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Abstract In this paper, we are concerned with the
synchronization problem of a class of stochastic
reaction-diffusion neural networks with time-varying
delays and Dirichlet boundary conditions. By using
the Lyapunov–Krasovskii functional method, feed-
back control approach and stochastic analysis tech-
nology, delay-dependent synchronization conditions
including the information of reaction-diffusion terms
are presented, which are expressed in terms of linear
matrix inequalities (LMIs). The feedback controllers
can be constructed by solving the derived LMIs. Fi-
nally, illustrative examples are given to show the ef-
fectiveness of the proposed technique.

Keywords Synchronization · Reaction-diffusion ·
Chaotic neural networks · LMIs

1 Introduction

Synchronization of chaotic systems has attracted con-
siderable attention over the past decades due to their
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extensive applications in secure communication, par-
allel recognition, image processing, and other engi-
neering areas [3, 26, 40, 47]. A great deal of effective
approaches such as drive-response method [12, 21,
42], adaptive control method [24, 31, 33], impulsive
control method [15, 46], sliding mode control method
[8, 9, 13] have been proposed to synchronize chaotic
systems. Recently, it has been found that neural net-
works can exhibit some complicated dynamics such
as periodic oscillations and even chaotic attractors if
time delays and parameters of networks are chosen ap-
propriately [6, 22]. Consequently, a great number of
results on synchronization issue of chaotic neural net-
works have been reported in the literature; see, e.g.,
[1, 2, 14, 16, 17, 24, 29, 30, 43, 48, 49] and the refer-
ences therein. There are several significant synchro-
nization definitions for stochastic systems, such as
mean square asymptotic synchronization and almost
sure synchronization [32]. Usually, a system is said to
be mean square asymptotically synchronized if the er-
ror converges to zero in quadratic mean, while a sys-
tem is said to be almost surely synchronized if the er-
ror converges to zero with probability one.

In the real world, there are lots of reaction-diffusion
phenomena in nature and engineering fields. Strictly
speaking, diffusion effects cannot be avoided in the
neural networks model when electrons are moving in
asymmetric electromagnetic fields [18]. Therefore, it
is reasonable and significant to take reaction-diffusion
effect into full account in the research of neural net-
works. Many results on stability analysis of reaction-
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diffusion neural networks have been presented in the
literature; see, for example, [5, 19, 23, 25, 27, 35, 36,
38, 39] and the references therein.

Recently, the problem of synchronization control
of reaction-diffusion neural networks has been ad-
dressed in the literature. In [20, 37], the problem
of asymptotic synchronization of delayed reaction-
diffusion neural networks was studied with feedback
control approach; adaptive exponential synchroniza-
tion of reaction-diffusion neural networks was dis-
cussed in [11]. When Dirichlet boundary conditions
of diffusion equation were considered, sufficient syn-
chronization conditions were presented in [7, 34, 41].
The synchronization problem was investigated under
the impulsive control in [7], where the proposed crite-
rion was based on the p-norm. By using the Lyapunov
functional method, results on exponential synchro-
nization of reaction-diffusion neural networks were
provided in [34]. When fuzzy logic in the structure
of networks appears, the synchronization criteria were
presented in [41], in which the effect of reaction-
diffusion was considered. It is worth noting that all
of the above reported conditions are derived by certain
inequality technique and expressed in the form of alge-
braic inequalities, which makes their checking some-
what difficult and inconvenient by the developed algo-
rithms. Moreover, all of these are delay-independent,
which are generally more conservative than the delay-
dependent ones. On the other hand, the synaptic trans-
mission in real nervous systems is a noisy process
[10, 28, 44], and stochastic disturbances play impor-
tant roles in chaos synchronization [31]. Therefore,
it is of both practical and theoretical importance to
study the problem of synchronization of stochastic de-
layed reaction-diffusion neural networks with Dirich-
let boundary conditions.

In this paper, we consider the problem of synchro-
nization of a class of stochastic reaction-diffusion neu-
ral networks with time-varying delays and Dirichlet
boundary conditions. The main purpose of this paper
is to provide mean square asymptotic synchronization
criteria and almost sure synchronization criteria for
the considered chaotic neural networks. Based on the
Lyapunov–Krasovskii functional method, feedback
control approach, partial differential equation concept,
and stochastic analysis technology, we present delay-
dependent synchronization conditions including the
information of reaction-diffusion terms. The derived
synchronization schemes are expressed in terms of
LMIs, which can be checked easily by Matlab LMI

Toolbox. Finally, the effectiveness of the developed
methods is illustrated by simulation examples.

Notation Throughout this paper, for real symmet-
ric matrices X and Y, the notation X ≥ Y (respec-
tively, X > Y ) means that the matrix X −Y is positive
semidefinite (respectively, positive definite). λmin(X)

denotes the minimum eigenvalue of matrix X. I is an
identity matrix with appropriate dimension. Rn de-
notes the n-dimensional Euclidean space, and the no-
tation | · | refers to the Euclidean vector norm. The
notation MT represents the transpose of the matrix
M . The symmetric terms in a symmetric matrix are
denoted by ∗. (Ω, F , {Ft }t≥0, P ) denotes a complete
probability space with a filtration {Ft }t≥0, where Ω

is a sample space, F is the σ -algebra of subset of
the sample space and P is the probability measure
on F . Ψ is an open bounded domain with smooth
boundary ∂Ψ and mesΨ > 0 denotes the measure
of Ψ , dS is the element of ∂Ψ, n̄ is the outer nor-
mal vector of ∂Ψ. Cn

0 (Ψ ) represents the space of
derivable of n-order real functions with compact sup-
port on Ψ. Let L2(R×Ψ, Rn) denote the space of
real Lebesgue measurable functions on R×Ψ. De-
fine the norm ‖y(t, x)‖2 = (

∑n
i=1 ‖yi(t, x)‖2)1/2,

‖yi(t, x)‖ = (
∫
Ψ

|yi(t, x)|2dx)1/2 for any y(t, x) ∈
L2(R×Ψ, Rn). Denote by Lp

F0
([−τ̄ ,0] × Ψ, Rn)

the family of all F0-measurable C([−τ̄ ,0] × Ψ, Rn)-
valued random variables ξ = {ξ(θ) : −τ̄ ≤ θ ≤ 0} such
that sup−τ̄≤θ≤0 E ‖ξ(θ)‖2

2 < ∞ where E {·} is the ex-
pectation operator with respect to some probability
measure P . Matrices, if not explicitly stated, are as-
sumed to have compatible dimensions.

2 Problem formulation

We consider the following reaction-diffusion delayed
neural network:

dui(t, x)

dt
=

l∑

k=1

∂

∂xk

(

Dik

∂ui(t, x)

∂xk

)

− ciui(t, x)

+
n∑

j=1

aijfj

(
uj (t, x)

)

+
n∑

j=1

bijfj

(
uj

(
t − τ(t), x

)) + Ji,

i = 1,2, . . . , n (1)



Synchronization of stochastic chaotic neural networks with reaction-diffusion terms 2185

or, in a compact form:

du(t, x)

dt
=

l∑

k=1

∂

∂xk

(

Dk

∂u(t, x)

∂xk

)

− Cu(t, x)

+ Af
(
u(t, x)

)

+ Bf
(
u
(
t − τ(t), x

)) + J, (2)

where

u(t, x) = [
u1(t, x), u2(t, x), . . . , un(t, x)

]T
,

f
(
u(t, x)

) = [
f1

(
u1(t, x)

)
, f2

(
u2(t, x)

)
, . . . ,

fn

(
un(t, x)

)]T
,

f
(
u
(
t − τ(t), x

)) = [
f1

(
u1

(
t − τ(t), x

))
, , . . . ,

fn

(
un

(
t − τ(t), x

))]T
,

C = diag{c1, c2, . . . , cn},
Dk = diag{D1k,D2k, . . . ,Dnk},
J = diag{J1, J2, . . . , Jn},

x = (x1, x2, . . . , xl)
T ∈ Ψ ⊂ Rl , Ψ = {x | |xk| ≤ Lk},

Lk is a constant, k = 1, 2, . . . , l; ui(t, x) is the state
of the ith neuron; fi(ui(t, x)) denotes the activation
function of the ith neuron; Ji denotes the external in-
put on the ith neuron; ci > 0 represents the rate with
which the ith unit will reset its potential to the resting
state in isolation when disconnected from the networks
and external inputs; A = (aij )n×n is the connection
weigh matrix; B = (bij )n×n is the delayed connec-
tion weigh matrix; Dik = Dik(t, x) > 0 denotes the
transmission diffusion operator along the ith neuron;
τ(t) represents the transmission delay that satisfies

0 < τ(t) ≤ τ̄ , τ̇ (t) ≤ μ < 1.

The boundary condition and initial condition for sys-
tem (2) are given by

u(t, x) = 0, (t, x) ∈ [−τ̄ ,∞] × ∂Ψ,

u(s, x) = φ(s, x), (s, x) ∈ [−τ̄ ,0] × Ψ,

where φ(s, x) = [φ1(s, x),φ2(s, x), . . . , φn(s, x)]T .
Based on the drive-response concept for synchro-

nization of coupled chaotic systems, the correspond-
ing response system of (2) is constructed as

dũ(t, x) =
[

l∑

k=1

∂

∂xk

(

Dk

∂ũ(t, x)

∂xk

)

− Cũ(t, x)

+ Af
(
ũ(t, x)

) + Bf
(
ũ
(
t − τ(t), x

))

+ J + V (t, x)

]

dt

+ σ
(
t, ũ(t, x) − u(t, x), ũ

(
t − τ(t), x

)

− u
(
t − τ(t), x

))
dω(t), (3)

where V (t, x) indicates the control input, which will
be appropriately designed. σ is a matrix valued func-
tion; ω(t) is a vector-form Brownian motion on
(Ω, F , {Ft }t≥0, P ), which is assumed to satisfy

E
{
dω(t)

} = 0, E
{
dω2(t)

} = dt.

The boundary condition and initial condition for sys-
tem (3) are given as

ũ(t, x) = 0, (t, x) ∈ [−τ̄ ,∞] × ∂Ψ,

ũ(s, x) = ϕ(s, x), (s, x) ∈ [−τ̄ ,0] × Ψ,

where ϕ(s, x) = [ϕ1(s, x),ϕ2(s, x), . . . , ϕn(s, x)]T .
Consider a delayed state feedback controller

V (t, x) = K1
[
ũ(t, x) − u(t, x)

]

+ K2
[
ũ
(
t − τ(t), x

) − u
(
t − τ(t), x

)]
,

where K1 and K2 are the controller gains to be deter-
mined. Define the synchronization error as e(t, x) =
ũ(t, x) − u(t, x); thus, the error dynamical system be-
tween (2) and (3) is given by

de(t, x) =
[

l∑

k=1

∂

∂xk

(

Dk

∂e(t, x)

∂xk

)

− Ce(t, x)

+ Ag
(
e(t, x)

) + Bg
(
e
(
t − τ(t), x

))

+ K1e(t, x) + K2e
(
t − τ(t), x

)
]

dt

+ σ
(
t, e(t, x), e

(
t − τ(t), x

))
dω(t), (4)

where

g
(
e(t, x)

) = f
(
ũ(t, x)

) − f
(
u(t, x)

)

= f
(
e(t, x) + u(t, x)

) − f
(
u(t, x)

)
.
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Throughout this paper, the following assumptions,
definitions and lemma are needed to derive our main
results.

Assumption 1 [45] For any α,β ∈ R, α 	= β

γj ≤ fj (α) − fj (β)

α − β
≤ νj , j = 1,2, . . . , n,

where γj and νj are known constant scalars.

Assumption 2 There exist positive constants ρ1 and
ρ2 such that

trace
(
σT (t)σ (t)

) ≤ ρ1e
T (t, x)e(t, x)

+ ρ2e
T
(
t − τ(t), x

)
e
(
t − τ(t), x

)
.

Definition 1 The system of (2) and (3) is said to be
asymptotically synchronized in the mean square, if for
any given ϕ,φ ∈ Lp

F0
([−τ̄ ,0] × Ψ, Rn),

lim
t→∞ E

∥
∥e(t, x;ϕ − φ)

∥
∥2

2 = 0.

Definition 2 The system of (2) and (3) is said to
be almost surely (a.s.) synchronized, if for any given
ϕ,φ ∈ Lp

F0
([−τ̄ ,0] × Ψ, Rn) the following formula

holds:

lim
t→∞ e(t, x;ϕ − φ) = 0.

Lemma 1 (Friedrichs inequality [4]) For u ∈ C1
0(Ψ ),

and Ψ ⊂ Ψ1 ⊂ Rn Ψ1 = {x | |xk| ≤ δ}, k = 1,2, . . . , n,

we have
∫

Ψ

u2(x) dx ≤ δ2

n

∫

Ψ

n∑

k=1

(
∂u

∂xk

)2

dx.

The objective of this paper is to establish synchro-
nization conditions for the reaction-diffusion neural
network (2) and (3) with Dirichlet boundary condi-
tions.

3 Main results

For convenience, we use the following notations:

Λ1 = diag{γ1, γ2, . . . , γn},
Λ2 = diag{ν1, ν2, . . . , νn},
DL = diag

{
l∑

k=1

D1k

L2
k

,

l∑

k=1

D2k

L2
k

, . . . ,

l∑

k=1

Dnk

L2
k

}

.

Now we present our main results as follows.

Theorem 1 For given scalars τ̄ > 0, μ < 1, under As-
sumptions 1 and 2, the two coupled reaction-diffusion
neural networks (2) and (3) are asymptotically syn-
chronized in the mean square, if there exist a scalar
λ > 0, matrices Q1 > 0, Q2 > 0, Q3 > 0, R > 0,
T > 0, diagonal matrices P > 0, H1 > 0, H2 > 0,

such that the following LMIs hold:

P − λI ≤ 0, (5)

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 PK2 0 PA + H1(Λ1+Λ2)
2 PB T

∗ �22 0 0 H2(Λ1+Λ2)
2 0

∗ ∗ −Q2 0 0 −T

∗ ∗ ∗ Q3 − H1 0 0
∗ ∗ ∗ ∗ (μ − 1)Q3 − H2 0
∗ ∗ ∗ ∗ ∗ − 1

τ̄
R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (6)

where

�11 = −2PC − 2PDL + PK1 + KT
1 P T + Q1

+ Q2 + τ̄R + λρ1I − Λ1H1Λ2,

�22 = −(1 − μ)Q1 − Λ1H2Λ2 + λρ2I,

P = diag{P1,P2, . . . ,Pn}.

Proof Define a Lyapunov–Krasovskii functional can-
didate for system (4) as

V
(
t, e(t, x)

)

=
∫

Ψ

eT (t, x)P e(t, x) dx
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+
∫

Ψ

∫ t

t−τ(t)

eT (s, x)Q1e(s, x) ds dx

+
∫

Ψ

∫ t

t−τ̄

eT (s, x)Q2e(s, x) ds dx

+
∫

Ψ

∫ t

t−τ(t)

gT
(
e(s, x)

)
Q3g

(
e(s, x)

)
ds dx

+
∫

Ψ

∫ 0

−τ̄

∫ t

t+θ

eT (s, x)Re(s, x) ds dθ dx

+
∫

Ψ

[∫ t

t−τ̄

eT (s, x) dsT

∫ t

t−τ̄

e(s, x)ds

]

dx. (7)

By using Itô differential formula, we obtain

LV
(
t, e(t, x)

) = 2
∫

Ψ

eT (t, x)P

[
l∑

k=1

∂

∂xk

×
(

Dk

∂e(t, x)

∂xk

)

− Ce(t, x)

+ Ag
(
e(t, x)

) + Bg
(
e(t − τ(t), x)

)

+ K1e(t, x) + K2e
(
t − τ(t), x

)
]

+ trace
(
σT (t)Pσ(t)

)

+
∫

Ψ

eT (t, x)Q1e(t, x) dx

− (
1 − τ̇ (t)

)
∫

Ψ

eT
(
t − τ(t), x

)

× Q1e
(
t − τ(t), x

)
dx

+
∫

Ψ

eT (t, x)Q2e(t, x) dx

−
∫

Ψ

eT
(
t − τ̄ , x

)
Q2e

(
t − τ̄ , x

)
dx

+
∫

Ψ

gT
(
e(t, x)

)
Q3g

(
e(t, x)

)
dx

− (
1 − τ̇ (t)

)
∫

Ψ

gT
(
e
(
t − τ(t), x

))

× Q3g
(
e
(
t − τ(t), x

))
dx

+ τ̄

∫

Ψ

eT (t, x)Re(t, x) dx

−
∫

Ψ

∫ t

t−τ̄

eT (s, x)Re(s, x) ds dx

+ 2
∫

Ψ

[
(
eT (t, x) − eT (t − τ̄ , x)

)

× T

∫ t

t−τ̄

e (s, x) ds

]

dx. (8)

From Green formula and Dirichlet boundary condi-
tions, we have

∫

Ψ

ei(t, x)Pi

l∑

k=1

∂

∂xk

(

Dik

∂ei(t, x)

∂xk

)

dx

=
∫

∂Ψ

(

ei(t, x)PiDik

∂ei(t, x)

∂xk

)l

k=1
· n̄ dS

−
∫

Ψ

Pi

l∑

k=1

Dik

(
∂ei(t, x)

∂xk

)2

dx

= −
∫

Ψ

Pi

l∑

k=1

Dik

(
∂ei(t, x)

∂xk

)2

dx, (9)

where

(

ei(t, x)PiDik

∂ei(t, x)

∂xk

)l

k=1

=
(

ei(t, x)PiDi1
∂ei(t, x)

∂x1
, . . . ,

ei(t, x)PiDil

∂ei(t, x)

∂xl

)T

.

By Lemma 1, it can be seen that

−
∫

Ψ

Pi

l∑

k=1

Dik

(
∂ei(t, x)

∂xk

)2

dx

≤ −
∫

Ψ

l∑

k=1

Pi

Dik

L2
k

e2
i (t, x) dx. (10)

Thus,

2
∫

Ψ

eT (t, x)P

l∑

k=1

∂

∂xk

(

Dk

∂e(t, x)

∂xk

)

dx

= 2
∫

Ψ

n∑

i=1

ei(t, x)Pi

l∑

k=1

∂

∂xk

(

Dik

∂ei(t, x)

∂xk

)

dx
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≤ −2
∫

Ψ

n∑

i=1

Pi

l∑

k=1

Dik

L2
k

e2
i (t, x) dx

= −2
∫

Ψ

eT (t, x)PDLe(t, x) dx. (11)

From Assumption 2 and (5), we have

trace
(
σT (t)Pσ(t)

) ≤ λρ1e
T (t, x)e(t, x)

+ λρ2e
T
(
t − τ(t), x

)

× e
(
t − τ(t), x

)
. (12)

It can be deduced from Assumption 1 that, for diago-
nal matrices H1 > 0, H2 > 0, the following inequali-
ties hold:

0 ≥ eT (t, x)Λ1H1Λ2e(t, x) − eT (t, x)H1(Λ1 + Λ2)

× g
(
e(t, x)

) + gT
(
e(t, x)

)
H1g

(
e(t, x)

)
, (13)

0 ≥ eT
(
t − τ(t), x

)
Λ1H2Λ2e

(
t − τ(t), x

)

− eT
(
t − τ(t), x

)
H2(Λ1 + Λ2)g

(
e
(
t − τ(t), x

))

+ gT
(
e
(
t − τ(t), x

))
H2g

(
e
(
t − τ(t), x

))
. (14)

In addition, it is easy to get the following inequality
from Jensen inequality:

−
∫

Ψ

∫ t

t−τ̄

eT (s, x)Re(s, x) ds dx

≤ − 1

τ̄

∫

Ψ

[∫ t

t−τ̄

e(s, x) ds

]T

R

[∫ t

t−τ̄

e(s, x) ds

]

dx.

(15)

Combining (8)–(15) results in

LV (t, e(t, x))

≤
∫

Ψ

eT (t, x)
[−2PDL − 2PC + PK1

+ KT
1 P T + Q1 + Q2 + τ̄R + λρ1I

− Λ1H1Λ2
]
e(t, x)dx

+
∫

Ψ

eT (t, x)
[
2PA + H1(Λ1 + Λ2)

]

× g
(
e(t, x)

)
dx

+ 2
∫

Ψ

eT (t, x)PBg
(
e
(
t − τ(t), x

))
dx

+ 2
∫

Ψ

eT (t, x)PK2e
(
t − τ(t), x

)
dx

+
∫

Ψ

eT
(
t − τ(t), x

)
H2(Λ1 + Λ2)

× g
(
e
(
t − τ(t), x

))
dx

+
∫

Ψ

eT
(
t − τ(t), x

)[
λρ2I − (1 − μ)Q1

− Λ1H2Λ2
]
e
(
t − τ(t), x

)
dx

−
∫

Ψ

eT (t − τ̄ , x)Q2e(t − τ̄ , x) dx

+
∫

Ψ

gT
(
e(t, x)

)
(Q3 − H1)g

(
e(t, x)

)
dx

+ 2
∫

Ψ

eT (t, x)T

∫ t

t−τ̄

e(s, x) ds dx

− 2
∫

Ψ

eT (t − τ̄ , x)T

∫ t

t−τ̄

e(s, x) ds dx

− 1

τ̄

∫

Ψ

[∫ t

t−τ̄

e(s, x) ds

]T

R

[∫ t

t−τ̄

e(s, x) ds

]

dx

=
∫

Ψ

ξT (t, x)Ξξ(t, x) dx

≤ −λmin(−Ξ)
∥
∥ξ(t, x)

∥
∥2

2

< 0,

for ξ(t, x) 	= 0, where

ξT (t, x)

= [
eT (t, x) eT (t − τ(t), x) eT (t − τ̄ , x) gT (e(t, x))

gT (e(t − τ(t), x))
∫ t

t−τ̄
eT (s, x)ds

]
.

Thus, it is easy to see that system of (2) and (3)
is asymptotically synchronized in the mean square
through Lyapunov–Krasovskii theory. This completes
the proof. �

Based on Theorem 1, we are now ready to give the
parameterization of the controller gains in the follow-
ing theorem.

Theorem 2 For given scalars τ̄ > 0, μ < 1, un-
der Assumptions 1 and 2, the two coupled reaction-
diffusion neural networks (2) and (3) are asymptoti-
cally synchronized in the mean square, if there exist
a scalar λ > 0, matrices Q1 > 0, Q2 > 0, Q3 > 0,
R > 0, T > 0, X1, X2, diagonal matrices P > 0,

H1 > 0, H2 > 0, such that the following LMIs hold:
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P − λI ≤ 0, (16)

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 X2 0 PA + H1(Λ1+Λ2)
2 PB T

∗ �22 0 0 H2(Λ1+Λ2)
2 0

∗ ∗ −Q2 0 0 −T

∗ ∗ ∗ Q3 − H1 0 0

∗ ∗ ∗ ∗ (μ − 1)Q3 − H2 0

∗ ∗ ∗ ∗ ∗ − 1
τ̄
R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (17)

where

�11 = −2PC − 2PDL + X1 + XT
1 + Q1 + Q2

+ τ̄R + λρ1I − Λ1H1Λ2,

�22 = −(1 − μ)Q1 − Λ1H2Λ2 + λρ2I,

P = diag{P1,P2, . . . ,Pn}.

Proof Let K1 = P −1X1, K2 = P −1X2 in Theorem 1,
then we can obtain the desired result immediately. �

Remark 1 Based on the Lyapunov stability theory for
stochastic systems, analysis method for partial dif-
ferential equation and the drive-response concept, we
have provided theoretical results in Theorems 1 and
2 on asymptotic synchronization in the mean square
of stochastic delayed neural networks with reaction-
diffusion term. The results are expressed by a set of
LMIs, which can be solved readily using Matlab LMI
Toolbox.

Remark 2 If we set σ(t, e(t, x), e(t − τ(t), x)) = 0,

the synchronization problem for reaction-diffusion
neural networks without stochastic perturbation has
been studied in [7, 11, 20, 34, 37, 41]. However, the

results of these are not presented in terms of LMIs,
which makes their checking by the developed algo-
rithms somewhat difficult and inconvenient. Further-
more, the sign of elements in connection weight is not
considered in these provided criteria, which may lead
to conservatism to some extent.

Remark 3 It is worth noting that almost all results
about dynamics analysis or synchronization problem
about reaction-diffusion system are delay-independent
in the literature due to the difficulty in dealing with
the reaction-diffusion term. In our results, the delay-

dependent conditions are derived in virtue of the ap-
propriate Lyapunov–Krasovskii functional.

The following theorem represents the almost sure
synchronization result.

Theorem 3 For given scalars τ̄ > 0, μ < 1, under As-
sumptions 1 and 2, the reaction-diffusion neural net-
works (2) and (3) are almost surely synchronized, if
there exist a scalar λ > 0, matrices Q1 > 0, Q2 > 0,
Q3 > 0, R > 0, T > 0, W > 0, diagonal matrices
P > 0, H1 > 0, H2 > 0, such that the following LMIs
hold:

P − λI ≤ 0, (18)

Π =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π11 PK2 0 PA + H1(Λ1+Λ2)
2 PB T

∗ Π22 0 0 H2(Λ1+Λ2)
2 0

∗ ∗ −Q2 0 0 −T

∗ ∗ ∗ Q3 − H1 0 0

∗ ∗ ∗ ∗ (μ − 1)Q3 − H2 0

∗ ∗ ∗ ∗ ∗ − 1
τ̄
R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (19)
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where

Π11 = −2PC − 2PDL + PK1 + KT
1 P T + Q1

+ Q2 + τ̄R + λρ1I − Λ1H1Λ2 + W,

Π22 = −(1 − μ)Q1 − Λ1H2Λ2 + λρ2I − W,

P = diag{P1,P2, . . . ,Pn}.

Proof Define a Lyapunov–Krasovskii functional can-
didate for system (4) as

V
(
t, e(t, x)

)

=
∫

Ψ

eT (t, x)P e(t, x) dx

+
∫

Ψ

∫ t

t−τ(t)

eT (s, x)Q1e(s, x) ds dx

+
∫

Ψ

∫ t

t−τ̄

eT (s, x)Q2e(s, x) dsdx

+
∫

Ψ

∫ t

t−τ(t)

gT
(
e(s, x)

)
Q3g

(
e(s, x)

)
ds dx

+
∫

Ψ

∫ 0

−τ̄

∫ t

t+θ

eT (s, x)Re(s, x) ds dθ dx

+
∫

Ψ

[∫ t

t−τ̄

eT (s, x) dsT

∫ t

t−τ̄

e(s, x) ds

]

dx.

(20)

By using Itô differential formula and after some
derivation, we obtain

LV
(
t, e(t, x)

)

≤
∫

Ψ

eT (t, x)
[−2PDL − 2PC

+ 2PK1 + Q1 + Q2 + τ̄R + λρ1I

− Λ1H1Λ2
]
e(t, x) dx

+
∫

Ψ

eT (t, x)
[
2PA + H1(Λ1 + Λ2)

]

× g
(
e(t, x)

)
dx

+ 2
∫

Ψ

eT (t, x)PBg
(
e
(
t − τ(t), x

))
dx

+ 2
∫

Ψ

eT (t, x)PK2e
(
t − τ(t), x

)
dx

+
∫

Ψ

eT
(
t − τ(t), x

)
H2(Λ1 + Λ2)

× g
(
e
(
t − τ(t), x

))
dx

+
∫

Ψ

eT
(
t − τ(t), x

)[
λρ2I − (1 − μ)Q1

− Λ1H2Λ2
]
e
(
t − τ(t), x

)
dx

−
∫

Ψ

eT (t − τ̄ , x)Q2e(t − τ̄ , x) dx

+
∫

Ψ

gT
(
e(t, x)

)
(Q3 − H1)g

(
e(t, x)

)
dx

+ 2
∫

Ψ

[
(
eT (t, x) − eT (t − τ̄ , x)

)
T

×
∫ t

t−τ̄

e(s, x) ds

]

dx

− 1

τ̄

∫

Ψ

[∫ t

t−τ̄

e(s, x) ds

]T

R

[∫ t

t−τ̄

e(s, x) ds

]

dx

+
∫

Ψ

eT (t, x)We(t, x) dx

−
∫

Ψ

eT (t, x)We(t, x) dx

+
∫

Ψ

eT
(
t − τ(t), x

)
We

(
t − τ(t), x

)
dx

−
∫

Ψ

eT
(
t − τ(t), x

)
We

(
t − τ(t), x

)
dx

=
∫

Ψ

ξT (t, x)Πξ(t, x) dx

−
∫

Ψ

eT (t, x)We(t, x) dx

+
∫

Ψ

eT
(
t − τ(t), x

)
We

(
t − τ(t), x

)
dx

≤ −η

(∫

Ψ

eT (t, x)e(t, x) dx

+
∫

Ψ

eT
(
t − τ(t), x

)
e
(
t − τ(t), x

)
dx

)

−
∫

Ψ

eT (t, x)We(t, x) dx

+
∫

Ψ

eT
(
t − τ(t), x

)
We

(
t − τ(t), x

)
dx

= −
∫

Ψ

eT (t, x)(W + ηI)e(t, x) dx

+
∫

Ψ

eT
(
t − τ(t), x

)
(W − ηI)e

(
t − τ(t), x

)
dx

= −w1
(
e(t, x)

) + w2
(
e
(
t − τ(t), x

))
,
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where η = λmin(−Π) > 0 and

ξT (t, x)

= [eT (t, x) eT (t − τ(t), x) eT (t − τ̄ , x)

gT (e(t, x)) gT (e(t − τ(t), x))
∫ t

t−τ̄
eT (s, x) ds].

It is obvious that w1(e(t, x)) > w2(e(t, x)) for any
e(t, x) 	= 0. Therefore, by LaSalle-type invariant prin-
ciple of stochastic differential equation [14, 49], we
can see that the system of (2) and (3) can be almost
surely synchronized. The proof is completed. �

By the analysis result in Theorem 3, the controller
gains K1 and K2 can be obtained readily.

Theorem 4 For given scalars τ̄ > 0, μ < 1, under As-
sumptions 1 and 2, the two coupled reaction-diffusion
neural networks (2) and (3) are almost surely synchro-
nized, if there exist a scalar λ > 0, matrices Q1 > 0,
Q2 > 0, Q3 > 0, R > 0, T > 0, W > 0, X1, X2, di-
agonal matrices P > 0, H1 > 0, H2 > 0, such that the
following LMIs hold:

P − λI ≤ 0, (21)

Π =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π11 X2 0 PA + H1(Λ1+Λ2)
2 PB T

∗ Π22 0 0 H2(Λ1+Λ2)
2 0

∗ ∗ −Q2 0 0 −T

∗ ∗ ∗ Q3 − H1 0 0
∗ ∗ ∗ ∗ (μ − 1)Q3 − H2 0
∗ ∗ ∗ ∗ ∗ − 1

τ̄
R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (22)

where

Π11 = −2PC − 2PDL + X1 + XT
1 + Q1 + Q2

+ τ̄R + λρ1I − Λ1H1Λ2 + W,

Π22 = −(1 − μ)Q1 − Λ1H2Λ2 + λρ2I − W,

P = diag{P1,P2, . . . ,Pn}.

Proof Let K1 = P −1X1, K2 = P −1X2 in Theorem 3,
then we can get the desired result readily. �

Remark 4 To the best of our knowledge, the almost
sure synchronization problem for neural networks
with reaction-diffusion still has not been investigated
fully in the literature. By virtue of the LaSalle-type
invariant principle of stochastic differential equation,
almost sure synchronization conditions for stochas-
tic reaction-diffusion neural networks are proposed in
Theorems 3 and 4. The criteria are delay-dependent
and expressed in terms of LMIs.

4 Illustrative examples

In this section, we shall give some examples to demon-
strate the effectiveness of the proposed approach in the
paper.

Example 1 Consider the following reaction-diffusion
neural networks:

du(t, x)

dt
= ∂

∂x

(

D
∂u(t, x)

∂x

)

− Cu(t, x)

+ Af
(
u(t, x)

) + Bf
(
u
(
t − τ(t), x

))
,

(23)

where

C =
[

1.0 0.0
0.0 1.0

]

, A =
[

2.0 −0.1
−5.0 2.8

]

,

B =
[−1.6 −0.1
−0.3 −2.5

]

, D =
[

0.1 0.0
0.0 0.1

]

,

and

x ∈ [−2,2], f (α) = tanh(α), τ (t) = 1.

The corresponding response system can be given as

dũ(t, x)

=
[

∂

∂x

(

D
∂ũ(t, x)

∂x

)

− Cũ(t, x) + Af
(
ũ(t, x)

)

+ Bf
(
ũ(t − τ(t), x)

) + V (t, x)

]

dt
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Fig. 1 Chaotic behaviors of u1(t, x) of system (23)

Fig. 2 Chaotic behaviors of u2(t, x) of system (23)

+ σ
(
t, ũ(t, x) − u(t, x),

ũ
(
t − τ(t), x

) − u(t − τ(t), x)
)
dω(t), (24)

where

σ
(
t, e(t, x), e

(
t − τ(t), x

))

=
(

e1(t, x) 0

0 e2(t − τ(t), x)

)

.

Thus, we can set ρ1 = ρ2 = 1. The initial conditions
are u(t, x) = [−0.5,2.1]T , ũ(t, x) = [0.5,−0.5]T ,

and the boundary conditions are set as Dirichlet
boundary conditions. The simulation results of system
(23) are provided in Figs. 1–2. The chaotic behavior
on the section can be seen in Figs. 3 and 4, where x is
set as −1.5 and 0.5, respectively.

By using the Matlab LMI control Toolbox to solve
the LMIs in Theorem 2, we obtain a set of feasible

Fig. 3 Chaotic behaviors of system (23) when x = −1.5

Fig. 4 Chaotic behaviors of system (23) when x = 0.5

solutions as

P =
[

13.3861 0
0 5.1928

]

,

Q1 =
[

135.3701 −0.2855
−0.2855 135.6596

]

,

Q2 =
[

85.0808 0.1991
0.1991 85.4081

]

,

Q3 =
[

38.0962 2.4755
2.4755 41.2688

]

,

R =
[

91.0809 0.2434
0.2434 91.4243

]

,
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Fig. 5 Dynamical behavior of synchronization error e1(t, x) of
Example 1

T =
[

31.0997 −0.1817
−0.1817 31.0819

]

,

H1 =
[

33.8932 0
0 35.4738

]

,

H2 =
[

61.3025 0
0 61.7208

]

,

X1 =
[−268.9010 269.4968
−245.4324 −265.1668

]

,

X2 =
[

7.1808 0.3631
−0.0322 4.5636

]

, λ = 68.5803,

K1 =
[−20.0881 20.1326
−47.2644 −51.0648

]

,

K2 =
[

0.5364 0.0271
−0.0062 0.8788

]

.

Therefore, the system of (23) and (24) with Dirichlet
boundary conditions and parameters given in this ex-
ample is asymptotically synchronized with the control
gains K1 and K2. It is obvious that the information
of reaction-diffusion terms plays an important part in
synchronization. The dynamical behavior of the error
system can be seen in Figs. 5 and 6.

Example 2 Consider the following reaction-diffusion
neural networks with Dirichlet boundary conditions:

du(t, x)

dt
= ∂

∂x

(

D
∂u(t, x)

∂x

)

− Cu(t, x)

+ Af
(
u(t, x)

) + Bf
(
u
(
t − τ(t), x

))
,

(25)

Fig. 6 Dynamical behavior of synchronization error e2(t, x) of
Example 1

and

dũ(t, x) =
[

∂

∂x

(

D
∂ũ(t, x)

∂x

)

− Cũ(t, x)

+ Af
(
ũ(t, x)

) + Bf
(
ũ(t − τ(t), x)

)

+ V (t, x)

]

dt

+ σ
(
t, ũ(t, x) − u(t, x),

ũ
(
t − τ(t), x

) − u
(
t − τ(t), x

))
dω(t),

(26)

where x ∈ [−2,2], f (α) = tanh(α), τ (t) = 1, ρ1 =
ρ2 = 1, and

C =
[

1.0 0.0
0.0 1.0

]

, A =
[

2.0 −0.1
−5.0 3.2

]

,

B =
[−1.5 −0.1
−0.2 −2.5

]

, D =
[

0.1 0.0
0.0 0.1

]

.

The simulation results of system (25) with the ini-
tial conditions u(t, x) = [0.4,1.1]T and ũ(t, x) =
[−0.2,−0.5]T are given in Figs. 7 and 8. The chaotic
behavior can be seen in Figs. 9 and 10, where x is set
as −1.5 and 0.5, respectively.

Consider the problem of almost sure synchroniza-
tion; a set of feasible solutions can be obtained by us-
ing the Matlab LMI control Toolbox to solve the LMIs
in Theorem 4:

P =
[

15.8687 0
0 5.8611

]

,

Q1 =
[

96.8400 −0.0836
−0.0836 96.9576

]
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Fig. 7 Chaotic behaviors of u1(t, x) of system (25)

Fig. 8 Chaotic behaviors of u2(t, x) of system (25)

Q2 =
[

97.0509 0.3342
0.3342 97.4978

]

,

Q3 =
[

42.2129 2.4316
2.4316 45.7156

]

,

R =
[

104.3716 0.1388
0.1388 104.4742

]

,

T =
[

35.3721 −0.1593
−0.1593 35.4853

]

,

H1 =
[

41.3979 0
0 43.1330

]

,

H2 =
[

70.1457 0
0 70.0578

]

,

W =
[

96.8400 −0.0836
−0.0836 96.9576

]

,

Fig. 9 Chaotic behaviors of system (25) when x = −1.5

Fig. 10 Chaotic behaviors of system (25) when x = 0.5

X1 =
[−334.7252 −55.2896

84.0929 −331.3464

]

,

X2 =
[

7.9380 0.3609
0.3344 4.5805

]

, λ = 94.5999,

K1 =
[−21.0934 −3.4842

14.3476 −56.5329

]

,

K2 =
[

0.5002 0.0227
0.0571 0.7815

]

.

Thus, from Theorem 4, the system of (25) and (26) is
almost surely synchronized with the control gains K1

and K2. The dynamical behavior of the synchroniza-
tion error can be seen in Figs. 11 and 12.
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Fig. 11 Dynamical behavior of synchronization error e1(t, x)

of Example 2

Fig. 12 Dynamical behavior of synchronization error e2(t, x)

of Example 2

Remark 5 If the diffusion coefficients D = 0, sys-
tem (23) and (25) become ordinary differential equa-
tions and the chaotic attractor has been given in exist-
ing literature [14, 16, 31, 42, 49]. In our examples, to
demonstrate the chaotic behavior of reaction-diffusion
chaos systems, we show the chaotic attractor on cer-
tain sections, for instance, x = −1.5 and x = 0.5. It is
worth noting that such an approach has not been uti-
lized to date. There are some quantitative methods to
verify chaos such as the Lyapunov exponent and Kol-
mogorov entropy, which will be investigated in our fu-
ture work.

5 Conclusions

In this paper, we have considered the synchroniza-
tion problem for delayed stochastic neural networks
with reaction-diffusion terms. Delay-dependent crite-
ria have been obtained guaranteeing asymptotic syn-

chronization in the mean square and almost sure syn-
chronization of the considered systems, respectively.
These conditions are given in terms of LMIs. The ef-
fectiveness of the proposed approach has been demon-
strated via simulation examples.
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