4−a6b1
kia7b1

x1, i = 1,2,

(3)

with

k1 = B +
√

B2 − 4a4a7A

2A
,

k2 = B −
√

B2 − 4a4a7A

2A
,

and

A = a1a7b1 +a2a3b4, B = a2a4b4 +a2a6b1 +a3a7.

Therefore, it can be concluded from (3) that in the
case of B2 < 4a4a7A system (1) has a unique zero
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Fig. 2 Chaotic orbits of system (1) with a1 = −0.3, a2 = −0.5, a3 = −0.6, a4 = −0.1, a5 = −0.1, a6 = −0.6, a7 = −0.15, b1 = 1.2,
b2 = 1.5, b3 = 2.5; (a) and (b) correspond to the chaos with b4 = 1.9; (c) and (d) correspond to the chaos with b4 = 0.4

Fig. 3 Chaotic orbits of system (1) with a1 = −0.3, a2 = −0.5, a3 = −0.6, a4 = −0.1, a5 = −0.1, a6 = −0.65, a7 = −0.1, b1 = 0.8,
b2 = 1.5, b3 = 3, b4 = 0.6
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Fig. 4 Quasiperiodic orbits of system (1) with a1 = −0.3, a2 = −0.5, a3 = −0.6, a4 = −0.1, a5 = −0.1, a6 = −0.65, a7 = −0.1,
b1 = 0.8, b2 = 1.5, b3 = 1, b4 = 0.6

equilibrium S0, and in the case of B2 = 4a4a7A sys-
tem (1) has two nonzero equilibria when inequality (4)
holds. In the case of B2 > 4a4a7A, system (1) has four
nonzero equilibria when inequality (4) holds for both
i = 1,2, and system (1) has two nonzero equilibria
when the inequality (4) holds only for i = 1 or i = 2,
and system (1) has a unique zero equilibria when in-
equality (4) holds neither for i = 1 nor for i = 2.

(kia3 − a4)
(
(a6b3 − a7b2)b1 − (kia3 − a4)b3b4

)
> 0.

(4)

It can be verified that for the parameters in Figs. 1,
2(a), 2(b) and 3–5, all with satisfying B2 > 4a4a7A,
inequality (4) holds neither for i = 1 nor for i = 2.
For the parameters in Figs. 2(c), 2(d) satisfying B2 >

4a4a7A, inequality (4) holds only for i = 1. Thus,
based on the above analysis, the systems which display
hyperchaos, chaos, quasiperiodic and periodic behav-
iors respectively shown in Figs. 1, 2(a), 2(b) and 3–5,
all have a unique equilibrium zero, and the system cor-

responding to the chaos shown in Figs. 2(c), 2(d) has
three equilibria.

By linearizing system (1) at the equilibrium S, one
obtains the Jacobian matrix as follows:

Js =

⎡

⎢
⎢
⎣

a1 −x3 −x2 a2

−a3 + b1x3 a4 b1x1 0
b2x2 + b3x4 b2x1 a5 b3x1

−b4x3 a6 −b4x1 a7

⎤

⎥
⎥
⎦ . (5)

For the zero equilibrium S0, four eigenvalues of the Ja-
cobian matrix Js0 can be obtained from
|λI − Js0 | = 0, that is

(λ − a5)
(
λ3 − (a1 + a4 + a7)λ

2

+ (a1a4 + a1a7 + a4a7)λ + a2a3a6 − a1a4a7
) = 0.

(6)

Obviously λ = a5 is one negative eigenvalue. It can
be seen from (6) that there exists a positive eigenvalue
λ > 0 when a2a3a6 < a1a4a7, which is all satisfied for
the parameters of the systems displayed in Figs. 1–5,
and in this case the zero equilibrium S0 is unstable. For
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Fig. 5 Periodic orbits of system (1): (a) and (b) correspond
to the system with a1 = −0.4, a2 = −0.35, a3 = −0.75, a4 =
−0.15, a5 = −0.45, a6 = −0.5, a7 = −0.4, b1 = 1.5, b2 = 0.5,

b3 = 1, b4 = 1.15; (c) and (d) correspond to the system with
a1 = −0.3, a2 = −0.5, a3 = −0.6, a4 = −0.1, a5 = −0.1,
a6 = −0.6, a7 = −0.15, b1 = 1.2, b2 = 1.5, b3 = 2.5, b4 = 0.8

Fig. 6 Poincaré map of
system (1) with the
parameters in Fig. 3:
(a)–(c) correspond to the
cross section with x2 = 0;
(d) corresponds to the cross
section with x4 = 0
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Fig. 7 Spectrum of
Lyapunov exponents
versus a1

instance, the eigenvalues of the Jacobian matrix Js0

with the parameters of the hyperchaotic system shown
in Fig. 1(a) and (b) can be calculated as

λ1 = 0.2833, λ2 = −0.4967 + j0.4275,

λ3 = −0.4967 − j0.4275, λ4 = −0.45,

which implies that the zero equilibrium S0 is unstable.
Similarly, it can be verified that the nonzero equi-

libria of the systems with the parameters in Figs. 1–5
are also unstable by computing the eigenvalues from
|λI − Js | = 0.

2.2 Dissipativity

From system (1), we obtain

∇V = ∂ẋ1

∂x1
+ ∂ẋ2

∂x2
+ ∂ẋ3

∂x3
+ ∂ẋ4

∂x4
= a1 + a4 + a5 + a7.

Thus the dynamical system (1) is a dissipative system
when ai < 0, and an exponential contraction of the
system is exp((a1 +a4 +a5 +a7)t), which implies that
each volume containing the trajectory of system con-
verges to a subset of measure zero volume as t → ∞
at exponential rate −(a1 + a4 + a5 + a7). Then all the
orbits of system (1) are eventually confined onto an
attractor.

2.3 Lyapunov exponents and bifurcation diagram

Consider the parameters a2 = −0.35, a3 = −0.75,
a4 = −0.15, a5 = −0.45, a6 = −0.5, a7 = −0.4,
b1 = 1.5, b2 = 1.1, b3 = 1, b4 = 1.15. Figure 7 shows
the spectrum of Lyapunov exponents of system (1)
with respect to parameters a1 ∈ [−1, 0]. Obviously,
when a1 ∈ (−0.4, 0], the largest Lyapunov exponent
is positive, and the second largest Lyapunov expo-
nent is sometimes positive and sometimes equal to
zero, which implies that the system displays the hy-
perchaos and chaos alternately with different values
of parameter a1. When a1 ∈ [−1, −0.4], the largest
Lyapunov exponent is sometimes positive and some-
times equal to zero, and the system displays the chaos,
quasiperiodic orbit and periodic orbit alternately with
different values of parameter a1. Particularly, the sys-
tem is chaotic while the largest Lyapunov exponent
is positive and the second largest Lyapunov exponent
is zero, and the system displays quasiperiodic motion
while the first and the second largest Lyapunov ex-
ponents are zero, and displays periodic motion with
only one zero Lyapunov exponent. In addition, given
a1 = −0.16, we can obtain the Lyapunov exponents
as 0.1146,0.0341,0 and −1.3084, respectively, which
demonstrates that the system shown in Fig. 1(a), (b) is
hyperchaotic.

Denote Σ = {(x1, x2, x3, x4)
T ∈ R4|x3 = 0}. Tak-

ing Σ as a cross section, we can get the bifurcation
diagram of state variable x1 in system (1) with parame-
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Fig. 8 Bifurcation diagram
of x1 versus a1

ter a1 ∈ [−1.4, 0] shown in Fig. 8 which demonstrates
the whole dynamic properties versus parameter a1. It
is observed that the bifurcation diagram well coincides
with the spectrum of Lyapunov exponents.

3 The ultimate bound and positively invariant set

Let X = [x1, x2, x3, x4]T . Define X(t, t0,X0) as the
solution to system (1) satisfying X(t0, t0,X0) = X0

with the initial time t0 and initial state X0, which
for simplicity is denoted as X(t). Assume Ω ∈
R

4 is a compact set. Define the distance between
the solution X(t) and the set Ω by ρ(X(t),Ω) =
infY∈Ω ‖X(t) − Y‖, and denote Ωε =
{X| ρ(X,Ω) < ε}.

Definition 1 Suppose that there is a compact set Ω ∈
R

4. If, for every X0 ∈ R
4 \Ω , limt→∞ ρ(X(t, t0,X0),

Ω) = 0, that is, for any ε > 0 there is T > t0 such that
for t ≥ T , X(t, t0,X0) ∈ Ωε , then the set Ω is called
an ultimate bound for system (1). If, for any X0 ∈ Ω

and all t ≥ t0, X(t, t0,X0) ∈ Ω , then Ω is called the
positively invariant set for system (1).

Theorem 1 If the system parameters satisfy the fol-
lowing inequality:

a2b1b2 + (
a3 + 2

√
a1a4b1

)
b3 > 0, (7)

then there exist positive constants μ > 0 and Cmax > 0
such that the hyperellipsoid

Ω =
{

X

∣
∣
∣
∣

(

b1μ + b2b4

b3

)

x2
1 + μx2

2

+ b4

b3

(

x3 − a2b1b3μ + a2b2b4

b3b4

)2

+ x2
4 ≤ Cmax

}

(8)

is an ultimate bound and positively invariant set for
system (1).

Proof With the positive number μ, construct the fol-
lowing Lyapunov function:

V (X) =
(

b1μ + b2b4

b3

)

x2
1 + μx2

2

+ b4

b3

(

x3 − a2b1b3μ + a2b2b4

b3b4

)2

+ x2
4 . (9)

The time derivative of the Lyapunov function (9)
along the solution of system (1) can be described as

1

2
V̇ (X) =

(

b1μ + b2b4

b3

)

x1ẋ1 + μx2ẋ2
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+ b4

b3

(

x3 − a2b1b3μ + a2b2b4

b3b4

)

ẋ3 + x4ẋ4

=
(

a1b1μ + a1b2b4

b3

)

x2
1

+ a4μx2
2 + a5b4

b3
x2

3 + a7x
2
4

−
(

a3μ + a2b2(b1b3μ + b2b4)

b2
3

)

x1x2

+ a6x2x4 − a2a5(b1b3μ + b2b4)

b2
3

x3

= X̃T QX̃ − Cμ, (10)

where

X̃ = [
x1, x2, x3 − a2b1b3μ+a2b2b4

2b3b4
, x4

]T
,

Cμ = a5(a2b1b3μ + a2b2b4)
2

4b3
3b4

,

and

Q =

⎡

⎢
⎢
⎢
⎢
⎣

a1b1μ + a1b2b4
b3

− a3μ
2 − a2b2(b1b3μ+b2b4)

2b2
3

0 0

− a3μ
2 − a2b2(b1b3μ+b2b4)

2b2
3

a4μ 0 a6
2

0 0 a5b4
b3

0
0 a6

2 0 a7

⎤

⎥
⎥
⎥
⎥
⎦

.

By some algebra operations, it can be shown that
the condition that Q is negative definite is equivalent
to

l1μ
2 + l2μ + l3 < 0 (11)

with

l1 = 4a1a4a7b1b
4
3 − a7

(
a3b

2
3 + a2b1b2b3

)2
,

l2 = 4a1a4a7b2b
3
3b4 − a1a

2
6b1b

4
3

− 2a2a7b
2
2b4

(
a3b

2
3 + a2b1b2b3

)
,

l3 = −a1a
2
6b2b

3
3b4 − a2

2a7b
4
2b

2
4.

It can be verified that inequality (7) implies l1 < 0.
Note that l3 > 0 and μ > 0. Then it is easy to show
that inequality (11) is equivalent to

μ > − 1

2l1

(
l2 +

√

l2
2 − 4l1l3

)
. (12)

Thus for any μ satisfying (12), the matrix Q is nega-
tive definite.

Let V̇ (X) = 0. Then one can obtain a 4D hyperel-
liptic surface as

Γ = {
X

∣
∣X̃T QX̃ = Cμ

}
. (13)

Note that V (X) is continuous on Γ which is a closed
set. It is concluded that the extreme values of V (X)

can be achieved on Γ . Denote the maximum value of
V (X) as Cmax, that is, Cmax = maxX∈Γ V (X). Then,
for the 4D hyperellipsoid Ω defined in (8), it is shown
that Γ ⊂ Ω .

For any given state variable X outside Ω , which
means X̃T QX̃ < Cμ, it is shown that V̇ (X) < 0. In
this case, the isoplethic surface of V (X) contracts
monotonically along the trajectory of system (1) un-
til V (X) = Cmax, that is,

lim
t→∞ρ

(
X(t),Ω

) = 0.

Thus Ω is an ultimate bound of system (1).
Furthermore, suppose the maximum value of V (X)

on surface Γ is achieved at the point X∗ =
(x∗

1 , x∗
2 , x∗

3 , x∗
4 ). For any point X(t) on Ω and X(t) �=

X∗, it is derived that V̇ (X) < 0 by the fact Γ ⊂ Ω .
Thus any trajectory X(t) �= X∗ of system (1) will go
into Ω . In addition, for the case of X(t) = X∗, it can
be shown that X(t) will also go into Ω by the contin-
uation theorem [23]. Thus Ω is a positively invariant
set of system (1).

Summarizing the above, one can conclude that Ω

is an ultimate bound and positively invariant set for
system (1). The proof is complete. �

For instance, consider the parameters a1 = a2 =
−1.5, a3 = −1.2, a4 = −0.8, a5 = −0.5, a6 = −2, a7 =
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Fig. 9 The chaotic system (1) and its ultimate bound and positively invariant set

−0.3, b1 = 2, b2 = 0.3, b3 = 1, b4 = 0.2, which sat-
isfy inequality (7). It is shown that system (1) displays
chaotic orbits. Set μ = 15 with satisfying (12). By
solving the corresponding optimization problem, one
can obtain that Cmax = maxX∈Γ V (X) = 17128. Thus,
according to Theorem 1, the chaotic system (1) with
above parameters is confined to the following hyper-
ellipsoid:

Ω = {
X

∣
∣30.06x2

1 + 15x2
2 + 0.2(x3 + 225.45)2

+ x2
4 ≤ 17128

}
.

Figure 9(a)–(c) shows the chaotic orbits, and Fig. 9(d)
shows the corresponding ultimate bound and posi-
tively invariant set Ω with x3 = −225.45.

4 Conclusion

This paper has introduced a novel 4D chaotic system,
which has a unique equilibrium, three equilibria and
five equilibria for the different parameters, and shows
hyperchaos, chaos, quasiperiodic and periodic orbits
with strange shapes. The complex dynamic properties
are investigated by means of theoretical analysis and

numerical simulation. Moreover, based on the Lya-
punov function method, a hyperelliptic estimate of the
ultimate bound and positively invariant set for the new
system with certain parameters is obtained.
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