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Abstract Technical systems are subjected to a vari-
ety of excitations that cannot generally be described
in deterministic ways. External disturbances like wind
gusts or road roughness as well as uncertainties in sys-
tem parameters can be described by random variables,
with statistical parameters identified through measure-
ments, for instance.

For general systems the statistical characteristics
such as the probability density function (pdf) may be
difficult to calculate. In addition to numerical simula-
tion methods (Monte Carlo Simulations, MCS) there
are differential equations for the pdf that can be solved
to obtain such characteristics, most prominently the
Fokker–Planck equation (FPE).

A variety of different approaches for solving FPEs
for nonlinear systems have been investigated in the last
decades. Most of these are limited to considerably low
dimensions to avoid high numerical costs due to the
“curse of dimension”. Problems of higher dimension,
such as d = 6, have been solved only rarely.

In this paper we present results for stationary pdfs
of nonlinear mechanical systems with dimensions up
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to d = 10 using a Galerkin method, which expands
approximative solutions (weighting functions) into or-
thogonal polynomials.
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1 Introduction

The FPE is a linear homogeneous partial differential
equation for the pdf p(t,x) with variable coefficients:

∂p(t,x)

∂t
+

d∑

i=1

∂

∂xi

[
fi(t,x)p(t,x)

]

− 1

2

d∑

i=1

d∑

j=1

∂2

∂xi∂xj

[
Bij (t,x)p(t,x)

] = 0. (1)

The coefficients are obtained from the system of
stochastic differential equations

dXt = f(t,Xt )dt + G(t,Xt )dWt

Xt ∈ R
d ; Wt ∈ R

m

f drift vector;
B = GGT diffusion matrix, (2)

with the stochastic vector process Xt and the incre-
ment of the vector Wiener Process dWt .
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We consider mechanical systems, where the equa-
tions describe the system behavior under white noise
excitation and may include additional filter equations.
The system properties as well as the filter equations
may be nonlinear, the excitation additive (external ex-
citation) or multiplicative (parameter excitation). In
this paper we will consider additive excitations only.

The dimension of the FPE (1) equals d for the sta-
tionary case corresponding to p as a function of all the
state variables and d + 1 for the nonstationary case,
with time t as additional variable. As a result, even for
considerably small mechanical systems high-dimen-
sional FPEs need to be solved.

Exact FPE solutions exist only for very restricted
classes of problems. Linear systems under Gaussian
excitation have Gaussian response pdfs. The well-
known problem of the Duffing oscillator with addi-
tive white noise is an example of a nonlinear prob-
lem where the exact stationary response pdf is known.
For a vast majority of general nonlinear systems, how-
ever, exact solutions are not available, which implies
the need for numerical solution methods.

A general approach of numerically computing pdfs
regardless of the nature of the mechanical problem lies
in the numerical integration of the stochastic differen-
tial equations, known as Monte Carlo Simulation.

In 2006, Naess stated that “despite the common be-
lief that a response pdf of any nonlinear system can
be found numerically, this is far from reality” [1] and
recent publications suggest that this still holds true.

There is a variety of approaches for the numeri-
cal solution of FPEs, but most of these are practica-
ble only for considerably low dimensions, as stated be-
fore. Methods for the discretization of the state space
include Finite Element and Finite Difference meth-
ods, such as in [2] and [3], but these methods bear the
disadvantage that, generally, a d-dimensional infinite
space has to be handled for the pdf. Semi-analytical
methods include the path integral method (see for ex-
ample [1, 4, 5]) and the cell mapping method [6]. The
results reported in the literature for all of these meth-
ods have in common that they provide solutions to
problems with dimension of up to four.

More recent approaches for the numerical solu-
tion of FPEs combine the discretization of either the
state space or the time-domain with continuous meth-
ods. Feuersänger [7] presents a numerical sparse-grid
method capable of solving problems of moderately
higher dimension. FPEs of dimension up to d = 6 are

solved approximately on finite rectangular domains.
[8] uses a partition-of-unity finite element approach
to solve problems of dimension four, applying higher-
order polynomials to locally achieve higher resolu-
tions.

The approach described in this paper is based on a
Galerkin method that uses orthogonal polynomials to
expand approximative weighting functions. The gen-
eral procedure has been outlined in different works,
such as [9–11], for example. In [12] results for the
nonlinear dynamics of quarter car models with two de-
grees of freedom have been presented demonstrating
the relevance to technical applications.

The fundamental advantage of this method is that in
many applications some information about the shape
of the pdf is available. This knowledge can be included
in the weighting functions, so that the numerical costs
can be decreased dramatically, allowing the solution
of problems with higher dimension.

In the first part of the paper the general approach
is demonstrated with the classical problem of the
single-degree-of-freedom (SDOF) Duffing oscillator.
The procedure is then extended to a similar prob-
lem with d = 10 to demonstrate its capabilities for
problems of higher dimensions. Alternative types of
weighting functions are presented for problems with
strongly coupled state variables. As a last example a
different type of nonlinearity describing the behav-
ior of a quarter car model is considered. Throughout
the paper, results from direct Monte Carlo Simula-
tions will be used to compare the approximative results
whenever exact reference solutions are not available.
Ergodicity is assumed for all systems when generating
MCS distribution estimates.

2 Introduction to the method

The general procedure of the presented method can be
separated into three principal steps that have to be per-
formed consecutively:

Step 1 In a first step we need to find an appropriate ap-
proximative solution, which will be used to generate
the weighting functions for the Galerkin method. In
many cases linearization and the calculation of corre-
sponding Gaussian stationary pdfs leads to satisfac-
tory approximative solutions, however, in particular
cases it will be advantageous to use weighting func-
tions that already include knowledge about the non-
linear behavior, as far as these are available.
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Step 2 The second step of the procedure consists in
calculating expansion polynomials according to or-
thogonality requirements based on the given weight-
ing functions.

Step 3 Introducing the ansatz, which includes expan-
sion polynomials and weighting functions, into the
FPE leads to a residual R, which is a function of the
expansion coefficients in our ansatz yet to be deter-
mined. Applying a Galerkin procedure to the residual
leads to a linear homogeneous system of equations,
which has to be solved to compute these coefficients.

In order to more comprehensively demonstrate the
procedure we will outline these three steps in more
detail, considering a comparably simple mechanical
SDOF-problem.

The Duffing oscillator with additive white noise is
an appropriate test problem as it provides an exact so-
lution for comparison purposes. It is described by the
following differential equation:

Ẍt + γ Ẋt + ω2(1 + εX2
t

)
Xt = σωξt , (3)

with linear damping γ , natural angular frequency of
the linear system ω, excitation intensity σ and nonlin-
earity parameter ε.

Introducing X1,t = Xt and X2,t = ωẊt we get

dX1,t = ωX2,t dt, (4)

dX2,t = (−γX2,t − ω
(
1 + εX2

1,t

)
X1,t

)
dt

+ σ dWt. (5)

Step 1 In order to find a first approximative solution
we consider the linearized system with ε = 0

dX1,t = ωX2,t dt,

dX2,t = (−γ Ẋt − ωXt)dt + σ dWt,
(6)

and the shape of the solution is known to be a zero-
mean Gaussian distribution (e.g. [13]):

p(x1, x2) = c exp
(
α11x

2
1 + α12x1x2 + α22x

2
2

)
. (7)

Here the constant c is used to scale p(x1, x2) so that

∫ ∞

∞

∫ ∞

∞
p(x1, x2)dx1 dx2 = 1. (8)

In this simple case the unknown coefficients αij can
be found by inserting (7) into the FPE (1) and we get

α11 = − γ

σ 2
,

α12 = 0,

α22 = − γ

σ 2
,

c = γ

πσ 2
.

(9)

We see that in this case the state variables x1 and x2

are independent and we can write

p(x1, x2) = c exp

(
− γ

σ 2
x2

1

)
exp

(
− γ

σ 2
x2

2

)

= cpx1(x1)px2(x2). (10)

Here, px1(x1) and px2(x2) are chosen as weighting
functions G(1)(x1) and G(2)(x2) for the Galerkin me-
thod to find solutions of the nonlinear problem.

Step 2 The weighting functions are used to generate
a basis of polynomials in x1 and x2

P
(1)
k (x1) =

k∑

i=0

a
(1)
ki xi

1 and (11)

P
(2)
k (x2) =

k∑

i=0

a
(2)
ki xi

2. (12)

The coefficients of the polynomials are determined via
the orthogonality conditions:

∫ ∞

−∞
P

(j)
k (xj )P

(j)
l (xj )G

(j)(xj )dxj

=
{

0, k �= l,
fk, k = l,

(13)

and form a basis of the space of generalized Hermite-
polynomials with arbitrary fk .

Finding the polynomial coefficients a
(j)
kl leads to a

linear system of the following form (k = 2):

⎛

⎜⎝

m
(j)

0 m
(j)

1 m
(j)

2

m
(j)

1 m
(j)

2 m
(j)

3

m
(j)

2 m
(j)

3 m
(j)

4

⎞

⎟⎠

⎛

⎜⎝

a
(j)

20

a
(j)

21

a
(j)

22

⎞

⎟⎠ =
⎛

⎜⎝

0
0

f
(j)
2

a
(j)
22

⎞

⎟⎠ . (14)
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The m
(j)
k s are the (Taylor-)moments with respect to the

weighting function:

m
(j)
k =

∫ ∞

−∞
xk
j G(j)(xj )dxj . (15)

With given weighting functions and orthogonal poly-
nomial bases we then form an expansion for the ap-
proximative pdf:

p̃(x1, x2) =
n1∑

i1=0

n2∑

i2=0

Ci1i2P
(1)
i1

(x1)P
(2)
i2

(x2)

× G(1)(x1)G
(2)(x2), (16)

where n1 and n2 define the order of the expansion,
which will determine the accuracy of the approxima-
tion.

Inserting (16) into the FPE (1) leads to differentia-
tion of the polynomials as well as multiplication with
the state variables xi . In the case of linear weighting
functions (and all exponential functions with polyno-
mial argument) these operations yield expressions that
can be expressed analytically in terms of the polyno-
mial basis.

Step 3 The residual

R(C00,C01, . . . ,Cn1n2) = R(C) (17)

of the FPE (1) can thus be expressed by products of the
expansion polynomials and the weighting functions.
The basic principle of the presented Galerkin method
lies in the projection of the residual with respect to
the expansion polynomials (11) and (12) via integra-
tion over the entire scope of the FPE. In the sense of a
Galerkin method we require that each of these projec-
tions is equal to zero, i.e.,
∫ ∞

−∞

∫ ∞

−∞
R(C)P

(1)
h1

(x1)P
(2)
h2

(x2)dx1 dx2

= 0, for all h1, h2. (18)

With the residual expressed as a combination of the
polynomial bases (11) and (12), we see that due to
the orthogonality requirements (13) we are left with
only those terms where the polynomial orders coin-
cide. This leads to a homogeneous linear system of
equations for the coefficient vector C. The expansion
of the residual into the orthogonal polynomials is such
that in each equation only polynomials of order close

Fig. 1 pdf for Duffing oscillator (3)

to the considered expansion polynomial order appear.
This leads to a sparse matrix problem with non-zero
elements only close to the main diagonal and thus it
leads to efficient numerical solution methods.

In the case of the Duffing oscillator (4) the exact
solution of the stationary pdf is known to be [9]

p(x1, x2)

= c exp

(
− γ

σ 2

(
1 + 1

2
εx2

1

)
x2

1 − γ

σ 2
x2

2

)
. (19)

This allows to compare results that we obtain through
the Galerkin method with the exact pdf. Figure 1(a)
shows the calculated pdf for γ = ω = σ = 1, ε = 0.5.
For a better visualization of the results, we cut the
2-dimensional pdf at x2 = 0 (Fig. 1(b)). Also, the ze-
roth approximation, which is the solution of the linear
problem with ε = 0, is depicted.

The problem can easily be extended to a problem
with an additional cubical damping term (governed by
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Fig. 2 pdf for nonlinear oscillator (20) with ε = 0.5, β = 0.25
at x2 = 0

a second nonlinearity parameter β):

dX1,t = ωX2,t dt,

dX2,t = (−γ
(
1 + βẊ2

t

)
Ẋt − ω2(1 + εX2

t

)
Xt

)
dt

+ σ dWt.

(20)

In this particular case, in order to obtain better results,
we can use our knowledge of the solution to the Duff-
ing oscillator in our zeroth order approximation. In-
stead of the weighting functions given by (10) we set

G(1)(x1) = exp

(
− γ

σ 2

(
1 + 1

2
εx2

1

)
x2

1

)
, (21)

G(2)(x2) = exp

(
− γ

σ 2
x2

2

)
, (22)

so that the nonlinearities in the restoring term are al-
ready incorporated in our approach. In contrast to the
previous case we do not have an exact solution for (20)
and instead use results from Monte Carlo simulations
as reference.

Figure 2 shows the two results for the pdf, again we
use a cut at x2 = 0.

3 Higher-dimensional problems with polynomial
nonlinearities

The problem of a nonlinear oscillator, as described
above, can easily be extended to problems with higher
dimension by coupling a number of such oscillators
via spring and/or damper elements, as shown in Fig. 3.
In the following we consider a problem with five such
coupled oscillators, leading to a 10-dimensional FPE,

Fig. 3 Mechanical model of oscillator with n degrees of free-
dom

which represents a problem dimension significantly
higher than dimensions commonly tackled with other
numerical solution techniques in literature.

Step 1 For higher-dimensional problems with arbi-
trary system parameters, finding solutions to the lin-
earized problem can be more difficult than in the pre-
vious case. We know that the solution pdf is Gaussian
and can be written as

p(x1, x2, . . . , xd)

= c exp

(
d∑

i=1

d∑

j=1

αij xixj

)
, (23)

however, we still have to determine the coefficients
αij . Inserting (23) into the FPE and solving for αij

leads to large systems of nonlinear equations, which,
depending on the system parameters, may be very hard
to solve. For more complex systems, all state variables
may be coupled, which means that essentially all αij

are nonzero.
An alternative and more practicable way of com-

puting the Gaussian pdf for high-dimensional prob-
lems is to consider the covariance matrix K. In the
linear case, instead of (2) we use

dXt = AXt dt + G dWt (24)

for a time-invariant system of linear stochastic differ-
ential equations, with linear system matrices A and G.

In this case, the covariance matrix K is the solution
to the (Lyapunov) matrix equation [13]

AK + KAT = −GGT . (25)

There are efficient numerical methods of solving ma-
trix equations of this type for the covariance matrix K
[14].
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The coefficients αij in (23) can then be obtained
from the equivalent formulation

p(x1, x2, . . . , xd)

= 1

(2π)
d
2 |K| 1

2

exp

(
−1

2
xT K−1x

)
. (26)

For general distributions like (23) we cannot sep-
arate the weighting functions multiplicatively for the
different state variables as we did in (10). In order to
obtain an expansion with decoupled weighting func-
tions and polynomials, we calculate marginal proba-
bility density functions:

pxi
(xi) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x1, . . . , xd)

× dx1 · · · dxi−1 dxi+1 · · · dxd (27)

for each of the variables xj . The expansion is then sim-
ilar to the 2D-case:

p̃(x1, . . . , xd)

=
n1∑

i1=0

· · ·
nd∑

id=0

Ci1···id P
(1)
i1

(x1) · · ·P (d)
id

(xd)

× G(1)(x1) · · ·G(d)(xd). (28)

Steps 2 and 3 of the Galerkin method are carried
out in full analogy to the 2D-case.

Results have been computed for a variety of sets
of system parameters as well as different excitation
patterns. In the following we present results for cubi-
cal restoring and damping terms, with excitation pro-
cesses only at the outermost bodies. This represents
a rather disadvantageous case for the approach with
decoupled weighting functions as it implies stronger
coupling between adjacent bodies.

Again, we consider marginal pdfs, in this case for
the displacements of the first two bodies, the state
variables x1 and x3. The 2-dimensional marginal pdf
px1x3(x1, x3) is depicted in Fig. 4(a), while Fig. 4(b)
shows a cut through px1x3 at x3 = 0.

In order to decrease the computational costs, it is
reasonable to not expand all 10 state variables to the
same order, but to expand to lower orders those vari-
ables that are not of specific interest in favor of those
that are. In this case these were the variables x1 and
x3 with expansion order nj = 4, while x2 and x4 were
expanded to order nj = 2 and the remaining states to
either nj = 1 or 0.

Fig. 4 Marginal pdf px1x3 for 10D problem

4 Nonlinear systems with strongly coupled state
variables

For systems with strong coupling between some of
the state variables, it seems unreasonable to expect
good results from an expansion that is based on decou-
pled weighting functions. From the solution of the lin-
earized system we have information about the correla-
tion of the state variables that gets lost when calculat-
ing marginal probability density functions. Instead we
want to demonstrate how the use of coupled weighting
functions can solve this problem, although the gener-
ation of associated multivariate polynomials becomes
more elaborate.

Let us consider two bodies similar to problem (3),
which are coupled by a spring element as shown in
Fig. 5, leading to a two-degree-of-freedom (2-DOF)
system. The use of coupled weighting functions as
presented in the following is generally feasible also
for higher-dimensional problems, however, the pre-
sented procedure becomes more complicated. Thus,
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Fig. 5 Mechanical model of 2-DOF oscillator

the 2-DOF problem is an appropriate example to
demonstrate the general properties of multivariate
weighting functions and polynomials.

Similar to the previous cases we use the first-order
formulation:

x1 = y1, x2 = ẏ1,

x3 = y2, x4 = ẏ2,

and, for cubical restoring elements, we obtain the fol-
lowing system of equations:

dX1,t = ω1X2,t dt, (29)

dX2,t = (−γX2,t − ω1
(
1 + εX2

1,t

)
X1,t

+ ω12X3,t

)
dt + σ1 dW2,t , (30)

dX3,t = ω2X4,t dt, (31)

dX4,t = (−γX4,t − ω2
(
1 + εX2

3,t

)
X3,t

+ ω21X1,t

)
dt + σ2 dW1,t . (32)

Step 1 As before, we consider the linearized system
in order to obtain an approximative solution of the
form

p(x1, . . . , x4) = c exp

(
4∑

i=1

4∑

j=1

αij xixj

)
. (33)

The mechanical coupling between the two bodies
leads to strong coupling between the displacements
x1 and x3. In fact, for symmetrical system parameters,
the two displacements are the only coupled variables,
so that

αij = 0, for all i �= j except α13. (34)

Fig. 6 4D problem with coupled weighting functions

In contrast to the previous chapter we will not com-
pute marginal probability density functions but, in-
stead, choose coupled weighting functions in the two
displacements x1 and x3. As the velocities are not
coupled with any of the other state variables, we use
decoupled weighting functions in the velocities x2

and x4. We thus obtain the polynomial expansion

p̃(x1, x2, x3, x4)

=
n1∑

i1=0

n2∑

i2=0

n3∑

i3=0

n4∑

i4=0

Ci1i2i3i4P
(13)
i1i3

(x1, x3)P
(2)
i2

(x2)

× P
(4)
i4

(x4)G
(13)(x1, x3)G

(2)(x2)G
(4)(x4). (35)

Figure 6(a) shows the weighting function in x1 and x3,
which emphasizes the strong coupling between the
two state variables.
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Step 2 For the case of bivariate weighting functions
G12(x1, x2), the orthogonality postulations for the bi-
variate expansion polynomials

P 12
mn(x1, x2) =

m∑

i=0

n∑

j=0

amn,ij x
i
1x

j

2 (36)

are similar to those in the decoupled case:
∫ ∞

−∞

∫ ∞

−∞
P 12

mn(x1, x2)P
12
op (x1, x2)G12(x1, x2)dx1 dx2

=
{

0, m,n �= o,p,
fmn, m,n = o,p.

(37)

Again, we obtain a linear system of equations to be
solved for amn,ij , shown here for the case m = n = 1:

⎛

⎜⎝

m00 m01 m10 m11

m01 m02 m11 m12

m10 m11 m20 m21

m11 m12 m21 m22

⎞

⎟⎠

⎛

⎜⎝

a11,00

a11,01

a11,10

a11,11

⎞

⎟⎠ =

⎛

⎜⎜⎝

0
0
0

f11
a11,11

⎞

⎟⎟⎠ .

(38)

The moments mmn are then

mmn =
∫ ∞

−∞

∫ ∞

−∞
xm

1 xn
2 G12(x1, x2)dx1 dx2. (39)

Step 3 Just as for decoupled weighting functions, the
Galerkin method leads to a linear system of equations
for the expansion coefficients Ci1i2i3i4 .

In the nonlinear case we calculated the approxima-
tive pdf for expansion orders nj = 3 for the coupled as
well as the non-coupled variables. We computed the
marginal pdf in x1 and x3 and compared it with results
from Monte Carlo simulation.

Figure 6(b) shows a cut of px1,x3(x1, x3) at x3 = 0.

5 Multiple DOF-system with non-polynomial
nonlinearities

Finally, we present results for a system with non-
polynomial nonlinear elements, such as they are typi-
cally found in automotive vehicle dynamics. We have
a damping element of the form

dy(ẏ) = d
(
1 + κ sign(ẏ)

)
, (40)

leading to a damping characteristic as shown in Fig. 7.

Fig. 7 Nonlinear characteristic for automotive damping devices

Fig. 8 Quarter car model, excited by road roughness

In [12] pdfs for simple quarter car models with such
characteristics have been calculated, resulting in non-
zero-mean pdfs. We consider a similar problem with
two degrees of freedom, which is excited at one of the
two bodies according to Fig. 8.

Enhancing the problem compared with [12], the ex-
citation from road surface roughness is generated by a
general second-order filter, which increases the prob-
lem dimension from four to six. The roughness of road
surfaces Zs relevant to the dynamics of a car can be
generated from a white noise process with the param-
eters Ωa , Ω0, Ωc and S0 [15], which define the rough-
ness properties of the road surface:

Z′′
s

Ωa

+
(

1 + Ωc

Ωa

)
Z′

s + ωcZs = √
S0Ω0ξs . (41)
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The superscript ′ indicates the derivative with respect
to s. For constant velocities v, (41) is transformed into
an equivalent filter in the time domain:

Z̈t

v2Ωa

+
(

1 + Ωc

Ωa

)
Żt

v
+ ωcZt = √

S0Ω0ξt . (42)

With given Ωa , Ω0, Ωc, S0 and constant velocity v,
we obtain a filter equation of the form

Z̈t + γzŻt + ω2
zZt = ωzσξt . (43)

Substituting

ω2
x = cx

m
, γx = dx

m
,

ω2
xy = cy

m
, γxy = dy

m
,

ω2
y = cy

m
+ cy

M
, γx = dy

m
+ dy

M
,

and

X1,t = Xt, X2,t = Ẋt /ωx,

X3,t = Yt , X4,t = Ẏt /ωy,

X5,t = Zt , X6,t = Żt /ωz,

the equations of motion for the quarter car model yield
a system of six nonlinear stochastic differential equa-
tions:

dX1,t = ωxX2,t dt, (44)

dX2,t =
(

−ωxX1,t − γxX2,t + ω2
xy

ωx

X3,t

+ γxy

ωy

ωx

(
1 + κ sign(X4,t )

)
X4,t

+ ωxX5,t + γx

ωz

ωx

X6,t

)
dt, (45)

dX3,t = ωyX4,t dt, (46)

dX4,t =
(

−ωyX3,t − γy

(
1 + κ sign(X4,t )

)
X4,t

+ ω2
x

ωy

X1,t + γx

ωx

ωy

X2,t − ω2
x

ωy

X5,t

− γx

ωz

ωy

X6,t

)
dt, (47)

dX5,t = ωzX6,t dt, (48)

dX6,t = (−ωzX5,t − γzX6,t )dt + σ dW. (49)

Again, for κ → 0 we obtain a linear system of
equations, for which the stationary solution can be
found. Using its marginal pdfs as weighting functions
G(j)(xj ) for all the state variables, we generate the or-

thogonal polynomials P
(j)
ij

(xj ) and use the expansion

p̃(x1, . . . , x6)

=
n1∑

i1=0

· · ·
n6∑

i6=0

Ci1···i6P
(1)
i1

(x1) · · ·P (6)
i6

(x6)

× G(1)(x1) · · ·G(6)(x6). (50)

Inserting (50) into the FPE for the nonlinear problem
and computing the Galerkin procedure leads to sys-
tems of equations with block-wise dense matrices, be-
cause the expansion of non-polynomial nonlinearities
requires basis polynomials not only of adjacent order.

Solving the system of equations leads to the expan-
sion coefficients Ci1···i6 and thus the pdf approxima-
tion, as well as marginal pdfs via integration.

In the following we present results for κ = 0.5,
which is a typical value for nonlinear damping ele-
ments in road vehicle dynamics.

The results in Figs. 9(a) and 9(b) clearly show the
effect of the nonlinearity κ . The asymmetrical damp-
ing characteristic leads to a shift in the mean value of
the relative coordinate y, or x3, respectively. The effect
that κ has on x (x1) is small.

We see that the bend in the damping characteris-
tic leads to an asymmetry in the system dynamics that
has not been included in the weighting functions. Still,
even for considerably low expansion order (n = 3),
these non-symmetric results are sufficiently well re-
produced by the results. In [12], instead of symmet-
rical weighting functions, approximations are devel-
oped that include the shift in the mean value. Using
such approximations will allow the solution of even
more complicated problems in the future.

6 Summary

This paper presents a Galerkin method for solving
high-dimensional Fokker–Planck-Equations by or-
thogonal polynomial expansion of weighting func-
tions. The use of global weighting functions, which in-
clude a priori knowledge about the shape of the prob-
ability density function, allows the solution of me-
chanical problems of considerably higher dimension
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Fig. 9 Marginal pdfs for quarter car model (Fig. 8), κ = 0.5

than most other numerical methods. After demonstrat-
ing the general procedure on the example of a single-
degree-of-freedom nonlinear oscillator the method is
extended to a problem with five degrees of freedom,
leading to a 10-dimensional Fokker–Planck Equation.
The use of coupled weighting functions and polynomi-
als is introduced as a means of solving mechanical sys-
tems with strong coupling between some of the system
states. In a last example we present results for a quar-
ter car model with typical nonlinear damping element.
The comparison with results from Monte Carlo sim-
ulations and exact solutions, where available, shows
good coincidence and the numerical efforts even for
the high-dimensional case are manageable. Depending
on the expansion orders the Galerkin method yields
results within seconds, in case of the 10D problem
still within less than a minute. The generation of pdf
estimates via Monte Carlo simulation has generally
proven far more time-consuming. Of course, it needs
to be said that the MCS routines used for the results
presented in this paper were not pushed to maximum
efficiency, as the main objective was to generate re-

liable reference solutions, without specific focus on
optimizing MCS techniques.

The problems that have been investigated so far
suggest that there is a wide range of problems that
can be dealt with in a very efficient manner with the
presented method. Problems with stationary pdfs that
are not too far from Gaussian can be solved for sig-
nificantly higher dimensions than with comparable nu-
merical methods. In the case of nonlinear systems with
stationary pdfs that diverge strongly from Gaussian
distributions (such as considered in [3], for example),
there are obvious limitations to the method as outlined
in this paper. However, the use of appropriate nonlin-
ear coordinate transformations, as described in [10]
or [11], as well as the use of well-adapted weighting
functions also allows the efficient solution of problems
with distributions far from Gaussian. These include
systems with limit cycle behavior or systems under
combined stochastic and harmonic excitation.

Future work will concentrate on extending the pos-
sibilities of the method toward yet higher dimensions
and more complicated classes of nonlinearities (see for
example [10]), with special focus on the mathematical
methods of solving large systems of linear equations,
systematically taking into account the characteristics
of the system structure.
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