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Abstract The bifurcation and chaos of a cable–beam
coupled system under simultaneous internal and ex-
ternal resonances are investigated. The combined ef-
fects of the nonlinear term due to the cable’s geometric
and coupled behavior between the modes of the beam
and the cable are considered. The nonlinear partial-
differential equations are derived by the Hamiltonian
principle. The Galerkin method is applied to truncate
the governing equation into a set of ordinary differen-
tial equations. The bifurcation diagrams in three sepa-
rate loading cases, namely, excitation acting on the ca-
ble, on the beam and simultaneously on the beam and
cable, are analyzed with changing forcing amplitude.
Based on careful numerical simulations, bifurcations
and possible chaotic motions are represented to reveal
the combined effects of nonlinearities on the dynamics
of the beam and the cable when they act as an overall
structure.

Keywords Cable–beam coupled system · Internal
resonant · External resonant · Bifurcation · Chaos

1 Introduction

Many fields of engineering, including tower cranes,
stayed bridges, guyed masts, and suspended roofs, can
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be reduced to a cable–beam coupled system model.
Investigations into the nonlinear dynamics of these
structures have conventionally focused on the sub-
structure, i.e., the cable or the beam. However, this
cable–beam coupled system consists of a beam and a
cable with each fixed at one end and attached at the
other end. As a result, nonlinearities in these dynami-
cal systems are formed as a result of the cable’s geom-
etry and the coupled behavior between the modes of
the beam and the cable. On the other hand, if the beam
and the cable act as an overall structure in these fields,
there are some new mechanisms, such as internal reso-
nance and external resonance, as well as a combination
of the two resonances. Therefore, the bifurcation and
chaos dynamics of these structures must be studied in
terms of an overall structure.

Since a single beam and cable are widely used in
engineering, a great deal of literatures on their bi-
furcation and chaos has been published that exam-
ines a variety of phenomena under various condi-
tions [1–6]. However, in order to comprehend the bi-
furcation and chaos of the cable–beam coupled sys-
tem, additional knowledge regarding the coupled be-
havior that occurs due to internal resonance between
the modes of the beam and the cable must be re-
quired. From the viewpoint of modal coupling, Ma-
mandi [7] investigated the nonlinear dynamic response
of an inclined Timoshenko beam coupled with a trav-
eling mass that has variable velocity. Kenfack [8] in-
vestigated the bifurcation structure of coupled period-
ically driven double-well Duffing oscillators, and fur-
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ther analyzed by Musielak [9] with multiple degrees
of freedom. Cao and Zhang [10, 11] investigated the
global bifurcation and chaotic dynamics of a string-
beam coupled system through analytical study and nu-
merical simulation. Nevertheless, little study has been
devoted to the analysis of the bifurcation and chaos of
a cable–beam coupled system.

In fact, there are many internal resonance forms be-
tween the modes of a beam and a cable when they act
as an overall structure, such as two-to-one, one-to-one,
one-to-two, etc. However, the last have occurred very
often in constructions over the past decade [12–14].
Therefore, this study focuses on the bifurcation and
chaos of a cable–beam coupled system in the case of
one-to-two internal resonance, taking into considera-
tion the external resonance to the beam or the cable
due to loading case changing. The combined effects
of nonlinear terms due to the cable’s geometric and
coupled behavior between the modes of the beam and
the cable are considered. The governing equations of
the cable–beam coupled system due to vertical excita-
tion acting on the beam and the cable are derived by
the Hamiltonian principle. The Galerkin method is ap-
plied to truncate the governing equations into a set of
nonlinear ordinary differential equations. In numeral
investigations, when the bifurcation and chaos of the
cable–beam coupled system in the three loading cases
are investigated for the combination of internal and ex-
ternal resonances, the harmonic forcing magnitude is
chosen as a controlling parameter. It is demonstrated
that rich dynamics occur in these cases. A correspond-
ing comparison is made between these cases and the
identified differences are briefly discussed and some
possible explanations put forward.

2 Equations of motion

To conveniently analyze the dynamic characteristics of
the cable–beam coupled system, a model consisting of
a beam and cable, each fixed at one end and attached at
the other, as shown in Fig. 1, is considered. The beam
is modeled as an Euler–Bernoulli beam, the cable is
modeled neglecting the bending, torsional and shear
rigidities, and the cable sag to span ratio is very small
(d/lc < 0.1). In addition, we assume that the beam
and cable under consideration are homogeneous and
only oscillate transversely on the plane.

Fig. 1 Sketch of cable–beam structure: (a) static model; (b) dy-
namic model

Based on the above assumptions, the governing
equations of motion for the cable–beam coupled sys-
tem are obtained by using the extended Hamilton prin-
ciple, which states that

∫ t2

t1

(δT − δV − δW)dt = 0 (1)

where δT , δV , and δW are the kinetic energy, potential
energy and work done by gravity, respectively, and are
given by:

Tb = 1

2

∫ lb

0
mbv̇

2
b dxb = 0 (2a)

Tc = 1

2

∫ lc

0
mc

(
u̇2

c + v̇2
c

)
dsc = 0 (2b)
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Vb = 1

2

∫ lb

0
N(v′

b)
2 dxb + 1

2

∫ lb

0
EbIb(v

′′
b )2 dxb (3a)

Vc = 1

2

∫ lc

0
EcAcε

2
c ds0 +

∫ lc

0
H

ds0

dxc

εc ds0 (3b)

Wc =
∫ lc

0
mcg

(
uc cos(θ) + vc sin(θ)

)
ds0 (4)

where the symbols mb and mc are the mass per unit
length of the beam and cable, respectively; lb and
lc are the length of the beam and cable, respec-
tively; EbIb and EcAc are the bending stiffness of
the beam and axial stiffness of the cable, respectively,
and Eb,Ec are Young’s modulus of the beam and ca-
ble materials, respectively; Ib,Ac are the moment of
area of the beam and the cross-sectional area of the
cable, respectively; N is the axial compressive load;
H is the initial tension of the cable; vb is the beam
displacement at location xb and time t ; and uc, vc are
the longitudinal and transversal displacements of the
cable at location xc and time t , respectively. The over-
dot indicates differentiation with respect to time t; the
prime indicates differentiation with respect to the co-
ordinate x.

Since the transverse wave speed is much lower
than the longitudinal wave speed for the cables, the
stretches of the cable are assumed to have a quasi-
static manner, yc = 4d[xc/ lc − (xc/ lc)

2]. On the
other hand, assuming small sag to span ratio, then
ds0 = dxc. The expression of the elongation for the
cable has the following form:

εc = ds − ds0

ds0
= duc

ds0

dxc

ds0
+ dyc

ds0

dvc

ds0
+ 1

2

(
dvc

ds0

)2

(5)

in which

ds2
0 = dx2

c + dy2
c (6a)

ds2 = (dxc + duc)
2 + (dyc + dvc)

2 (6b)

On substituting (2a)–(6b) into Hamilton’s energy (1)
and on integrating by parts, the equations of motion
are derived as:

mbv̈b + EbIbv
′′′′
b + Nv′′

b = 0 (7a)

mcüc −
[
EcAc

(
u′

c + y′
cv

′
c + 1

2
v′2
c

)]′
= 0 (7b)

mcv̈c −
[
Hv′

c + EcAc(y
′
c + v′

c)

×
(

u′
c + y′

cv
′
c + 1

2
v′2
c

)]′
= 0 (7c)

The associated geometric boundary conditions of the
beam and cable are written as:

uc(0, t) sin(θ) + vc(0, t) cos(θ) = 0,

uc(lc, t) = 0, vc(lc, t) = 0,

vc(0, t) sin(θ) − uc(0, t) cos(θ) = vb(0, t),

vb(lb, t) = 0, vb(lb, t)
′ = 0

(8)

The relevant mechanical boundary conditions are writ-
ten as [15]:

vb(0, t)′′ = 0, EbIbvb(0, t)′′′ + kvb(0, t) = 0 (9)

where k = EcAc cos(θ)2/lc is the stiffness of the cable
supporting the beam.

Neglecting the axial inertia in the cable, the elonga-
tion of the cable can be derived from (7b) as

e(t, xc) = u′
c + y′

cv
′
c + 1

2
v′2
c (10)

By manipulating (10), (12a) and (12b), the following
uniform dynamic elongation can be obtained:

e(t) = 1

lc
vb(0, t) cos(θ) + 1

lc

∫ lc

0

(
y′
cv

′
c + 1

2
v′2
c

)
dxc

(11)

mbv̈
2
b + ξbv̇b + EbIbv

′′′′
b + Nv′′

b = pb cos(Ω1t) (12a)

mcv̈c + ξcv̇c − [
Hv′

c + EcAce(t)(y
′
c + v′

c)
]′

= pc cos(Ω2t) (12b)

where ξb and ξc are the damping coefficients of the
beam and cable, respectively; Ω1,Ω2, and pb,pc are
the frequency and forcing amplitude on the beam and
cable, respectively; and N is the axial compressive
load and is given by:

N = (
H + EcAce(t)

)
sin(θ) (13)
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Fig. 2 Bifurcation
diagrams for the primary
resonance to the beam
(ω1 :Ω1 = 1 : 1) and auto
parametric resonance to the
cable (ω2 :Ω1 = 2 : 1) when
the excitation directly
acting on the beam: (a) the
beam’s modal amplitude;
(b) the beam’s modal
velocity; (c) the cable’s
modal amplitude; (d) the
cable’s modal velocity

For convenience, a set of new variables and parameters
are defined as:

y = y

d
, τ = ωt, xi = xi

li
, vi = vi

li
,

ξi = ξi

miω
, pb = pb(xb)

mbω2lc
, Ω = Ω

ω
,

i = b, c

ρ = mc

mb

, μ = EcAc

H
, ν = d

lc
,

χ = EbIb

l2
bEcAc

, β2
c = ω2 mcl

2
c

H
, β4

b = ω2 mbl
4
b

EbIb

(14)

where ω is the natural frequency of the system in-
plane. In the nondimensional form, (8)–(14) become:

v̈1 + ξ1v̇1 + 1

β4
b

v′′′′
1 + ρ

β2
c sin(θ)

v′′
1 + ρμe

β2
c sin(θ)

v′′
1

= p1 cos(Ωt) (15a)

v̈2 + ξ2v̇2 − 1

β2
c

[
v′′

2 + μe(νy′′ + v′′
2 )

] = p2 cos(Ωt)

(15b)

v1(1, t) = 0, v1(0, t)′′ = 0,

v2(1, t) = 0, v2(1, t)′ = 0
(16a)

v2(0, t) − v1(0, t) sin(θ)2

= 0, χv1(0, t)′′′ + cos(θ)2 sin(θ)v1(0, t) = 0 (16b)

where subscripts 1 and 2 denote subscripts b and c,
respectively.

Based on research given by Cheng and Zu [16], the
transverse displacements v1(x, t) and v2(x, t) are ap-
proximated by the vibration modes of the first order as
follows:

v1(x, t) = ϕ1(x)q1(t) (17a)

v2(x, t) = ϕ2(x)q2(t) + ϕ1(x)q1(t) sin(θ)2 (17b)
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Fig. 3 Local magnification
of Figs. 2(a) and 2(c)

where φ1(x),φ2(x) are the mode shapes of the beam
and the cable, respectively, and can be written
as [17]:

ϕ1(x) = A1 sin(βcx) + A2 cos(βcx) + A3 sinh(βcx)

+ A4 cosh(βcx) (18a)

ϕ2(x) = 8μνe

β2
c

(
1 − tan

(
βc

2

)
sin(βcx) − cos(βcx)

)

(18b)

With these assumptions, the nonlinear governing equa-
tions of motion with two degrees-of-freedom for the
cable–beam coupled system can be derived by substi-
tuting (17a), (17b) into (16a), (16b) and by implement-
ing the Galerkin method. This yields the following set
of equations:

q̈1(t) + ξ1q̇1(t) + a1q1(t) + a12q1(t)q2(t)

+ a122q1(t)q2(t)
2 + a11q1(t)

2 + a112q1(t)
2q2(t)

+ a111q1(t)
3 = f11 cos(Ω1t) (19a)

q̈2(t) + ξ2q̇2(t) + c1q̈1(t) + c2q̇1(t) + b2q2(t)

+ b12q1(t)q2(t) + b112q1(t)
2q2(t) + b22q2(t)

2

+ b112q1(t)
2q2(t) + b222q2(t)

3 + b1q1(t)

+ b11q1(t)
2 + b111q1(t)

3 = f22 cos(Ω2t) (19b)

where fij is the amplitude of the single-harmonic
functions, and ai, bi, ci , aij , bij , aijk , and bijk are the
Galerkin coefficients of the beam and cable, which are
defined in the Appendix. From (19a), it is evident that
some nonlinearity (quadratic and cubic) exists due to
the coupled behavior between the modes of the beam
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Fig. 4 Bifurcation
diagrams for the
sub-harmonic resonance to
the beam (ω1 :Ω1 = 1 : 2)

and principal resonance to
the cable (ω2 :Ω1 = 2 : 2)

when the excitation directly
acting on the beam: (a) the
beam’s modal amplitude;
(b) the beam’s modal
velocity; (c) the cable’s
modal amplitude; (d) the
cable’s modal velocity

and the cable, although the beam model is considered
linearized. From (19b), it is evident that the nonlinear
term is richer than the case that only considers the ge-
ometric nonlinearity in a cable.

3 Bifurcation and chaos

The bifurcation diagram is a modern technique used
to analyze nonlinear systems. In a bifurcation dia-
gram, the characteristic of the motion of a system
is qualitatively changed as a parameter varies across
a specific value. It reveals that a previous motion
loses stability at a bifurcation point across which
a new motion is originated. Thus, the bifurcation
diagram provides a summary of essential dynam-
ics and is therefore a useful tool for acquiring an
overview. In order to content the 1 : 2 internal con-
dition (ω1 = 1.000 and ω2 = 1.978), the cable–beam

coupled system parameters are set to ρ = 0.01, χ =
0.04,μ = 1000, υ = 0.0345, ξ1 = ξ2 = 0.01, and θ =
π/3. The truncated model equations are solved by the
fourth-order Runge–Kutta algorithm with an integra-
tion step size of 0.00001 and the transient solutions
are discarded.

3.1 Excitation acting on the cable

When the excitation directly acting on the cable,
the set of (19a), (19b) can be simplified to four-
dimensional nonlinear averaged equations in Cartesian
form:

q̇1(t) = v1(t) (20a)

v̇1(t) = −a1q1(t) − a12q2(t)q1(t) − a122q2(t)
2q1(t)

− a11q1(t)
2 − a112q2(t)q1(t)

2

− a111q1(t)
3 − ξ1v1(t) (20b)
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Fig. 5 Local magnification
of Figs. 4(a) and 4(c)

q̇2(t) = v2(t) (20c)

v̇2(t) = −b2q2(t) − b12q1(t)q2(t) + c1a12q1(t)q2(t)

− b22q2(t)
2 − b122q1(t)q2(t)

2

+ c1a122q1(t)q2(t)
2 − b222q2(t)

3

+ c1a1q1(t) − b1q1(t) − b11q1(t)
2

+ c1a11q1(t)
2 − b112q1(t)

2q2(t)

+ c1a112q1(t)
2q2(t) − b111q1(t)

3

+ c1a111q1(t)
3 − c2v1(t) + c1ξ1v1(t)

− ξ2v2(t) + f22 cos(Ω2t) (20d)

From (20a)–(20d) it is evident that the term of excita-
tion only appears in the governing equations of the ca-
ble. This indicates that the beam motion is free vibra-

tion and there is no dynamic response due to its initial
displacement is zero (as seen in (18a)). Thus, in this
case, there is no coupled behavior between the beam
and the cable. The nonlinear responses that are caused
solely by the geometric nonlinearity have been stud-
ied extensively in a lot of literatures [6, 18, 19] and, as
such, we do not examine this issue.

3.2 Excitation acting on the beam

When the excitation directly acting on the beam, the
set of (19a), (19b) can be simplified into the following
form:

q̇1(t) = v1(t) (21a)

v̇1(t) = −a1q1(t) − a12q2(t)q1(t) − a122q2(t)
2q1(t)

− a11q1(t)
2 − a112q2(t)q1(t)

2 − a111q1(t)
3

− ξ1v1(t) + f11 cos(Ω1t) (21b)
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Fig. 6 Bifurcation
diagrams for the primary
resonance to the beam
(ω1 :Ω1 = 1 : 1) and
supre-harmonic resonance
to the cable (ω2 :Ω1 = 2 : 1)

when the excitation directly
simultaneous acting on the
beam and cable: (a) the
beam’s modal amplitude;
(b) the beam’s modal
velocity; (c) the cable’s
modal amplitude; (d) the
cable’s modal velocity

q̇2(t) = v2(t) (21c)

v̇2(t) = −b2q2(t) − b12q1(t)q2(t) + c1a12q1(t)q2(t)

− b22q2(t)
2 − b122q1(t)q2(t)

2

+ c1a122q1(t)q2(t)
2 − b222q2(t)

3

+ c1a1q1(t) − b1q1(t) − b11q1(t)
2

+ c1a11q1(t)
2 − b112q1(t)

2q2(t)

+ c1a112q1(t)
2q2(t) − b111q1(t)

3

+ c1a111q1(t)
3 − c2v1(t) + c1ξ1v1(t)

− ξ2v2(t) − c1f11 cos(Ω1t) (21d)

From (21a)–(21d), it is evident that the terms of ex-
citation both appear in the governing equations of the
beam and cable, indicating that the nonlinear term is
not only due to the cable’s geometric behavior, but is

also due to the coupled behavior between the beam and
the cable. Therefore, under the condition of 1 : 2 inter-
nal resonant between the modes of the beam and the
cable, two separate external resonance cases, Ω1 = 1
and Ω1 = 2, are analyzed: the primary and subhar-
monic resonance for the beam, and the corresponding
auto parametric and principle parametric resonance for
the cable.

Figure 2 shows the bifurcation diagrams as the forc-
ing amplitude (f11) is varied in the range 0.001 ≤
f11 ≤ 0.05; the values of other parameters are all fixed
when there is primary resonance for the beam and auto
parametric resonance for the cable. As seen in Fig. 2,
it can be observed that the dynamic behaviors of the
beam and the cable are always consistent when they
act as an overall structure. The beam and cable mo-
tions mainly exhibit chaos, and only a few periodic
motion windows exist in some very small regions (as
seen in Fig. 3). When the forcing amplitude (f11) is
small, as seen in Fig. 3(c), there are some periodic-
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Fig. 7 Local magnification
of Figs. 6(a) and 6(c)

2 motion windows for the cable. The same dynamic
behaviors for the beam can be seen in Fig. 3(a). Refer-
ring to Figs. 2(a) and 2(b), although the chaotic motion
of the beam becomes more obvious with the forcing
amplitude (f11) increasing, its response is very small
compared to the cable. Moreover, as seen in Figs. 2(a)
and 2(c), the modal amplitude of the beam and the ca-
ble is always along the positive direction and negative
direction, respectively.

Figure 4 shows the bifurcation diagrams as the forc-
ing amplitude (f11) is varied in the range 0.001 ≤
f11 ≤ 0.05; the values of other parameters are all fixed
when there is subharmonic for the beam and prin-
ciple parametric resonance for the cable. As seen in
Fig. 4(a), the beam motion is almost always present in
periodicity and the modal amplitude is always along
the negative direction. However, due to the beam and
cable act as a coupled system, the beam motion has
the same characteristic as the cable, i.e., periodic-2
(Fig. 5(a)) and chaotic motions (Fig. 5(b)). Compared

to Figs. 4(a) and 4(b), Figs. 4(c) and 4(d) exhibit more
clearly dynamic behaviors of the cable–beam coupled
system through the cable’s motion. When increasing
the forcing amplitude (f11), the chaotic and periodic
motions occur alternately, and some higher periodic
motions, i.e., periodic-4 and periodic-6 can be clearly
seen in Figs. 5(c) and 5(d). Compared to what seen in
Fig. 2, the diversities of periodic motion become rich
and the chaotic motion regions obviously decrease, in-
dicating that the cable–beam coupled system become
more stable as the resonance mechanism on the cable
changes.

3.3 Excitation force acting on both the beam and the
cable

In this section, the bifurcations of cable–beam cou-
pled system are further investigated when the vertical
harmonic force directly acting on both the beam and
the cable. In this case, we only consider the beam and
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Fig. 8 Bifurcation
diagrams for the
sub-harmonic resonance to
the beam (ω1 :Ω1 = 1 : 2)

and primary resonance to
the cable (ω2 :Ω1 = 2 : 2)

when the excitation directly
simultaneous acting on the
beam and cable: (a) the
beam’s modal amplitude;
(b) the beam’s modal
velocity; (c) the cable’s
modal amplitude; (d) the
cable’s modal velocity

cable in the same load environment, i.e., wind load.
The forcing frequencies and amplitudes are set to Ω1

and f11. Under the condition of 1 : 2 internal resonance
between the modes of the beam and cable, two sep-
arate forcing frequency cases, Ω1 = 1 and Ω1 = 2,
are considered. The former corresponds to the primary
resonance for the beam and simultaneous superhar-
monic resonance for the cable. The latter corresponds
to sub-harmonic resonance for the beam and simulta-
neous primary resonance for the cable.

Similarly as before, solutions of (19a), (19b) are
obtained by using the fourth-order Runge–Kutta algo-
rithm, with the same parameters and initial conditions
employed in the foregoing. Figures 6 and 8 show the
bifurcation diagrams as the forcing amplitude (f11) is
varied as 0.001 ≤ f11 ≤ 0.05; the values of other pa-
rameters are all fixed for the forcing frequency Ω1 = 1
and Ω1 = 2, respectively. As seen in Figs. 6 and 8, it
can be observed that the beam and cable exhibit a sim-
ilar dynamic behavior to what seen in Figs. 2 and 4,

respectively. However, there are some differences be-
tween them for each case since the two external res-
onances exist simultaneously. When the forcing fre-
quency Ω1 = 1, due to the additional superharmonic
for the cable, the periodic motion occurs in a rela-
tively larger region and a periodic-2 motion occurs in
the round of f11 = 0.03 (Figs. 7(b) and 7(d)). When
the forcing frequency Ω1 = 2, due to the additional
subharmonic for the beam, the diversities of periodic
motion become poor (Figs. 9(a), 9(b) and 9(d)), i.e.,
periodic-3 and periodic-6 disappear, and the regions
of chaotic motion obviously increase (Fig. 9(c)).

It is instructive to look at phase portraits and
Poincare maps associated with various values of the
forcing amplitude (f11), which are shown in Figs. 10–
13, corresponding to different dynamical behavior as
discussed in the foregoing. As seen in Figs. 10 and 12,
Figs. 10(c), 10(f), 12(c), and 12(f) show the chaotic
motions and the others show periodic motions. Thus,
one can see that the beam motion can display rich
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Fig. 9 Local magnification
of Figs. 8(a) and 8(c)

dynamical behavior when it is coupled with the ca-
ble, even though its model is considered linearized.
As seen in Figs. 11 and 13, the periodic and chaotic
motions in the two cases are completely different as
the resonance mechanism changing, respectively.

4 Conclusions

In this paper, the bifurcation and chaos of a cable–
beam coupled system under simultaneous internal and
external resonances are investigated. The combined ef-
fects of the nonlinear term due to the cable’s geome-
try and coupled behavior (1 : 2 internal resonant) be-
tween the modes of the beam and cable are considered.
The coupled nonlinear differential equations are for-
mulated by the Hamiltonian principle. The Galerkin
method is utilized to truncate the governing equa-
tions of motion to a two DOFs model. The nonlinear

dynamical behaviors are numerically investigated by
means of the phase portraits and the Poincare maps.
Bifurcation diagrams are presented to show how the
modal displacement and modal velocity changes with
the forcing amplitude.

The behaviors are analyzed for three loading condi-
tions. When the excitation directly acting on the cable,
there is no dynamic response on the beam and no cou-
pled behavior exists in the cable–beam coupled sys-
tem. When the excitation directly acting on the beam,
for the primary resonance to the beam and auto para-
metric resonance to the cable, the beam and the ca-
ble mainly exhibit chaotic motion, periodic motions
only can be found in some very small regions; For the
subharmonic resonance to the beam and the principal
parametric resonance to the cable, the periodic motion
and chaotic motion alternate, and higher periodic mo-
tion can be found. When the excitation directly acting
both on the beam and cable, due to the additional su-
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Fig. 10 Phase portraits and Poincare maps in the beam for
the primary resonance to the beam (ω1 :Ω1 = 1 : 1) and supre-
harmonic resonance to the cable (ω2 :Ω1 = 2 : 1) when the ex-

citation directly simultaneous acting on the beam and cable:
(a) f11 = 0.00946; (b) f11 = 0.0308; (c) f11 = 0.04

perharmonic to the cable, the periodic motions of the
cable–beam coupled system can occur in a relatively
larger region. However, if the additional subharmonic
to the beam exists, the diversities of periodic motion
become poor. It is also found that the magnitudes of
the modal displacement and velocity are equal for all
cases.
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Appendix

First, we introduce the following integrals for defining
the coefficients in (19a), (19b):

gmni =
⎧⎨
⎩

∫ 1
0 y′

c(x)ϕ′
n(x)xi m = 3

∫ 1
0 ϕ′

m(x)ϕ′
n(x)xi dx m �= 0

jmni =
⎧⎨
⎩

∫ 1
0 y′

c(x)ϕn(x)xi dx m = 3
∫ 1

0 ϕ′
m(x)ϕn(x)xi dx m �= 0

fmn =
∫ 1

0
ϕm(x)pn(x) dx

(A.1)

lmni =
⎧⎨
⎩

∫ 1
0 yc(x)ϕn(x)xi dx m = 3

∫ 1
0 ϕm(x)ϕn(x)xi dx m �= 0

rmni =
⎧⎨
⎩

∫ 1
0 y′′

c (x)ϕn(x)xi dx m = 3
∫ 1

0 ϕ′′
m(x)ϕn(x)xi dx m �= 0

k1 =
∫ 1

0
ϕ1(x)ϕ1(x)′′′′ dx

where m = 1 or 2, n = 1 or 2, and φi(x) are the mode
shapes of the beam and cable, respectively, and yc(x)

is the parabola function for inclined cable.
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Fig. 11 Phase portraits and Poincare maps in the cable for
the primary resonance to the beam (ω1 :Ω1 = 1 : 1) and supre-
harmonic resonance to the cable (ω2 :Ω1 = 2 : 1) when the ex-

citation directly simultaneous acting on the beam and cable:
(a) f11 = 0.00946; (b) f11 = 0.0308; (c) f11 = 0.04

Then the coefficients in (19a), (19b) are given as
follows:

a1 = k1

l110β
4
b

+ ρr110

l110β2
c sin(θ)

,

a11 = (νg310 − νg311 − νj310)ρμr110 sin(θ)

l110β2
c

+ ρμr110ϕ1(0) cos(θ)

l110β
4
b

,

a12 = ρμr110g320ν

l110β2
c sin(θ)

,

a111 = sin(θ)3ρμr110

β2
c

[
1

2
+ 1

l110

(
j111 + 1

2
g110

− g111 − j110 + 1

2
g112

)]
,

a112 = ρμr110 sin(θ)

l110β2
c

(g120 − g121 − j210),

a122 = ρμr110g220

2l110β2
c sin(θ)

, f11 = f̃11

l110
,

b1 = sin(θ)2

l220β2
c

[
(−g310 + g311 + j310)μν2r320 − r120

+ r121 + 2j120 + −μνr320 cos(θ)ϕ1(0)

sin(θ)

]
,

b11 = sin(θ)4μν

l220β2
c

(
−2j120g311 + r120j310 − 1

2
r320l110

+ r121g310 − r320j111 − r121j311 + r320g111

+ r320j110 − r120g310 − 2j120j310 + r120g311

− r121j310 + 2j120g310 − 1

2
r320g110

− 1

2
r320g112

)
− cos(θ)ϕ1(0)

l220β2
c

× (−r120 + 2j120 + r121 sin(θ)3μ
)
,
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Fig. 12 Phase portraits and Poincare maps in the beam for
the sub-harmonic resonance to the beam (ω1 :Ω1 = 1 : 2) and
primary resonance to the cable (ω2 :Ω1 = 2 : 2) when the ex-

citation directly simultaneous acting on the beam and cable:
(a) f11 = 0.004; (b) f11 = 0.032; (c) f11 = 0.045

b111 = sin(θ)6μ

l220β2
c

(
−2j120g111 + 2j120j111

+ 1

2
r121l110 + r120g111 − 2j120j110

+ r121j111 + j120g112 + j120l110

− r121g111 − r121j110
1

2
r121g112

− 1

2
r120g110 − 1

2
r120g112 − r120j111

− 1

2
r120l110 + 1

2
r121g110 + r120j110

)
,

(A.2)

b112 = sin(θ)4μ

l220β2
c

(
−1

2
r220g112 − 1

2
r220g110

+ r121g120 − r220l110 − r220l110 − r120g120

− r121g121 − r121j210 + 2j120g120

− 2j120g121 − j120j210 + r220g111 + r220j110

+ r120g121 + r120j210

)
,

b12 = sin(θ)2μν

l220β2
c

(−r320g120 − r220g310 + r320j210

+ 2j120g320 + r121g320 − r120g320 + r220j310

+ r320g121 + r220g311)

+ −μr220ϕ1(0) sin(θ) cos(θ)

l220β2
c

,

b122 = sin(θ)2μ

l220β2
c

(
j120g220 − 1

2
r120g220 + r220j210

+ 1

2
r121g220 − r220g120 + r220g121

)
,

b122 = sin(θ)2μ

l220β2
c

(
j120g220 − 1

2
r120g220 + r220j210

+ 1

2
r121g220 − r220g120 + r220g121

)
,
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Fig. 13 Phase portraits and Poincare maps in the cable for
the sub-harmonic resonance to the beam (ω1 :Ω1 = 1 : 2) and
primary resonance to the cable (ω2 :Ω1 = 2 : 2) when the ex-

citation directly simultaneous acting on the beam and cable:
(a) f11 = 0.004; (b) f11 = 0.032; (c) f11 = 0.045

b2 = −μν2r320g320 − r220

l220β2
c

,

b22 = μν(−r220g320 − 1
2 r320g220)

l220β2
c

,

b222 = μr220g220

l220β2
c

(
−1

2

)
,

c1 = l120 − l121

l220
sin(θ)2,

c2 = l120 − l121

l220
ξ2 sin(θ)2, f22 = f̃22

l220
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