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Abstract One of the present barriers to the realiza-
tion of structural health monitoring is the lack of ef-
ficient and general identification methodologies for
dealing with nonlinearity, because a priori knowledge
of the nature and mathematical form of the nonlin-
earities of typical engineering structures are usually
unknown. The studies on the identification of restor-
ing force, which can be considered as a direct indi-
cator of the extent of the nonlinearity, have received
increasing attention in recent years. In this paper, the
nonlinear restoring force (NRF) was estimated by us-
ing a power series polynomial, and each coefficient of
the polynomial was identified by means of standard
least-square techniques. No information about the sys-
tem was needed, and only the applied excitations and
the corresponding response time series were used for
the identification. Two different cases, in which the
system was under complete and incomplete excita-
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tions, were investigated. Moreover, the effect of noise
level was also taken into consideration. The feasi-
bility and robustness of the proposed approach were
verified via a 2-degree-of-freedom (DOF) lumped-
mass numerical model, and experimental tests on a 4-
story shear building with magneto-rheological (MR)
dampers which served to simulate nonlinear behavior.
The results show that the proposed data-based method
is capable of identifying the NRF in a chain-like multi-
degree-of-freedom engineering structures without any
assumptions on the structural parameters, and provides
a promising way for damage detection in the presence
of structural nonlinearities.

Keywords Nonlinear restoring force · System
identification · Complete and incomplete inputs ·
Time series · MR dampers · Least-square techniques ·
Noise

1 Introduction

Due to the rapid increase in the number of dam-
aged or deteriorated structures, it is crucial to evalu-
ate their current reliability, performance, and condition
for the prevention of potentially catastrophic events,
as well as for remaining life estimation. An inves-
tigation reported by Ghanem and Shinozuka [3] re-
viewed the application of a number of system iden-
tification techniques in earthquake engineering. Fur-
thermore, Doebling et al. [2] and Wu et al. [29] pre-
sented a recent thorough review of vibration-based
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damage identification methods. Most of the currently
available vibration-based model updating and identi-
fication methods for structural damage detection are
based on the idea of extracting the eigenvalues, mode
shapes, and mode shape derivatives from the dynamic
responses, and strictly speaking are only suitable for
linear systems. However, nonlinearities exist widely
in engineering structures, as the occurrence of a fault
in an initially linear structure will, in many cases, re-
sult in nonlinear behavior. All engineering structures
are nonlinear to some extent, and the nonlinearity is
caused by one or a combination of several factors such
as crack initiation and development, and the loose-
ness and presence of friction characteristics of struc-
tural joints. Therefore, the detection of nonlinearities
is receiving increased attention and considered of high
importance for diagnosis of faults in structures.

The field of nonlinear structural dynamics has been
studied for a relatively long time, but the first contribu-
tion to the identification of nonlinear structural mod-
els can be traced back to the 1970s [5]. Since then,
numerous methods have been developed due to the
highly individualistic nature of nonlinear systems [8].
Using information about the state variables of nonlin-
ear systems, Masri and Caughey [9] proposed a fruit-
ful approach, named the restoring force surface (RFS)
method, to identify and express the nonlinear system
characteristics in terms of orthogonal functions, e.g.
Chebyshev polynomial. The RFS method was first de-
veloped for a wide class of single-degree-of-freedom
(SDOF) dynamic system, but the study on the gen-
eralization to multi-degree-of-freedom (MDOF) sys-
tems soon followed [10]. The method was extremely
appealing in its simplicity because its starting point
was Newton’s second law. Masri et al. [11, 12] de-
veloped a self-starting, multi-stage, time-domain ap-
proach for the nonparametric identification of non-
linear MDOF systems undergoing free oscillations or
subjected to arbitrary direct force excitations and/or
non-uniform support motions. Worden and Tomlinson
[28] described numerous approaches for the detection,
identification, and modeling of nonlinear systems in
their textbook. Based on the uses of power series ex-
pansions, a relatively simple nonparametric technique
for the identification of nonlinearities of a variety of
discrete nonlinear vibrating systems has been devel-
oped by Yang and Ibrahim [24]. Kerschen et al. [7]
proposed an algorithm based on a Bayesian inference
approach for the screening of nonlinear system mod-
els. Based on the applied excitation(s) and resulting

acceleration, a general procedure was presented for the
direct identification of the state equation of complex
nonlinear system [13]. In the following years, Masri
et al. [14, 15] extended their work to present a general
data-based approach by using power series fitting tech-
niques for developing reduced-order, nonparametric
models in nonlinear MDOF systems. More recently,
Tasbihgoo et al. [17] discussed two broad classes of
methods. One class relied on the representation of the
system restoring forces in a polynomial-basis format
while the other used artificial neural networks to map
the complex transformations for developing nonpara-
metric models of nonlinear MDOF systems. In the
works by Yun et al. [25], model-free identification
techniques utilizing nonparametric system identifica-
tion approaches were used to detect the changes of the
nonlinear system, to interpret the physical meaning of
the detected changes, and to quantify the uncertainty
of the detected system changes.

In most of the approaches above, all excitations (in-
puts) applied to the nonlinear structural system should
be known and available for the nonlinearity identifi-
cation. But in practice it is either too difficult to ex-
cite all of the DOFs of a structure for identification,
or part of the dynamic response measurements and
the external excitations of the structure are unavailable
due to inaccessibility and the limitation of the number
of available sensors. To handle this problem, great ef-
forts have been made in this area by many investiga-
tors during recent years. Mohammad et al. [16] pro-
posed a direct parameter estimation method for iden-
tifying the physical parameters of linear and nonlinear
MDOF structures with only one input excitation. Us-
ing a recursive least-squares estimation with unknown
inputs (RLSE-UI) approach and Extended Kalman fil-
ter (EKF), Yang et al. [21–23] identified the param-
eters of a nonlinear structure as well as the unmea-
sured excitations. For local-level system identification,
a finite-element-based procedure was used to identify
the stiffness and damping coefficients of the system
without inputs [6, 26, 27]. More recently, based on
the basic idea of equivalent linearization and the sym-
metry of the identified stiffness matrix, Xu et al. [20]
proposed a data-based model-free hysteresis identifi-
cation approach for nonlinear systems under incom-
plete excitations.

In this paper a power series polynomial model-
ing approach involving the instantaneous values of the
state variables of the system was proposed to repre-
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sent the system nonlinearities. Based on the excita-
tions and the corresponding response time series, each
coefficient of the polynomial was identified by means
of standard least-square techniques without any as-
sumptions and prior knowledge of the system. Two
different cases, in which the system was under com-
plete and incomplete excitations, were investigated.
The feasibility and robustness of the proposed ap-
proach was validated via numerical simulation with a
2-DOF model incorporating an MR damper with the
modified hysteretic Dahl model [30] which is a widely
used model for hysteretic nonlinearities, and via ex-
perimental measurements with a 4-story steel frame
building model equipped with two actively-controlled
magneto-rheological (MR) dampers, which were em-
ployed to simulate nonlinear performance. For com-
parison, the restoring force of the corresponding lin-
ear system was also identified, and then the hysteretic
performance of the MR dampers was obtained to val-
idate the accuracy of the identified NRF. The results
show that the proposed method is capable of identi-
fying NRF in engineering structures without any as-
sumptions on the structural parameters, and provides a
promising approach for damage detection where struc-
tural nonlinearity needs to be considered.

2 Formulation and approach

In most of the currently available vibration-based
damage detection algorithms, the damage identifica-
tion is solved as a structural parameters identification
and model updating algorithm problem, and the struc-
tural damages are evaluated in the form of the vari-
ation in structural stiffness. This approach is suitable
for linear structures only. Moreover, instead of stiff-
ness, restoring force can describe the linear and non-
linear behavior of the structure or structural members
under dynamic loadings directly, and moreover, the
hysteresis curve can be employed to evaluate the en-
ergy dissipated during vibration and to identify the
damage initiation and development quantitatively. Un-
fortunately, the restoring force of a structure under dy-
namic loadings cannot be measured directly. Conse-
quently, the efficient and general restoring force identi-
fication methodologies using structural dynamic mea-
surements are crucial for damage detection, perfor-
mance evaluation and remaining service life forecast-
ing of engineering structures.

2.1 Data-based restoring force identification for a
nonlinear system under complete excitations

Consider a discrete n-DOF lumped-mass chain-like
structural system incorporating nonlinear non-conservative
dissipative members and subjected to directly applied
forces F(t). The motion of this nonlinear system can
be governed by the following equation of motion:

Mẍ(t) + R(x, ẋ,p) = F(t) (1)

where x(t)—the displacement vector of order n,
M—the constant matrix that characterizes the iner-
tia forces, R(x, ẋ,p)—the nonlinear non-conservative
restoring force vector, p—the vector of system-spe-
cific parameters, and F(t)—the directly external forces,
respectively.

In this study, the NRF of the system is assumed
to be expressed in power series polynomial form as
shown in the following equation:

Ri,i−1(x, ẋ,p)

≈ Ri,i−1(v, s)

≈
k∑

h=0

q∑

j=0

cnon
i,i−1,h,j v

h
i,i−1s

j

i,i−1

(h and j are not equal to 0 simultaneously) (2)

where Ri,i−1(x, ẋ,p) is the NRF between the ith DOF
and the (i − 1)th DOF, vi,i−1 and si,i−1 are relative-
velocity and relative-displacement vectors (i.e. for
a chain-like lumped-mass system, vi,i−1 and si,i−1

are the inter-story velocity and inter-story displace-
ment vectors and can be defined as vi,i−1 = ẋi −
ẋi−1, si,i−1 = xi − xi−1), c

non
i,i−1,j,h is the coefficient

of the polynomial, and k and q are integers which de-
pend on the nature and extent of the nonlinearity of
the system, respectively. Consequently, the equation
of motion of the ith DOF can be rearranged as fol-
lows:

miẍi(t) +
k∑

h=0

q∑

j=0

cnon
i,i−1,h,j v

h
i,i−1s

j

i,i−1

+
k∑

h=0

q∑

j=0

cnon
i,i+1,j,hv

h
i,i+1s

j

i,i+1 = Fi(t) (3)

Based on the acceleration, relative velocity, relative
displacement, and external force time series, the alge-
braic coefficients used to represent the restoring force,



2066 X. Bin et al.

as well as the mass distribution (mi), can be identified
by means of least-square techniques. Subsequently,
the NRF between the ith DOF and the (i − 1)th DOF
can be directly obtained according to (2).

2.2 Data-based restoring force identification for a
nonlinear system under incomplete excitations

Since, in practice, it is difficult to excite all of the
DOFs of a structure for nonlinearity identification, the
above-mentioned methodology should be improved.
Consider the nonlinear system mentioned above un-
der arbitrary incomplete excitations, the rank of F(t)

defined in (1) will be less than the order of n. Conse-
quently, the unknown coefficients including the mass
distribution cannot be uniquely determined by imple-
menting least-square algorithms directly. An updated
method which makes use of Newton’s third law is thus
proposed to handle this situation.

For generality, assume the force is only applied on
the ith DOF, and the corresponding coefficients of the
ith DOF can be identified from (3). However, the coef-
ficients of the remaining DOFs cannot be uniquely de-
termined due to the right-hand-side (RHS) of the mo-
tion equation being zero. According to the relationship
between the action force and the reaction force, such
an equation exists:

k∑

h=0

q∑

j=0

cnon
i,i−1,h,j v

h
i,i−1s

j

i,i−1

= −
k∑

h=0

q∑

j=0

cnon
i−1,i,h,j v

h
i−1,i s

j

i−1,i (4)

Hence, the equation of motion of the (i − 1)th DOF
can be rewritten as follows:

mi−1ẍi−1(t) +
k∑

h=0

q∑

j=0

cnon
i−1,i−2,h,j v

h
i−1,i−2s

j

i−1,i−2

= −
k∑

h=0

q∑

j=0

cnon
i−1,i,j,hv

h
i−1,i s

j

i−1,i

=
k∑

h=0

q∑

j=0

cnon
i,i−1,j,hv

h
i,i−1s

j

i,i−1 (5)

Since the NRF of the ith DOF was previously ob-
tained from (3), the RHS of (5) can be considered as

known, and the unknown coefficient of the left-hand
side (LHS) can be identified by using least-square
techniques. From this point of view, the NRFs of the
remaining DOF, on which no external forces are ap-
plied, can be identified in sequence.

3 Numerical simulation validation

3.1 2-DOF nonlinear numerical model

To illustrate the accuracy of the method under dis-
cussion, a 2-DOF nonlinear lumped-mass structure
is considered as an example shown in Fig. 1. Each
story of the model is associated with one horizontal
DOF. The properties of the structure are mi = 10 kg,
ki = 1 × 105 N/m, and ci = 100 N s/m, (i = 1,2). In
order to mimic the nonlinearity, an MR damper, which
is widely used as a typical energy dissipation device,
is introduced on the 1st floor as shown in Fig. 1.

MR dampers are typical nonlinear members and
over the last two decades many numerical models have
been proposed to describe their mechanical behavior
in parametric or nonparametric forms [1, 4, 18, 19]. In
this study a modified Dahl model, which can capture
many commonly observed types of hysteretic behavior
of MR dampers, is employed [30]. The modified Dahl
model is given by the following equations:

Fn = K0y + C0ẏ + FdZ + f0 (6)

Ż = σ ẏ
(
1 − Z sgn(ẏ)

)
(7)

where K0—the stiffness coefficient, C0—the viscous
damping coefficient, Fd—the adjustable Coulomb
friction, f0—the initial force, σ—the coefficient used
to control the shape of the hysteretic curve, y—the
displacement of the damper, and Z—a dimensionless
hysteretic parameter which describes the Coulomb

Fig. 1 2-DOF nonlinear
numerical model with MR
damper
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friction. In this example, the following numerical val-
ues for the MR damper model are used: K0 = 50 N/m,
C0 = 399 N s/m, Fd = 34.85 N, f0 = 0 N, and σ =
50,000 s/m.

In order to apply the methodology discussed above,
the following basis vectors, which represent the sys-
tem’s acceleration, relative velocity, and relative dis-
placement responses, are selected:

Basis = {a1, a2, v1, v2, s1, s2} (8)

where ai—the acceleration of the ith DOF, and vi =
ẋi − ẋi−1 and si = xi − xi−1, respectively.

In this study, numerical tests of the frame structure
under complete and incomplete random excitations
with the considerations of noise-free and 5% noise
level in the dynamic response and excitation measure-
ments were carried out. The corresponding responses
of the frame structure were obtained by Newmark-β
method, and the hysteretic performance of the non-
linear system was identified using the above proposed
identification method. The results are discussed in the
proceeding sections.

3.2 NRF identification under complete excitations

3.2.1 Case 1: noise-free dynamic responce and
exitation measurements

In order to show the effectiveness of the proposed
method when all of the DOFs are excited, two ran-
dom excitations are applied to each floor of the 2-DOF
nonlinear model, and the corresponding dynamic re-
sponses are determined by numerical integration. In
this case, all the responses are assumed to be noise-
free. The responses along with their excitations are
shown in Fig. 2.

Selecting values for the order k +q = 3 of the basis
functions in (2) results in the following basis including
9 power series:

Basis = {
v, s, v2, vs, s2, v3, v2s, vs2, s3} (9)

According to (3), the applied forces can be fitted
as shown in the following equations by using the ex-
citation and response data together with least-squares
techniques:

F2 = 10.00 × a2 + 1.00 × 105 × s2 + 100.01 × v2

− 0.05 × s2
2 − 6.62 × 10−4 × s2v2

− 1.99 × 10−6 × v2
2 + 31.03 × s3

2

+ 0.08 × s2
2v2 + 0.01 × s2v

2
2

− 2.65 × 10−6 × v3
2 (10a)

F1 = 10.01 × a1 − 1.01 × 105 × s2 − 96.32 × v2

− 1.15 × 104 × s2
2 + 610.32 × s2v2

+ 5.26 × v2
2 − 2.73 × 106 × s3

2

+ 1.89 × 103 × s2
2v2 + 2.26 × 103 × s2v

2
2

− 6.91 × v3
2 + 1.01 × 105 × s1 + 666.24 × v1

− 6.77 × 104 × s2
1 − 552.97 × s1v1

− 7.25 × v2
1 + 1.97 × 106 × s3

1

+ 5.16 × 105 × s2
1v1 − 2.83 × 103 × s1v

2
1

− 332.71 × v3
1 (10b)

From the above equations it is worth noting that
the identified coefficient of the ai term stands for the
masses of the ith DOF, which are found as m2 = 10.00
and m1 = 10.01, respectively. It is clear that the iden-
tified mass distribution is very close to the exact one.

Fig. 2 The random excitations applied to each floor of the system and the corresponding responses
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Fig. 3 The identified NRF under complete exitations (noise-free): (a) on the 1st floor, (b) on the 2nd floor

Moreover, the NRFs can be easily obtained according
to (2)–(3) and can be shown in the following equa-
tions:

Rnon
2,1 (s2, v2)

= 1.00 × 105 × s2 + 100.01 × v2 − 0.05 × s2
2

− 6.62 × 10−4 × s2v2 − 1.99 × 10−6 × v2
2

+ 31.03 × s3
2 + 0.08 × s2

2v2

+ 0.01 × s2v
2
2 − 2.65 × 10−6 × v3

2 (11a)

Rnon
1,0 (s1, v1)

= 1.01 × 105 × s1 + 666.24 × v1

− 6.77 × 104 × s2
1 − 552.97 × s1v1

− 7.25 × v2
1 + 1.97 × 106 × s3

1

+ 5.16 × 105 × s2
1v1 − 2.83 × 103 × s1v

2
1

− 332.71 × v3
1 (11b)

Based on the above established power series poly-
nomial models of NRF, the extent and characteristics
of the nonlinearity can be represented more clearly
in three-dimensional graphs that illustrate the relation
between the restoring force and relative displacement
and velocity as shown in Fig. 3. From these graphs it is
obvious that the restoring force surface is non-planar
on the 1st floor and planar on the 2nd floor. This means
that the MR damper is influencing the response of the
1st floor but not influencing the response of the 2nd
floor. Also, together with time matching techniques,
these polynomial models can be used to track the non-
linear performance of the structure in the time domain.

Since the identified NRF is equal to the summa-
tion of the elastic restoring force, the damping effects
of the structure, and the nonlinear member force, the
MR damper force can be determined by subtracting
the linear elastic restoring force and damping force of
the structure alone from the identified total restoring
force. The result can then be used to validate the ac-
curacy of the identified NRF. The MR damper force is
shown in Fig. 4. Note that identical amplitude scales
are applied to all the plots.

From Fig. 4 it is easily seen that the MR damper is
located on the 1st floor as the identified MR damper
forces on the 2nd floor are close to zero. Next, in order
to evaluate the accuracy of the proposed method for
the MR force identification, the MR damper force de-
termined by the proposed method is compared with
that determined by its numerical model given by
(6)–(7). It is obvious that the identified MR damper
force is close to the simulated one from Fig. 4(a).
It means that the identified power series polynomial
model can be used to represent the NRFs effectively
and that the proposed method provides a suitable way
to identify the NRF of the system.

3.2.2 Additional case: 5% noise level in dynamic
response and excitation measurements

Another set of unrelated random excitations is applied
to the nonlinear numerical model and the correspond-
ing responses are obtained. As a practical considera-
tion, noise is expected in the output and input measure-
ments. Without loss of generality, in this additional
case the noise level is set to be 5%, which means the
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Fig. 4 The MR damper force under complete excitations (noise-free): (a) on the 1st floor; (b) on the 2nd floor

standard deviation of the random noise is equal to 5%
of the corresponding mean value. Similar procedures
shown in the previous section are implemented to
identify the NRF of the system and MR damper force.
The identified NRFs are given in (12a)–(12b) and the
MR damper forces in this case are plotted in Fig. 5.
It is obvious from Fig. 5 that the MR damper is fixed
on the 1st floor and the identified MR force has good
agreement with the simulated one even when the re-
sponse measurements are contaminated by 5% noise.

Rnon
2,1 (s2, v2)

= 9.96 × 104 × s2 + 95.24 × v2 − 6.23 × 104 × s2
2

+ 276.54 × s2v2 − 2.90 × v2
2 − 2.75 × 106 × s3

2

− 1.45 × 104 × s2
2v2 + 140.75 × s2v

2
2

+ 7.89 × v3
2 (12a)

Rnon
1,0 (s1, v1)

= 9.87 × 104 × s1 + 564.95 × v1

− 2.12 × 104 × s2
1 − 1.15 × 103 × s1v1

− 1.63 × v2
1 − 1.08 × 106 × s3

1

− 1.89 × 105 × s2
1v1 + 423.82 × s1v

2
1

− 35.75 × v3
1 (12b)

3.3 NRF identification under incomplete excitations

3.3.1 Case 1: noise-free dynamic response and
excitation measurements

In order to verify the performance of the proposed ap-
proach for nonlinearity identification when only part

of the DOFs of the object structure are excited, the
2nd floor of the nonlinear numerical model shown in
Fig. 1 is assumed to be excited by a set of random ex-
citations. The corresponding responses of the system
are also determined by the Newmark-β method and
considered to be noise-free in this case. Based on the
time-domain measurements of the excitation and the
response, the expression of the force applied on the
2nd floor can be determined according to (3) as:

F2 = 10.00 × a2 + 1.00 × 105 × s2 + 100.01 × v2

− 0.07 × s2
2 + 0.01 × s2v2 − 7.86 × 10−6 × v2

2

+ 56.68 × s3
2 + 0.42 × s2

2v2 − 0.01 × s2v
2
2

− 2.34 × 10−5 × v3
2 (13)

It is then easy to obtain m2 = 10.00, and the NRF on
the 2nd floor is

Rnon
2,1 (s2, v2)

= 1.00 × 105 × s2 + 100.01 × v2 − 0.07 × s2
2

+ 0.01 × s2v2 − 7.86 × 10−6 × v2
2

+ 56.68 × s3
2 + 0.42 × s2

2v2 − 0.01 × s2v
2
2

− 2.34 × 10−5 × v3
2 (14)

Since Rnon
2,1 (s2, v2) is determined, the motion of

equation of the 1st DOF can be rearranged according
to (4)–(5):

m1a1 +
k∑

h=0

q∑

j=0

cnon
1,0,h,j v

h
1 s

j

1 = Rnon
2,1 (s2, v2),

(k + q = 3) (15)
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Fig. 5 The MR damper force under complete excitations (5% noise): (a) on the 1st floor, (b) on the 2nd floor

Fig. 6 The identified NRFs under incomplete excitations (noise-free): (a) on the 1st floor, (b) on the 2nd floor

Based on the responses of the system and the identi-
fied Rnon

2,1 (s2, v2), the unknown coefficients in the LHS
of (15) can be identified. Consequently, the lumped
mass can be found as m1 = 9.85. Also, the NRF on
the 1st floor is given by

Rnon
1,0 (s1, v1)

= 0.98 × 105 × s1 + 749.74 × v1

+ 1.60 × 105 × s2
1 + 5.02 × 103 × s1v1

− 68.26 × v2
1 + 1.71 × 107 × s3

1

+ 1.27 × 105 × s2
1v1 + 9.52 × 103 × s1v

2
1

− 1.04 × 103 × v3
1 (16)

The three-dimensional graph in the form of the
identified NRF plotted against the relative displace-
ment and relative velocity is shown in Fig. 6, and

clearly represents the nonlinearity of the system in this
case. The similar conclusion that the MR damper is
located on the 1st floor can be obtained by comparing
these NRF surfaces.

Since the NRF is determined, the MR damper
force can be obtained accordingly. The identified
MR forces as well as the simulated forces are dis-
played in Fig. 7. From this figure it can again be
concluded that the MR damper is located on the 1st
floor. Moreover, it is clear from the results displayed
in Fig. 7(a) that the modeling approach under discus-
sion yields reasonably accurate fidelity in the iden-
tification of the NRF even under incomplete excita-
tions.

3.3.2 Additional case: 5% noise level in dynamic
response and excitation measurements

To investigate the effect of the noise on the identifi-
cation of NRFs while the system is partially excited,
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Fig. 7 The MR damper force under incomplete excitations (noise-free): (a) on the 1st floor; (b) on the 2nd floor

Fig. 8 The MR damper force under incomplete excitations (5% noise): (a) on the 1st floor; (b) on the 2nd floor

an additional case in which the excitations and the
corresponding responses are polluted by 5% noise is
discussed. The numerical model shown in Fig. 1 is
excited on the 2nd floor by another set of random
forces. Based on the external excitation and the con-
taminated responses, the similar procedures carried
out in Sect. 3.3.1 are implemented and the NRFs of
the structure are identified as shown in (17a)–(17b).

Rnon
2,1 (s2, v2)

= 1.02 × 105 × s2 + 97.73 × v2

+ 1.79 × 105 × s2
2

+ 103.36 × s2v2 − 27.49 × v2
2

− 7.38 × 107 × s3
2 + 9.12 × 105 × s2

2v2

+ 2.74 × 103 × s2v
2
2 + 11.47 × v3

2 (17a)

Rnon
1,0 (s1, v1)

= 9.92 × 104 × s1 + 652.72 × v1

+ 2.46 × 104 × s2
1 + 1.71 × 103 × s1v1

+ 3.70 × v2
1 − 1.13 × 107 × s3

1

− 3.91 × 105 × s2
1v1 − 8.43 × 103 × s1v

2
1

− 340.31 × v3
1 (17b)

Since the NRFs are determined, the hysteretic per-
formance of the MR damper can be obtained and used
to validate the accuracy of the identified NRFs. The
identified MR force is plotted in Fig. 8 and the simu-
lated MR force is also shown in Fig. 8 for comparison.
It can be observed that though the excitations and re-
sponses are contaminated by 5% noise, the proposed
approach is still capable of identifying the nonlinear
performance of the system with acceptable accuracy
under incomplete excitations.



2072 X. Bin et al.

Fig. 9 Nonlinear multi-story structure with MR dampers and vibration test setup

4 Test validation

4.1 Model structure and forced vibration test

To illustrate the application of the proposed method
in conjunction with a real structure, a four-story steel
frame building model with two MR dampers was con-
structed in the lab and used to conduct forced vibration
tests. The structure is 0.3 m × 0.4 m in plane, 1.2 m in
height, distributed evenly among the four floors, and
has a total mass of 51.41 kg. The cross section of the
columns is 30 mm × 5 mm, and the thickness of the
floor plates is 10 mm. All the joints are connected us-
ing bolts.

Two MR dampers with an input current of 0.1 A
were installed on the 4th floor to induce a nonlinear
hysteretic restoring force. An impact hammer was em-
ployed to excite the structure and the excitation force
was measured directly by a piezoelectric force gauge
in the hammer. The corresponding acceleration and
displacement responses of the four stories were mea-
sured directly by four accelerometers and four dis-
placement transducers, respectively. The excitations
and the acceleration and displacement responses were
recorded simultaneously with a sampling frequency of
1024 Hz. The velocity response of the structure was
obtained by numerical integration of the measured ac-
celerations. To eliminate the influence of measurement
noise, a high-pass filter with a pass frequency of 1 Hz
was employed to process the acceleration measure-

ments. For comparison, the damping force of the MR
damper was measured by a piezoelectric force gauge.

4.2 Nonlinear restoring force identification under
complete excitations in the lab

4.2.1 Nonlinear restoring force identification of the
structure with MR dampers

In this case, the four floors of the model structure were
excited by the hammer in a horizontal direction. The
impact forces and the corresponding responses are all
plotted in Fig. 10.

Let the sum of the integers k and q of the power
series polynomial given in (2) be equal to 3. Based on
the time-domain information of the system’s excita-
tions and responses, the expressions of external exci-
tations can be fitted using least-square techniques. The
same procedures shown in the preceding numerical
example were implemented to obtain the inter-story
NRF as well as the mass distribution of the structure.
The identified results of the mass are m1 = 12.53 kg,
m2 = 12.41 kg, m3 = 12.47 kg and m4 = 12.16 kg,
respectively. Also, the polynomial models of the inter-
story NRF are determined and shown by

Rnon
4,3 (s4, v4)

= 1.49 × 105 × s4 + 354.75 × v4

− 6.88 × 105 × s2
4 + 2.18 × 104 × s4v4

− 72.42 × v2
4 + 4.11 × 109 × s3

4
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Fig. 10 Impact forces applied to each floor of the nonlinear system and the corresponding responses

− 3.89 × 107 × s2
4v4 + 1.13 × 105 × s4v

2
4

− 2.65 × 103 × v3
4 (18a)

Rnon
3,2 (s3, v3)

= 1.34 × 105 × s3 + 22.02 × v3 − 1.25 × 106 × s2
3

+ 4.64 × 104 × s3v3 − 187.77 × v2
3

+ 2.69 × 109 × s3
3 − 2.45 × 106 × s2

3v3

+ 2.09 × 105 × s3v
2
3 − 132.48 × v3

3 (18b)

Rnon
2,1 (s2, v2)

= 1.39 × 105 × s2 + 16.11 × v2 − 4.12 × 105 × s2
2

− 2.20 × 104 × s2v2 − 50.73 × v2
2

− 4.96 × 108 × s3
2 + 2.70 × 106 × s2

2v2

+ 1.06 × 105 × s2v
2
2 + 193.31 × v3

2 (18c)

Rnon
1,0 (s1, v1)

= 1.35 × 105 × s1 + 30.35 × v1 + 5.47 × 105 × s2
1

− 6.55 × 104 × s1v1 − 101.36 × v2
1

− 4.17 × 108 × s3
1 + 1.73 × 106 × s2

1v1

− 3.84 × 105 × s1v
2
1 + 1.05 × 105 × v3

1 (18d)

Figure 11 shows the relationship between the iden-
tified total restoring force and the inter-story displace-
ment and inter-story velocity of the nonlinear model
structure. From Fig. 11 it is clear that typical non-
linear characteristics exist on the 4th floor and the
NRF surfaces of the remaining floors are close to pla-
nar, thus implying that they behave linearly. In some
cases, such as post-event damage detection, the identi-
fied NRF of the object structure may be the end result
that is required, and no further identification tasks need
be implemented. Through the analysis of the identi-
fied inter-story NRF together with time matching tech-
niques, the extent of the nonlinearity, the time of the
damage initiation and development, and the energy
dissipation during vibration can be identified.

As mentioned before, the total inter-story NRF
identified above consists of the elastic restoring force,
viscous damping force, and the MR damper force,
therefore it usually cannot be measured directly. In this
study, the performance of the proposed approach was
verified by comparing the identified MR damper force
with the test measurements. In order to identify the
MR damper force, the elastic restoring force and the
viscous damping force provided by the structure itself
should be subtracted from the total identified NRFs.
Consequently, the above proposed methodology was
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Fig. 11 The identified NRFs: (a) on the 1st floor, (b) on the 2nd floor, (c) on the 3rd floor, (d) on the 4th floor

employed to identify the parameters of the linear struc-
ture without the MR dampers.

4.2.2 Identification for linear structure

In order to identify the elastic stiffness and damping
coefficients of the structure, the two MR dampers were
removed from the model structure and similar forced
vibration tests were carried out. The external force ap-
plied to the corresponding linear system is P(t). The
method described in (2) is employed to identify the
linear system without the MR dampers. Let k + q = 1
in (2), (3) can be rewritten as follows:

miẍi(t) +
k′∑

h=0

q ′∑

j=0

clin
i,i−1,h,j v

h
i,i−1s

j

i,i−1

+
k′∑

h=0

q ′∑

j=0

clin
i,i+1,j,hv

h
i,i+1s

j

i,i+1 = Pi(t)

(k′ + q ′ = 1) (19)

Similarly, based on the time-domain vectors, each
coefficient of the linear system (clin

i,i−1,j,h and

clin
i,i+1,j,h) can be identified by using least-square es-

timation methods. The identified restoring force of the
linear model can be expressed as follows:

Rlin
4,3(s4, v4) = 1.37 × 105 × s4 + 19.25 × v4 (20a)

Rlin
3,2(s3, v3) = 1.45 × 105 × s3 + 26.63 × v3 (20b)

Rlin
2,1(s2, v2) = 1.48 × 105 × s2 + 14.77 × v2 (20c)

Rlin
1,0(s1, v1) = 1.31 × 105 × s1 + 24.09 × v1 (20d)
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Fig. 12 The MR damper force: (a) on the 1st floor; (b) on the 2nd floor; (c) on the 3rd floor; (d) on the 4th floor

Moreover, according to (19), the mass distribu-
tion of the linear structure can be identified as m1 =
12.33 kg, m2 = 12.28 kg, m3 = 12.24 kg, and m4 =
12.09 kg. It is obvious that the identified masses of
the linear structure are close to the nonlinear structure,
because the mass of the employed MR dampers in this
model structure is only 0.4 kg, which is much smaller
than the mass of the frame structure, and therefore has
little influence on the structural mass distribution.

4.2.3 MR damper force identification and
comparison

Next, the nonlinear force (i.e. MR damper force in this
study) between the ith DOF and the (i−1) th DOF can
be extracted from the total NRFs through the following
equation:

Fnon =
k∑

h=0

q∑

j=0

cnon
i,i−1,h,j v

h
i,i−1s

j

i,i−1

−
k′∑

h=0

q ′∑

j=0

clin
i,i−1,h,j v

h
i,i−1s

j

i,i−1,

(k′ + q ′ = 1) (21)

Since the NRFs and linear restoring forces (LRFs)
are determined in (18a)–(18d) and (20a)–(20d), the
MR damper force can be identified and is displayed
in Fig. 12. For comparison, the measured MR damper
force is also shown in Fig. 12. It should be noted that
the force gauge as shown in Fig. 9 is diagonal, but the
identified MR forces obtained from (21) are in the hor-
izontal direction, so the component in the horizontal
direction of the measured MR force is the value to be
compared with the identified results. It is obvious that
the MR dampers are not placed on the 1st, 2nd and 3rd
floors because the identified MR forces on these floors
are very small. By comparing the identified MR damp-
ing force with the measured damping force as shown
in Fig. 12(d), it can be concluded that the proposed
method provides a reasonably accurate identification
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Fig. 13 The comparison of dissipative energy: solid line corre-
sponds to the measured MR force; dashed line, to the identified
one

of the NRF, both qualitatively and quantitatively, even
when no information about the system’s topology, or
about the nature of element forces, is utilized.

In practice, the energy of the structural member ab-
sorbed, which depends on the area of the hysteretic
loops during the dynamic excitation, is a direct in-
dex for damage detection. In this study, the accuracy
of the identified non-conservative restoring force was
also evaluated in the form of energy dissipation during
the vibration test. The comparison of the dissipated en-
ergy of the MR dampers determined by the identified
damper forces with that determined by the force mea-
surements is shown in Fig. 13. It is clear that the iden-
tified energy dissipation is very close to that obtained
from the measurements. This finding means that the
proposed approach has potential to be applied in prac-
tice to evaluate the structural post-event damage which
is related to the energy dissipation during dynamic ex-
citation such as earthquakes.

4.3 NRF identification under incomplete excitations

4.3.1 Nonlinear restoring force identification of the
structure with MR dampers

Here, the validity of the improved approach for the
identification of NRF while the structure is under in-
complete excitations, with only the 3rd floor of the
structure being excited, is studied. Based on the im-
pact force, measured acceleration, integrated veloc-
ity, and measured displacement, the expression of the
force applied on the 3rd floor can be obtained by least-
square techniques. Subsequently, according to (4)–(5),

the mass is known as m3 = 12.41 kg and the NRFs are
given by

Rnon
4,3 (s4, v4)

= 1.37 × 105 × s4 + 320.16 × v4

− 9.68 × 105 × s2
4 + 9.03 × 104 × s4v4

+ 248.69 × v2
4 + 3.27 × 109 × s3

4

− 2.61 × 107 × s2
4v4 − 4.43 × 105 × s4v

2
4

+ 1.56 × 103 × v3
4 (22a)

Rnon
3,2 (s3, v3)

= 1.41 × 105 × s3 + 20.58 × v3 − 9.11 × 105 × s2
3

+ 1.93 × 104 × s3v3 + 480.82 × v2
3

+ 5.17 × 109 × s3
3 + 2.68 × 106 × s2

3v3

− 4.82 × 105 × s3v
2
3 − 515.44 × v3

3 (22b)

Similarly to the numerical example discussed above,
the NRFs of the remaining floors as well as the masses
are determined in sequence. The identified masses are
m4 = 12.84 kg, m2 = 13.00 kg and m1 = 12.97 kg, re-
spectively. The identified NRFs are shown as follows:

Rnon
2,1 (s2, v2)

= 1.31 × 105 × s2 + 16.29 × v2 + 1.96 × 106 × s2
2

− 1.52 × 104 × s2v2 + 124.84 × v2
2

− 2.38 × 109 × s3
2 + 2.31 × 107 × s2

2v2

− 9.76 × 104 × s2v
2
2 + 266.51 × v3

2 (22c)

Rnon
1,0 (s1, v1)

= 1.32 × 105 × s1 + 52.50 × v1 + 1.78 × 106 × s2
1

− 8.47 × 104 × s1v1 − 128.72 × v2
1

− 2.19 × 108 × s3
1 + 2.19 × 107 × s2

1v1

− 4.28 × 105 × s1v
2
1 + 210.84 × v3

1 (22d)

The identified NRFs shown in (22a)–(22d) are plot-
ted against the relative displacement and relative ve-
locity and are displayed in Fig. 14. It is obvious that
the NRF surfaces are approximately planar except for
the surface associated with the 4th floor, indicating
that the MR dampers are placed on the 4th floor.
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Fig. 14 The identified NRFs: (a) on the 1st floor, (b) on the 2nd floor, (c) on the 3rd floor, (d) on the 4th floor

4.3.2 Identification for linear structure

In this case, without loss of generality, only the sec-
ond floor of the corresponding linear model struc-
ture is excited, and the corresponding acceleration,
displacement measurements, and excitation force are
recorded. Let k + q = 1 and the corresponding lin-
ear coefficients of the ith DOF can be identified from
(3)–(5). The mass distribution of the linear struc-
ture is found as m1 = 12.35 kg, m2 = 12.11 kg,
m3 = 12.56 kg and m4 = 12.66 kg, respectively. The
restoring forces of the linear structure are identified
as

Rlin
4,3(s4, v4) = 1.37 × 105 × s4 + 23.36 × v4 (23a)

Rlin
3,2(s3, v3) = 1.46 × 105 × s3 + 27.32 × v3 (23b)

Rlin
2,1(s2, v2) = 1.49 × 105 × s2 + 13.06 × v2 (23c)

Rlin
1,0(s1, v1) = 1.26 × 105 × s1 + 12.25 × v1 (23d)

It can be easily found that the coefficients shown in
(23a)–(23d) are close to those shown in (20a)–(20d),
indicating that the proposed polynomial model can be
used to represent the restoring force of the linear sys-
tem k + q = 1 under both complete and incomplete
excitations.

4.3.3 MR damper force identification and
comparison

Similarly to the case of complete excitations, the MR
damper force was measured and compared with the
identified force in order to validate the accuracy of
proposed method. According to (21), the MR damper
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Fig. 15 The MR damper force: (a) on the 1st floor; (b) on the 2nd floor; (c) on the 3rd floor; (d) on the 4th floor

forces can be determined and plotted in Fig. 15. Since
the MR damper force on the 1st, 2nd, and 3rd floors are
very small, it can easily be concluded that there are no
dampers located there. For comparison, the horizontal
component of the measured MR force on the 4th floor
is also shown in Fig. 15. It is clear that the identified
MR damper force has good agreement with the mea-
sured one, even though there are differences between
their shapes.

Also, the comparison of the dissipative energy de-
termined by the identified damper force and the mea-
surements is presented in Fig. 16. Even though a little
difference exists between the shapes of the two curves
shown in Fig. 15(d), the identified energy dissipation
of the dampers during vibration is very close to that
determined by measurements. This means that though
the excitations are incomplete, the proposed updated
method is still capable of identifying the NRF, locat-
ing damages, and even assessing the extent of the dam-
age.

Fig. 16 The comparison of dissipative energy: solid line corre-
sponds to the measured MR force; dashed line, to the identified
force

5 Concluding remarks

A power series polynomial modeling technique is
presented for the identification of NRF of chain-like
multi-degree-of-freedom system while the nonlinear
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dynamic system is under complete or incomplete ex-
citations. The feasibility and robustness of the pro-
posed method is validated via numerical simulation
with a 2-DOF system incorporating a parametric MR
model, and via an experiment with a 4-story steel
frame structure equipped with two actively-controlled
MR dampers. Results show that the identified polyno-
mial models can capture the dominant features of the
exact nonlinear system and the proposed methodology
can be suitable for linear and nonlinear dynamic sys-
tems.

A distinguishing feature of the proposed modeling
approach is that, other than the assumption of chain-
like topology, it does not need information about the
structure (such as structural characteristics or model-
class) and only the applied excitations and corre-
sponding responses are required. It provides a general
methodology for the identification of NRFs of engi-
neering structures, which can be used for monitoring
of damage initiation and development and evaluation
of damage severity of engineering structures under dy-
namic loadings, where significant nonlinearities may
be induced. Further study on the performance of the
proposed approach for dynamic system with parame-
ters varying with time during the shaking event should
be carried out in the future.
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