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Abstract Analytical results are presented on chaotic
vibrations of a post-buckled L-shaped beam with an
axial constraint. The L-shaped beam is composed of
two beams which are a horizontal beam and a verti-
cal beam. The two beams are firmly connected with a
right angle at each end. The beams joint with the right
angle is attached to a linear spring. The other ends are
firmly clamped for displacement. The L-shaped beam
is compressed horizontally via the spring at the beams
joint. The L-shaped beam deforms to a post-buckled
configuration. Boundary conditions are required with
geometrical continuity of displacements and dynam-
ical equilibrium with axial force, bending moment,
and share force, respectively. In the analysis, the mode
shape function proposed by the senior author is in-
troduced. The coefficients of the mode shape func-
tion are fixed to satisfy boundary conditions of dis-
placements and linearized equilibrium conditions of
force and moment. Assuming responses of the beam
with the sum of the mode shape function, then ap-
plying the modified Galerkin procedure to the gov-
erning equations, a set of nonlinear ordinary differ-
ential equations is obtained in a multiple-degree-of-
freedom system. Nonlinear responses of the beam are
calculated under periodic lateral acceleration. Nonlin-
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ear frequency response curves are computed with the
harmonic balance method in a wide range of excitation
frequency. Chaotic vibrations are obtained with the
numerical integration in a specific frequency region.
The chaotic responses are investigated with the Fourier
spectra, the Poincaré projections, the maximum Lya-
punov exponents and the Lyapunov dimension. Ap-
plying the procedure of the proper orthogonal decom-
position to the chaotic responses, contribution of vi-
bration modes to the chaotic responses is confirmed.
The following results have been found: The chaotic
responses are generated with the ultra-subharmonic
resonant response of the two-third order correspond-
ing to the lowest mode of vibration. The Lyapunov
dimension shows that three modes of vibration con-
tribute to the chaotic vibrations predominantly. The re-
sults of proper orthogonal decomposition confirm that
the three modes contribute to the chaos, which are the
first, second, and third modes of vibration. Moreover,
the results of the proper orthogonal decomposition are
evaluated with velocity which is equivalent to kinetic
energy. Higher modes of vibration show larger contri-
bution to the chaotic responses, even though the first
mode of vibration has the largest contribution ratio.

Keywords Nonlinear vibration - Chaotic vibration -
Vibration of continuous system - Beam structure -
Analytical procedure - Proper orthogonal
decomposition
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1 Introduction

Beam-structures are used in transportation products
such as aircrafts and vehicles and in measuring fields
of micro electronic measuring sensors. The beam-
structures are composed with multiple beams, gener-
ally. The beam- structures have continuity conditions
at each beams joint. It is of practical importance to ob-
tain precise analytical results on nonlinear vibrations
of beam-structures.

Nonlinear and chaotic vibrations of a beam have
been investigated by many researchers including the
authors [1-10]. Pizeshki and Dowell [6] studied cha-
otic vibrations of a post-buckled beam using the Lya-
punov dimension to estimate the number of vibration
modes in the chaos. The authors investigated the non-
linear oscillations of a clamped shallow arch [11, 12].
Chaotic vibrations of a post-buckled clamped beam
constrained by an axial spring were examined ana-
Iytically and compared with the experimental results
[13]. The results showed that predominant chaotic vi-
brations of the post-buckled beam bifurcate from sub-
harmonic resonances of one-half and one-third orders.
Chaotic vibrations of a clamped-supported beam with
a concentrated mass were investigated under several
conditions of an axial compression [14]. Chaotic re-
sponses of a post-buckled beam with the subharmonic
resonances of one-half order and of one-third order
were confirmed experimentally. Instability boundaries
of the chaos were also examined [15].

On the contrary, there are some researches related
to nonlinear vibrations of beam-structures. Wang and
Bajaj have studied nonlinear normal modes of a three-
beam structure with a tip mass [16]. Modal interac-
tion of a L-shaped beam including torsion and bend-
ing were investigated by Warminski et al. [17]. The L-
shaped beam had different flexibilities out of plane di-
rections. Internal resonance of a L-shaped beam with a
clamped end and free end were studied experimentally
and theoretically by Nayfeh et al. [18, 19]. However, it
appears to the authors that chaotic vibrations of a post
buckled L-shaped beam have not been investigated.

In this paper, chaotic vibrations of a post-buckled
L-shaped beam are investigated. Both ends of the L-
shaped beam are clamped. The L-shaped beam is con-
strained by the linear spring for the axial direction
along the horizontal beam at the beams joint. Un-
der compression force via the spring, the L-shaped
beam has a post-buckled configuration. Moreover, the
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post-buckled L-shaped beam is subjected to the grav-
itational acceleration and periodic acceleration. Intro-
ducing the mode shape function proposed by the se-
nior author, deflection is assumed as a linear combi-
nation of the mode shape function. With the modi-
fied Galerkin procedure to the governing equations,
a set of nonlinear ordinary differential equations of
a multiple degree-of- freedom system is obtained. As
fundamental properties of the post buckled L-shaped
beam, characteristics of restoring force and the lin-
ear natural frequencies are calculated. Then nonlin-
ear periodic vibrations and chaotic vibrations are cal-
culated. Nonlinear frequency response curves of pe-
riodic responses are computed with the harmonic bal-
ance method. Chaotic responses are computed with the
Runge—Kutta method in a specific frequency range.
Chaotic responses are inspected with Fourier spec-
tra, Poincaré projection. Using the Lyapunov expo-
nents, chaotic responses are confirmed. The number
of vibration modes, contributing to the chaotic vibra-
tions, is examined with the Lyapunov dimension. Uti-
lizing the proper orthogonal decomposition (POD) for
the chaotic responses, contribution ratios of vibration
modes are examined. The procedure of the POD is ap-
plied to the responses of deflection and of velocity.
The contribution ratios calculated from the responses
of deflection are compared with those from the re-
sponses of velocity corresponding to kinetic energy
of vibration modes. Furthermore, the kinetic energy is
estimated from eigenvalues in calculation of the POD
applied to the responses of deflection.

2 Analytical model

The L-shaped beam structure is shown in Fig. 1. The
beam structure is constructed with two thin beams,
which are a horizontal beam1 with the length L; and
a vertical beam?2 with the length L,, respectively. The
beams have the same dimensions of cross section and
material property. The cross section of the L-shaped
beam is assumed as a rectangular form of breadth b
and of thickness %. The area A is A = bh. Symbols p,
E and [ stand for the mass density, the Young’s mod-
ulus and the moment of inertia of cross section.

Both ends of the beams are connected with right
angle with a rigid block. The other ends of the beams
are clamped. The symbols M, and J, are the mass and
the moment of inertia of the rigid block, respectively.
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Fig. 1 L-shaped beam constrained by the spring

The beams are constrained by the linear spring with
the coefficient K at the beams joint. Coordinate sys-
tems of each beam o, (x,, z,), (n = 1, 2) are defined
with x,-axis along the each beam and z,-axis to the
lateral directions of each beam. Suffix n indicates the
element number of the L-shaped beam. Suffixes n = 1
and n = 2 correspond to the horizontal beam1 and the
vertical beam2, respectively. Deflection W), and axial
displacement U, are denoted.

The L-shaped beam is compressed via the spring
with the constant displacement of the outer end of the
spring —U,. Under the compressional force, the hori-
zontal beam1 is subjected to axial force. The vertical
beam? is also subjected to share force. The L-shaped
beam is deformed to a post-buckled configuration.
Furthermore, the post-buckled L-shaped beam is sub-
jected to the vertical acceleration a = g + a4 cos £2t,
where g is the gravitational acceleration and a4 cos £2¢
is the periodic acceleration. Symbols ay4, §2 and ¢ are
the peak amplitude, the excitation angular frequency,
and time, respectively. The symbol Q; is the concen-
trated force acting on the horizontal beam 1 at the po-
sition &1 = L. The concentrated force Qj is loaded
to calculate characteristics of nonlinear restoring force
of the L-shaped beam in the static state of deforma-
tion. The concentrated force is removed in the dy-
namic problem of the beam subjected to periodic ac-
celeration.

3 Problem formulation

The governing equation for nonlinear vibrations of the
L-shaped beam is derived with the Hamilton’s princi-

t
5/1(T—U—\7+f)dt=0, 1)
b

where T , U , and V are the kinetic energy, the strain
energy, and the potential energy, respectively. The
term f represents constraint due to the beams joint of
the L-shaped beam.

The kinetic energy T is expressed as follows:

2 L
~ "1 2 2
T =Z[/O EpA(W,,,l +Un,; )dxn]
n=1
1 2 2 1 2
+ EMe(Wl’[ +U17t)+§ er?xlt ’(2)
x1=L,

where the first term and the second term correspond
to the kinetic energy of both beams and of the rigid
block, respectively. The subscripts following a comma
stand for partial differentiation.

The strain energy U is given by

2

. Lnq
U= Z[/O EEA(U,L,X,,

n=1
1, 2
+ EW"’Xn _ZWnsxnxn dxy

1
+ 5 KU = U (L)), A3)

where the first term and the second term are the strain
energy of the L-shaped beam and of the linear spring,
respectively.

The potential energy V generated by the external
force becomes

~ LI
V= —/ pA(g+agcos 2t)Widx
0

Ly
+ / PA(g+agcos2t)Uzdxo
0

Ly
— M.(g+ agcos 2t)W18(x1 — L1)dx
0

Ly
- OsWid(x1 — Lg) dx;. 4
0

In the foregoing equation, §(x; — L) is the Dirac’s
delta function.
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The constraint condition is derived from the La-
grange’s method of the undetermined multiplier. The
constraint condition f at the beams joint is derived as

f=21[Wi(L1) + Ua(L2)] + As[Ui(Ly) — Wa(L2)]
+ A3[W1 s X] (Ll) - W27)C2 (Lz)]v (5)
where symbols Aj, Ay, and A3 are undetermined

multipliers. Continuity conditions at the beams joint
are given by

Wi(L1) + Ua(L2) =0, (6)
Ui(L1) — Wa(L2) =0, (N
Wi,x (L1) — Wa,x, (L2) =0. (8)

Equations (6) to (8) correspond to the condition of the
continuity between the deflection of one beam and the
axial displacement of the other beam and the condition
between the rotations of the two beams.
Consequently, the governing equation of nonlinear
vibrations of the L-shaped beam is obtained as

31 Ly
_/ |:/ {IOAWI’H_(NXlWl’xl)»xl
to 0

+ EIWi,x,x, —pA(g+ aqcos $2t)
— Q48(x1 — Ls)}6 Wy dxy

Ly
+/ {IOAUlvl‘t _NX19X1 }8U1 dX]
0

Ly
+/ {pAW2a[t _(NXZWvaz)vxz
0

+ EIW2,x,x, W dxo

L

+ {PAULtt _Nxz»xz
0

+ pA(g+ agcos 2t)}6Uz dxy
+ B(Wy, Uy, Wa, Uz)]dtzo, )

where the axial force Ny, of the beams is expressed as
Ny, = EA{Uy,x, +(1/2) W2, }, (n =1, 2). The for-
mulation B(Wy, Uy, W, Uz) corresponds to dynami-
cal and geometrical condition at the boundaries of the
two beams. Details of the formulation are expressed as
follows:

B(Wy, Ui, W, Up)
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=[(McWi,1t +Noy Wiy —EIWy, 5 51,
— Mc(g+aqcos$2t) — A1)éWily =1,
+ [(MeUy,i +Nyy — A2)8U 1]y =1,
F [JeWioxye HEIW),xyx —A3)8Wi i 1ay=L,
+ [(Nxy Wa,xy —EIW2, 555550, +A42)8Waliy=1,
+ [(Nx, — ADSU2]xy=1L,
+(EIW2, 100, +A3)8 W25, o=1,
—{Wi(L1) — Ua(L2)}s A4
—{U1(L1) — Wa(L2)}s A2
—{Wix, (L1) — W,y (L2)}3 A3
— [(Nxy Wixy —ETW1, 52,2, )0 Wiy =0
— [(Nxy; Wa,xy —EIW2,x)xx, )0 W2lxy=0
— [(Nx)8U1]x,=0
— [(Nx,)8Uz]x,=0
—[(EIW1,x;x, )0 Wi,x 1x,=0
—[(EIW2,xy2, )6 W2, 1, 11,=0- (10)

In the foregoing equation, each term is required to be
zero, then the undetermined multipliers are given by
the following equations:

Al = [NXZ]X2:L21 (11)
AZ = _[Nxz W2:X2 —EI W2:X2x2x2 ]x2=L27 (12)
A3 = _[EIW27)C2X2 ]xz:L2~ (13)

Substituting (11) to (13) into (10), the governing equa-
tion without the undetermined multipliers is obtained.

The nondimensional quantities are introduced as
follows:

Wn UnLn UsLl E Xn
wy = —, U, = N Ue = , = —,
n r n }"2 S rz n Ln
r 2 M,

Flz_’ TZQOI’ w=— ,Be: )
Ly $20 PALy
Je KL N, L?
Vo= —S. k=l ong = (14)
PAL EA El
3 4
_ Ny _QsL1 _ pAL7
c — ncrs - EI}" k] [psv pd]_[gvad] EI}" k]
L L
=2 =" (=12,
L L



Chaotic vibrations of a post-buckled L-shaped beam with an axial constraint 2367

where r = \/T/A and 20 = (1/L2)/ET/(pA). The
symbol r is the radius of gyration of the cross sec-
tion of the beam. The symbol £2¢ represents the coef-
ficient of the lowest natural frequency of the beaml.
The symbol w,, is the nondimensional deflection nor-
malized by the radius of gyration ». The symbols u,
and u are the nondimensional axial displacement of
the two beams and the nondimensional displacement
of the outer end of the spring, respectively. The sym-
bol &, is the nondimensional coordinate. The symbol
Iy is the slenderness ratio. The symbol t is the nondi-
mensional time. The symbol w is the nondimensional
frequency. The symbols B, and y, are the nondimen-
sional mass and the nondimensional moment of inertia
of the rigid block. The symbol & is the nondimensional
spring constant. The symbol 7, is the nondimensional
axial force of the two beams. The symbol n. is the
compression ratio of the axial force ny, to the buckling
load n.,. The symbol g; is the nondimensional load.
The symbols ps and p, are the nondimensional accel-
eration related to the gravity and the nondimensional
intensity of the periodic acceleration, respectively. The
symbol / is the ratio of the length of the vertical beam?2
to that of the horizontal beam1. The symbol /; is the
nondimensional concentrated loading position.
Assuming the dynamic problem of the thin beam
with lower bending vibration, effects of axial inertia,
rotating inertia, and shear deformation on the beam
can be neglected. At the beams joint of the L-shaped
beam, the rotation due to the bending deformation is
larger than the axial displacement, generally. Thus, the
rotating inertia of the rigid block at the beams joint
is included in the governing equation. The axial iner-
tia of the block can be neglected in the analysis. The
nondimensional governing equations of the nonlinear
vibrations of the L-shaped beam are shown as follows:

f 1
- / |:/ {wla‘[t _(nxlwl,él )afl +w1a§1§1§1%‘1
t 0
— (ps + pacoswt) —8(81 — Ly)gsYdw d&

1
1
+/0 {lw27rr _l_3(nx2w2752 )s&

1
t 3W2n660 }3w2 dé

+b(w1,u1,w2,u2)]dr=0, (15)

b(wy, uy, wa, u2)

= +an1 W15 —Wisg 88 —Be(Ps + PacoswT)

1
nx2(1)}8w1i|
F12 §1=1

I
+ H” + l—;<nX2<1)wz,gz (1) — w2, 6,56, (1))

—k(ug — ul)}8u1:|
§1=1

+ [{yewl,élrr +w11§1§1

1
+ W66 (1)}5%&1}
! f1=1

F1 (1
— l—z{—w1(1)+uz(1)}5nx2]
&=1

M1
+|3 {Flul(l) + wz(l)}5(nxzw2 & )}
Ll 5=l

M1
+ l—3{F1M1(1) + wz(l)}(s(—wz,&&sz)]
L &=1

_1 1
+ 1—2{w1,§'2 (1)+?w2752 (1)}811)2,%‘2&2}

&=1
— [nx wie —wig g6 Ywile—o
M1
- 1_3(”)62 W26, —W2,5 66 )8w2:|
L £=0
1
— [ny,8u1]lg =0 — l—3nx25’42
&
— [(w1,£ )0wi,¢ lg =0
1
- [ﬁ(wz,sgz)fswz,gz} . (16)
&=0

The axial force ny, (n =1,2) acting on the cross sec-
tion of the beams is derived from the first and second
terms in the above equation as follows:

k
ny = Hk{ub /(1/2)w1§1d§1}

1

F]
+ T T{wl’SISISI ey

+ Be(ps + pacoswt)}wn,g, (1)}
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1 I
+ m l—3w2,§2§zsz |, a7
k 2 ! 2
Ny, = ——(N17) Jug +/ (1/2)wy,g d&1 fwi,g (1)
11k A

— (Fllz){wl,glglgl (1) + Be(ps + pacoswt)}
1[I}
t IR T Wreee Dwr,g (1)

I
+ TI(ps + pacoswr)(E — 1), (18)

where the term Flzw%,g] at the position &1 = 1, which
appears in the derivation of the above equations, is
small compared with the term 1+ k. The term I'?w? ¢,
is neglected. The displacement of the beams at the
beams joint u, (1) (n = 1,2) is given by the follow-
ing equations:

1
1
ur (1) = ny, —/ Suhe de, (19)
0

1, I
ur(l) =ny, — sz,gz d& — 2—Z(Ps + pqcoswt).
0
(20)
The boundary conditions for deflection w, (n =

1,2) and for displacement u,, (n = 1, 2) and the conti-
nuity conditions at the beams joint are given as:

£1=0 u1=0, w =0, wyg =0,
& =0; ux=0, w2=0, wy,=0,
&i=&=1;

I
U)1+Tu2=0,

INuy —wy, =0,
(21

wlvsl _7w27S2 = O’

Ny Wi,g —W1,5 &5 —Be(Ps + pacoswt)

1

=0

Ny 4+ D1 (o ,e, —w2,6,606, ) — k(s —uy) =0,

1
VeWl g1t TWI1,£8 +l_2w2’§2§2 =0.
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In (21), the continuity conditions at the beams joint in-
clude nonlinear terms ny, wi,s, and ny,ws,¢,. There-
fore, the analysis of the L-shaped beam including the
nonlinear continuity condition is conducted as shown
in the next section.

4 Analytical procedure

4.1 Reduction to a multiple degree-of-freedom
system

Applying the modified Galerkin procedure to the gov-
erning equations including the nonlinear continuity
conditions, a set of nonlinear differential equations is
obtained with a multiple degree-of-freedom system.
First, the static deformation is calculated in a post-
buckled state. Next, natural modes of vibration are cal-
culated under the post-buckled configuration. Based
on the vibration modes, the standard form of nonlin-
ear ordinary differential equations is obtained in the
post-buckled state.
The deflection w,, of each beam is assumed as:

wn(En, T) = Y bji(0)4nj (En),
j
Enj(&n)
5
= chjkgy],{_l(cos PinjT&n + qnj Sin p2y;wéy),
k=1

n=12, j=1,2,3,..), (22)

where b (7) is the unknown time function. The mode
shape function ¢, (&,) is proposed by the senior author
[20, 21].

The mode shape function includes static deforma-
tion and is suitable to vibration modes of the L-shaped
beam. The mode shape function is expressed as the
product of the truncated power series and the trigono-
metric function. The truncated power series function
expresses static deformation of the L-shaped beam.
The trigonometric function enables the deflection w,
to predict higher modes of vibration. By choosing the
coefficients ¢, jx, the mode shape function satisfies the
geometrical boundary conditions and linearized conti-
nuity conditions within a relatively small deflection in
a pre-buckled state. The coefficients c,jx of the trun-
cated power series function and the coefficients p1,;,
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P2nj and gy of the trigonometric function are listed in
Appendix A.

Substituting (22) into the governing equation (15)
and applying the modified Galerkin procedure, a set
of nonlinear ordinary differential equation is derived
as follows:

Zéijbj,n +Z {éij + Rij (ps + pacoswt)}b;
J J

221
j ok
+Y > Eijubjbib

jok ol

— Fi — (ps + pacoswt)G; — g H; =0
Gk 1=1,2,3,..), (23)

Djji + R} ;1 (ps + pacoswt) }b;by

where the notations are listed in Appendix B.

To find the deflection of the post-buckled L-shaped
beam under the static force, the terms of inertia force
and the periodic force are neglected. The unknown
time coefficient b (1) is replaced by the unknown con-
stant coefficient b j in (22). With the substitution of b i
into (23), simultaneous cubic equations for the static
deflection are given by

Z (éij + Rijps)gj
J
+ZZ
+ ZZZEt]klb bkbl F ps i QSﬁi

=0. (24)

ijk + Iéz{jkps)g 5

The coordinate I;j(t) for deflection is introduced
to calculate dynamic responses of the L-shaped beam.
The coordinate b () represents unknown time func-
tion of the dynamic deflection from the static equilib-
rium position in the post-buckled state. Substituting
bi(r)= 15]- + l;j(r) into (23), the nonlinear equations
with b; and b;(t) are obtained as

Zéijl;jatr‘l‘Z(éij +I3ijpdcoswr)l;j
J J

+22k:

ik + jkpdcoswr)bjl;k

+ Z Z Z Eijubbib —

,pdcosa)r =0,

(25)
where
Z ijk + lej
+) Z ijkt + Eiktj + Eirji)bibi,
k
i+ Y (Rl + Riy) b, (26)
k
Z ijkl + Ezkl] + Ezl]k)b 15
)
Pl = Rij;.

Omitting the nonlinear terms and the periodic
force, a set of homogeneous linear equations is ob-
tained for free vibration. Both the natural frequencies
w; of the ith mode and the corresponding eigenvectors
¢iq are calculated. The linear natural mode of vibra-
tion g:ni is expressed with ¢;, as follows:

- 1
gni(gn) = ;Zl/fqignqs
'y
l/fqi = ¢iq —
2> dikBudi
k 1
n=1,2;9,k,1=1,2,3,...), 27

where the symbol n; denotes arbitrary constants to
normalize the maximum amplitude of each vibration
mode to unity.

The equation with the variable b j is transformed
to a standard form of nonlinear ordinary differen-
tial equations to obtain dynamic responses. Denoting
b(1 (1) as the normal coordinates corresponding to g“m ,
the dynamic deflection wy, (§,, ) from the static equi-
librium position is assumed as:

Wa(En.T) =Y b1 (1) i ()
n=1,2,i=1,2,3,...). (28)

Transforming the equation of the variable b (1) to the

normal coordinates bi(‘" )(r), (p =1,2), one can ob-
tain a set of nonlinear differential equations in the state
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space of bfp)(t) as

l

b e = —2ej0ib” — 07b{" =) Pijpacoswrb|’
j

(1
- Z Z (Dijk + Pljypa coswt)b; bV
ik

~ S bbb + Gipacosr,
ikl

(29)

where
Pij = Z_;Zzﬁpquiwqja
P q
Dijk: ’ili Zzszqrwpiwqﬂ/frk,
R
r.li Zzzﬁ;quPiwqurk, (30)
e S
nj}:zlm Xp:;;;qurslﬂpi%jiﬂrk%l,

Gi=ny Gipi. (p.g,rs=1,2,3,--).
p

/
P =

Eijxi =

In (29), bi(l)(r) and bl-(z)(f) correspond to the deflec-
tion and the velocity in the state space, respectively.
New dissipation terms of linear damping are intro-
duced. The symbol ¢; represents damping ratio corre-
sponding to the ith mode of vibration. After the trans-
formation to the standard form of (29), the nonlinear
dynamic responses of the post-buckled L-shaped beam
are calculated with the reduced number of modes /..

4.2 Periodic responses and chaotic responses

Frequency response curves of periodic vibrations are
obtained with the harmonic balance method. Periodic
responses are assumed as

bfl)(f) =Ciipo

+ Z [Ci1up cos upwt + Cizyp Sin upwt]
p
i=1,2,3,...,1;;p=1,2,3,..), 3D
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where Cjj,0 and Cijpp (j=1,2;p=1,2,3,...) are
unknown constants. To calculate the principal reso-
nance, subharmonic resonance and ultra-subharmonic
resonance, i is chosen as unity. Amplitude of the re-
sponse is expressed as a root mean square value Wy ;.

Chaotic responses are calculated with the Runge—
Kutta method.

4.3 Lyapunov components and Lyapunov dimension

The Lyapunov exponents are calculated with the pro-
cedure by Wolf et al. [22] and Shimada et al. [23]
to confirm whether response is the chaos. If the Lya-
punov exponents have one or more positive values, the
response is confirmed as the chaotic vibration. Using
the Lyapunov exponents, the Lyapunov dimension dj,
is also calculated [24] increasing the assumed number
of modes I.. When dy converges to a constant value,
one can estimate the number of vibration modes which
contribute to the chaos [6].

4.4 Proper orthogonal decomposition

The proper orthogonal decomposition (POD), which
is also called as Karhunen—Log¢ve transformation [25—
28], is applied to chaotic responses of the post-buckled
L-shaped beam. The POD enables to clarify the modal
patterns in the chaotic responses and their contribu-
tion ratios. The modal patterns correspond to modes
of vibration. In the POD, the covariance matrix of the
simultaneous time responses at the multiple positions
&wp (p=1,2,3,...,d) is calculated.The covariance
matrix is transformed to an orthogonal matrix, which
results in the eigenvalue problem of the covariance
matrix. The eigenvalue p; corresponds to the contri-
bution of model pattern represented by the eigenvector
@. Contribution ratio w; of the ith modal pattern to the
all modal patterns is calculated as
pi
Bi ==

—_. (32)
Zj:l Dj

5 Results and discussion

The L-shaped beam is deformed to the post-buckled
configuration under the axial compressive force with
the spring. First, the fundamental properties of the
post-buckled L-shaped beam are inspected. Next, dy-
namic responses of the L-shaped beam are investigated



Chaotic vibrations of a post-buckled L-shaped beam with an axial constraint 2371

Table 1 Parameter list

Spring coefficient k=0.03
Length ratio 1=0.707

Mass ratio of the rigid block Be =157
Moment of inertia of the rigid block Ye=4.9 x 107
Compression ratio ne.=1.014
Damping ratio € =0.01
Maximum number of vibration modes I.=5

with the harmonic balance method and the numerical
integration. Table 1 shows the representative parame-
ters used in the analysis. The post-buckled L-shaped
beam satisfies the one to two internal resonant con-
dition between the first mode and the second mode.
The internal resonant condition is also obtained in the
beam without the axial compression by the spring.

5.1 Fundamental properties of the L-shaped beam

The deformed shapes of the L-shaped beam under the
gravity and the axial compression are shown in Fig.
2(a) and (b). The figures (a) and (b) correspond to the
deformed shapes of the horizontal beam and of the
vertical beam, respectively. The deformed shapes are
shown under the compression ratio n, = 0 and n, =
1.014. The L-shaped beam without axial compression
n. = 0 shows the maximum deflection w; = 0.16 at
the position &1 = 0.55. Under the compression ratio
n. = 1.014, the deformed shape of the beam increases
to the deflection wy = 3.7 at the same position. Figure
3 shows the characteristics of restoring force of the L-
shaped beam under concentrated force g;. The con-
centrated force is loaded on the center of the horizon-
tal beam. The deflection of the horizontal beam w; is
observed at the position & = 0.5. The characteristics
of restoring force show the type of a hardening spring
dominantly under the compression ratio n, = 0. The
characteristics of the type of a hardening spring are
caused because of the share force of the vertical beam
and the axial force of the spring. In contrast, the char-
acteristics of restoring force of the post-buckled beam
under the compression ratio n, = 1.014 show the type
of a softening-and-hardening spring with negative gra-
dient. The characteristics of the type of a softening-
and-hardening spring are caused by the axial compres-
sion.

The natural frequencies w;, (i = 1,...,5) and the
natural modes of vibration are shown in Table 2, where

=
H | | | | |
0.0 0.2 04 0.6 0.8 1.0
(b) f
41
(o]
= 2r
0 \.
H | | | | |
0.0 0.2 04 0.6 0.8 1.0
&
Fig. 2 Deformed configuration of the L-shaped beam subjected
to the gravitational force, — — — under the compression ratio
n.=0; : under the compression ratio n, = 1.014
10000 =
5000 —
< 0 —
-5000 —
-10000 = | | |

-4 0 4 8

Wy
Fig. 3 Characteristics of restoring force of the L-shaped beam
subjected to the concentrated force and the gravitational force,

———: under the compression ratio n, = 0; ——: under the com-
pression ratio n, = 1.014

the symbol i indicates the order of vibration modes.
Natural frequencies of the first and second modes of
vibration satisfy the condition of the internal reso-
nance 2w; ~ wj.

5.2 Nonlinear frequency response curves of the
L-shaped beam

Nonlinear frequency-response curves of the post-
buckled beam in the case of n. = 1.014 are calcu-
lated under the gravitational force p; = 146 and under
the periodic excitation force py cos wt. The amplitude
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Table 2 Natural frequencies and natural modes of vibration of the L-shaped beam,— — —: under the axial compression ratio n, =0,
——: under the axial compression ratio n, = 1.014

i 1 2 3
w;(ne =0)
wi(n, =1.014)

Natural mode of vibration

i
wi(n. =0)
wi(n. =1.014)

Natural mode of vibration

Fig. 4 Frequency response (a)
curves of the L-shaped 10 =
beam under the 13
gravitational force (1:3)
ps = 146; e: the results of 8
numerical integration;
(L) ——— " 6 \Y
(1;172); — ———: (1;2/3); g
(a) the response of the —
horizontal beam; (b) the 1= 4 C(1;2/3) 1172
response of the vertical —_ (1;1/2) [(1:172)
beam | Ty e R +(2;1)]
2 . N ~\ \ \
N T
0t | (P2 | I f
5 10 15 20 25 30 35
[Of] (0)]
0]
(b)
3=
£ 2
g _ A
EN 4
0 1—u ! — l'b
5 10 15 20 25 30 35
w1 (0))]
(0]
of the periodic excitation force py is kept constant quency response curves of the horizontal beam and
pa = 365. The excitation frequency w is swept from of the vertical beam, respectively. The ordinate indi-
w =5 to w = 35. Figures 4(a) and (b) show the fre- cates the nondimensional amplitude wiyms (0 = 1,2)

@ Springer



Chaotic vibrations of a post-buckled L-shaped beam with an axial constraint 2373

of the response w; with a root mean square value at
the center of each beam. The abscissa indicates the
nondimensional excitation frequency. Thin lines indi-
cate periodic responses obtained with harmonic bal-
ance method, while thick lines indicate the results by
the numerical integration. The solid circles on the ab-
scissa indicate the natural frequencies of the L-shaped
beam. The notation (i; j) indicates the type of non-
linear resonance with jth order accompanied with the
vibration mode of ith order. The chaotic response is
shown by the notation C(i; j), where the index (i; j)
means the predominant mode of vibration and the pre-
dominant type of nonlinear resonance of jth order in
the chaotic response as shown below.

When the excitation frequency increases from w =
5, the response of the super harmonic resonance (1;3)
with the lowest mode is generated. At the excitation
frequency w = 7.2, the nonresonant response with the
lowest mode jumps to the principal resonance (1;1).
The principal resonance shows the type of a harden-
ing spring. When the excitation frequency increases
to w = 7.8, the response jumps to the curve of the
super-harmonic resonance (1;2) of the second order,
which has the type of a softening spring. At the ex-
citation frequency w = 11.8, the periodic response of
the principal resonance (1;1) are generated again. At
the frequency w = 17, the periodic response jumps to
the curve of the response around the static equilibrium
position of deflection w; = —6.8 as shown in Fig. 3.

When the excitation frequency decreases from w =
35 to the second natural frequency w, the internal
resonant response [(1;1/2)+(2;1)] is generated accom-
panied with the lowest mode and the second mode
of vibration. At the excitation frequency w = 30, the
sub-harmonic resonance (1;1/2) of one-second order
shows the type of a softening spring. The response
(1;1/2) jumps to the nonresonant response at the fre-
quency w = 26.2. Amplitude of the principal reso-
nant response (1;1) with the type of a softening spring
increases from near w = 20. When the excitation
frequency decreases from w = 15.0, nonperiodic re-
sponses are generated. The responses are confirmed as
the chaos. Detailed inspection of the chaotic responses
are discussed as following sections.

The chaotic responses C(1;2/3) are generated with
the ultra-subharmonic resonance (1;2/3) predomi-
nantly including the subharmonic resonance (1;1/2)
and the ultra-subharmonic resonance (1;3/5). The
chaotic responses are generated from w = 15.0 to

w = 14.6. The chaotic responses change to the pe-
riodic response of the ultra-subharmonic resonance
(1;3/5) at the frequency w = 14.5. The principal res-
onant response is generated in the frequency region
from w = 14 to w = 7.9. Furthermore, the principal
resonant response jumps to the response of the super-
harmonic resonance (1;2) at the frequency w = 7.9.

5.3 Time histories, Fourier spectra, and Poincaré
projections of the chaotic responses

The chaotic responses C(1;2/3) of the L-shaped beam
are generated under the excitation amplitude p; =
365. In the frequency region of the chaotic responses,
the ultra-subharmonic resonance of 2/3 order is gener-
ated predominantly. Figure 5 shows the time histories,
the frequency spectra, and the Poincaré projections of
the representative chaotic response at the excitation
frequency w = 14.7.

Figures 5(a) and (b) show the time histories of the
deflection w;(0.5) and of the deflection w;(0.5) with
the time progress, which is normalized by the ex-
citation period 7.. The time histories of the chaotic
response include the phenomena of dynamic snap-
through. The amplitudes of response of the horizontal
beam are much larger than those of the vertical beam.

The Fourier spectra are shown in Figs. 5(c) and (d).
The ordinate indicates the amplitude A of the spec-
trum scaled by decibel. The abscissa indicates the non-
dimensional Fourier frequency w;,. The solid circles
on the abscissa indicate natural frequencies w;, (i =
1,2,3). In Fig. 5(c), the distinguished peaks of spec-
trum components are observed at the excitation fre-
quency w and the ultra-subharmonic frequency (2/3)w
predominantly. There are other peaks of spectrum cor-
responding to the subharmonic component (1/2)w
and the super-subharmonic component (3/5)w. In Fig.
5(d), the components of Fourier spectrum at the fre-
quencies @ and (2/3)w show the predominant peaks.
The small peaks of spectrum are also observed neigh-
boring to the natural frequencies w; and w3.

The Poincaré projections of the chaotic response
C(1;2/3) are shown in Figs. 5(e) and (f). The responses
of the deflection w;(0.5), (i = 1,2) and the velocity
Wi,y (0.5), (i = 1,2) are sampled at the phase de-
lay 6 = 0 radian from the maximum amplitude of
the excitation force. The projections show the typical
chaotic attractors. The Poincaré projection of the ver-
tical beam shows a fractal pattern more distinctly than
that of the horizontal beam.
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Fig. 5 Chaotic responses

(a)

(b)

C(1;2/3) at the excitation 1F
frequency w = 14.7,
(a) time history of the 0
deflection wq (0.5); (b) time _ -
history of the deflection 1= TES
w7(0.5); (¢) Fourier
spectrum of the response 2r
w1 (0.5); (d) Fourier 3k | | | | | |
spectrum of the response 20 30 40 50 60 70 80 20 30 40 50 60 70 80
w7(0.5); (e) Poincaré /T /T
projection between the ¢ €
deflection w; (0.5) and the
velocity Wi, q,r (0.5);
) Poir>1/carlé gog'ectgon 80 © 80 )
between the deflection 12)o 23w
w 12)w
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5.4 Inspection of the chaotic responses

When a random-like response has more than one pos-
itive Lyapunov exponent, the response can be con-
firmed as the chaos. The maximum Lyapunov expo-
nents of the chaotic responses C(1;2/3) are calculated
by the Wolf’s method. As shown in Fig. 6, Lyapunov
exponents Amax take the average value 1.9 within the
frequency region from w = 15.0 to w = 14.6.

The Lyapunov dimension dj of the chaotic re-
sponse is calculated by changing the assumed num-
ber of vibration modes I.. Figure 7 shows the Lya-
punov dimension of the chaotic response C(1;2/3) at
the excitation frequency w = 14.7. As the number of
assumed mode I, increases more than /. = 3, the Lya-
punov dimension d; converges to d; = 3. Therefore,
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Fig. 6 Maximum Lyapunov exponents related to excitation fre-
quency

three modes of vibration contribute predominantly to
the chaotic response.
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)
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N
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Fig. 7 Lyapunov dimension of the chaotic response C(1;2/3) at
the excitation frequency w = 14.7
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Fig. 8 Contribution ratio of each vibration mode in the chaotic
response C(1;2/3) at the excitation frequency w = 14.7, (a) the
results of the POD to deflection w;; (b) the results of the POD
to velocity w;,r

To inspect the contribution of vibration modes to
the chaotic responses C(1;2/3), the proper orthogo-
nal decomposition (POD) is applied to the chaotic
response. The chaotic response at the excitation fre-
quency w = 14.7 is calculated under the assumed
number of vibration modes I, = 5. Figure 8 shows the

Modal number i

Fig. 9 Contribution ratio of vibration modes in the chaotic re-
sponse C(1;2/3) at the excitation frequency o = 14.7, @: the
results of the POD with velocity w;,.; A: simplified estimation
with the value wiz Di

contribution ratio to the modal number. Related modal
patterns are also shown in the figure. Figure 8(a) shows
the result of the POD applied to the responses of de-
flection. The ordinate in Fig. 8(a) indicates the contri-
bution ratio u; which corresponds to the variance of
deflection. Figure 8(b) is the result of the POD applied
to the responses of velocity, where the ordinate indi-
cates the contribution ratio u} which is related to the
variance of velocity. The variance of velocity corre-
sponds to kinetic energy of vibration modes.

In both of the figures, three modes of vibration
contribute to the chaos dominantly. The three modes
correspond to the lowest, second, and third modes of
vibration. The lowest mode of vibration shows the
largest contribution ratio in the modes. When kinetic
energy of each vibration mode is evaluated with the
variance of velocity, contribution of higher modes in-
creases compared to the results of the variance of de-
flection.

To estimate kinetic energy of vibration modes with
the variance of deflection, the value “)12 pi is calcu-
lated, where w; is natural frequency and p; is eigen-
value derived from the variance of deflection writ-
ten in Sect. 4.4. The value wl.z pi corresponds to ki-
netic energy of the vibration mode of ith order and
is normalized as contribution ratio fi;. Figure 9 shows
the contribution ratio fi; as the simplified estimation
compared with the contribution ratio u; calculated
from the variance of velocity. The contribution ratio
ft; shows the similar order to the contribution ratio u}
approximately. The same results are obtained at other
excitation frequencies in the chaotic region.
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6 Conclusions

Chaotic vibrations of a post-buckled L-shaped beam
with an axial constraint have been analyzed theoreti-
cally. In the analysis, the governing equation including
nonlinear boundary conditions was derived with the
Lagrange’s method of undetermined multiplier. The
mode shape function was assumed to satisfy continuity
conditions in a prebuckled state. Applying the mod-
ified Galerkin procedure to the governing equation,
a set of nonlinear differential equations was reduced
with a multiple degree-of-freedom system. Modes of
vibration were calculated under the post-buckled con-
figuration. Utilizing the modes of vibration, the stan-
dard form of nonlinear differential equations of the
post-buckled L-shaped beam was obtained sequen-
tially. Based on the set of nonlinear differential equa-
tion, chaotic responses were inspected in detail. The
results are summarized as follows:

(1) Chaotic vibrations of the post-buckled L-shaped
beam are generated with the ultra-subharmonic
resonant response of 2/3 order corresponding to
the lowest mode of vibration predominantly.

(2) The number of vibration modes contributing to the
chaos is found to be three with the results of Lya-
punov dimension and the proper orthogonal de-
composition (POD).

(3) The contribution ratios in each mode are calcu-
lated to the kinetic energy in the POD. The contri-
bution of the first mode of vibration to the chaotic
response is dominant. The second and third modes
contribute to the chaos with 1% and 2%, respec-
tively.

(4) Contribution ratio is calculated with the response
of deflection in the POD and natural frequencies.
The results show the similar order to the results
calculated with the response of velocity in the
POD.

Appendix A

The coefficients cujk, pinj, panj and g,; (n =1,2;
Jj.k=1,...,5) are shown in the following Tables 3,
4 and 5.

@ Springer

Table 3 Coefficients cy j; of the mode shape function ¢y (§1)

J k

2 3 4 5
1 0.0000 0.0000 1.2129 —2.2129 1.0000
2 0.0000 0.0000 1.3168 —2.3167 1.0000
3 0.0000 0.0000 0.9899 —1.9899 1.0000
4 0.0000 0.0000 1.2217 —1.2217 1.0000
5 0.0000 0.0000 1.5322 —2.5321 1.0000

Table 4 Coefficients c; i of the mode shape function &3 (§2)

J k

2 3 4 5
1 0.0000  0.0000 0.1264 —0.1278  —0.0050
2 0.0000  0.0000 —0.6836 —-1.1270  —0.4500
3 0.0000  0.0000 0.2662 —0.1861  —0.0500
4 0.0000  0.0000 —0.6439 —1.1005  —0.4500
5 0.0000  0.0000 2.1581 —4.1499 2.0000

Table 5 Coefficients p1,j, panj and gnj (n =1, 2) of the mode
shape function &, (&,)

Jopnj D12j q1j D21j P22 qQ2j

1 0.000 0.000 0.000  0.000 0.000  0.000
2 0.870 —1.429 —0.038 0.000 0.000  0.000
3 1.013 —-3.082 —0.007 0.563 —5.059 0.002
4 1.839 —0.820 —0.707 0.844 —2.042 0.001
5 2335 —1.519 —0.848 0986 —1.915 0.006
Appendix B

The coefficients in the nonlinear ordinary differential
equation (23) are shown below.

S 0 0
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as the following equations:

, and K,;;1 are defined

I f (0O d,, “2)
VA f Ve dg,, 43)
Knijt = / 66009 dg,. (44)

The notation ;rf;") represents mth order derivative of
the mode shape function ¢,;(§,) with respect to the
coordinate &,.
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