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Abstract The bifurcation and chaos of a clamped cir-
cular functionally graded plate is investigated. Con-
sidered the geometrically nonlinear relations and the
temperature-dependent properties of the materials, the
nonlinear partial differential equations of FGM plate
subjected to transverse harmonic excitation and ther-
mal load are derived. The Duffing nonlinear forced vi-
bration equation is deduced by using Galerkin method
and a multiscale method is used to obtain the bifur-
cation equation. According to singularity theory, the
universal unfolding problem of the bifurcation equa-
tion is studied and the bifurcation diagrams are plot-
ted under some conditions for unfolding parameters.
Numerical simulation of the dynamic bifurcations of
the FGM plate is carried out. The influence of the pe-
riod doubling bifurcation and chaotic motion with the
change of an external excitation are discussed.

Keywords Functionally graded plate · Combination
resonance · Multi-scale method · Universal
unfolding · Bifurcation

1 Introduction

Functionally graded material (FGM) is a new type of
inhomogeneous composite materials, which are usu-
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ally made from mixture of metals and ceramics. It is
known that ceramics are excellent in heat-resistance
and metal has good characteristics in strength and
toughness. FGMs were initially designed as thermal
barrier materials for aerospace structures. Nowadays,
FGMs are being developed for structural components
including beams, plates, and shells to satisfy extremely
high-temperature conditions.

Since the concept of FGMs [1] was firstly pro-
posed, FGMs, especially their thermo-elastic behav-
ior or buckling behavior have been extensively studied
by researchers. Noda [2] provided a comprehensive
discussion of thermal stress of FGMs under a steady-
temperature field or thermal shock. Praveen and Reddy
[3] investigated the static and dynamic thermo-elastic
response of functionally graded plates using the fi-
nite methods. Liew et al. [4, 5] studied the thermal
post-buckling of FGPs with temperature-dependent
properties and the post-buckling of piezoelectric FGM
plates subjected to thermo-electro-mechanical load-
ing. There are some other works on FGMs research,
such as, a theoretical formulation and finite element
models for FGPs [6], the feedback control of FGM
shells [7], the finite element formulation for a geo-
metrically non-linear thermo-elastic FGM [8], the me-
chanical and thermal buckling analysis of functionally
graded plates [9], etc.

With the increased use of FGM components in en-
gineering, several researchers have focused their at-
tention on investigating the dynamics of FGM compo-
nents under mechanical load and thermal load. Based
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on the first-order shear deformation theory, Praveen
and Reddy [10] provided the nonlinear transient ther-
moelastic analysis of functionally graded ceramic-
metal plates subjected to pressure load and thickness
varying temperature fields. Ng et al. [11] analyzed the
parametric resonance of functionally graded rectangu-
lar plates under harmonic in-plane loading. Yang and
Shen [12] studied the dynamic responses of initially
stressed FGM rectangular thin plates subjected to par-
tially distributed impulsive lateral loads. They con-
sidered the influence of an elastic foundation. Also,
they [13] analyzed the free vibration parametric reso-
nance of shear deformable functionally graded cylin-
drical panels subjected to combined static and peri-
odic axial forces in the thermal environment. A three-
dimensional solution for the free and forced vibra-
tion of simply supported FGPs was provided by Vel
and Batra [14] using different plate theories, and Liew
et al. [15] carried out the finite element piezother-
moelasticity analysis and the active control of FGM
plates with integrated piezoelectric sensors and actu-
ators. Allahverdizadeh [16] studied the nonlinear free
and forced axisymmetric vibration of a thin circular
functionally graded plate and gave the relationship be-
tween the free vibration frequencies and vibration am-
plitudes. Zhao and Liew [17] investigated the non-
linear response of functionally graded ceramic-metal
plates under mechanical and thermal loads using the
mesh-free kp-Ritz method. He et al. [18] presented the
static response and free vibration of metal and ceramic
functionally graded shells subjected to mechanical or
thermomechanical loading. Hao and Zhang [19] ana-
lyzed the nonlinear dynamics of a simply supported
functionally graded materials rectangular plate sub-
jected to the transversal and in-plane excitations in a
thermal environment. Here, they considered the reso-
nant case is 1:1 internal resonance and principal para-
metric resonance. Recently, Yang et al. [20] carried
out an analysis of the nonlinear vibration of a simply
supported functionally graded rectangular plate with a
through-width surface crack.

Studies of the nonlinear vibrations and chaos of
the plate have been extensively conducted in the past
decades. In [21], Sridhar et al. studied the axisymmet-
ric response of a circular plate to a harmonic excita-
tion. The method of multiple scales was employed and
internal resonances were found. Hadian and Nayfeh
[22] used the method of multiple scales to investi-
gate the axisymmetric response of circular plates in the

case of internal resonance. A reduced model based on
specifically chosen mode shapes was employed. Feng
and Sethna [23] made use of a global perturbation
method to study the global bifurcations and chaotic
dynamics of thin plate under parametric excitation and
obtained the conditions in which Shilnikov type homo-
clinic orbits and chaos can occur. Chang et al. [24] in-
vestigated the bifurcations and chaos of a rectangular
thin plate with 1:1 internal resonance. Liu and Chen
[25] analyzed the geometrically nonlinear free vibra-
tions of polar orthotropic circular plates using an ax-
isymmetric finite element method. Global bifurcations
and chaotic dynamics were investigated by Zhang et
al. [26] for a parametrically and externally excited
simply supported thin plate. Haterbouch and Bena-
mar [27–29] studied rather complete investigations on
the harmonic and axisymmetric nonlinear vibrations
of circular plates; the equations of motion were de-
rived from the kinetic and potential energies and the
harmonic balance method was employed with one har-
monic. Akour and Nayfeh [30] investigated the non-
linear dynamics and bifurcation of orthotropic circu-
lar plates with simply supported boundary condition.
Zhang et al. [31] carried out an analysis of the multi-
pulse Shilnikov type chaotic dynamics of a parametri-
cally and externally excited, simply supported rectan-
gular thin plate using a extended Melinkov method.
Recently, the transition from periodic to chaotic vi-
brations in free-edge, perfect, and imperfect circular
plates were analyzed by Touzé et al. [32].

Since the combination resonance of a clamped cir-
cular functionally graded plate in the thermal environ-
ment has not been studied, in this paper, we investigate
the local bifurcation, dynamic bifurcation and chaos
of the clamped circular functionally graded plate with
combination resonance for two-term harmonic exci-
tations. Material properties of the constituents are
graded in the thickness direction according to a power-
law distribution. In the framework of classical plate
theory, the governing equations of the FGM circu-
lar plate are derived via the principle of virtual work.
Using Galerkin’s procedure, the governing equations
can be reduced to a Duffing system. The method of
multiple scales is used to obtain a bifurcation equa-
tion, and then the fourth-order Runge–Kutta algorithm
[33] is utilized to numerically analyze the dynamic bi-
furcations and chaotic motions of the FGM circular
plate subjected to thermal and mechanical loads for
the combination resonance.
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2 FGM material properties

Consider a thin circular FGM plate subjected to ax-
isymmetric transverse loads under cylindrical coordi-
nates r, θ and z, as shown in Fig. 1. Its initial con-
figuration is undeformed. The plate edge is clamped
and immovable in the r direction. The disk has uni-
form thickness h and is bounded by z = ±h/2 and
r = R. The plate is excited in a manner which will
produce large vibration amplitude. The displacement
at any point can be expressed by the radial displace-
ment u and the transverse displacement.

Usually, most of the FGMs are employed in a high-
temperature environment and many of the constituent
materials may possess temperature-dependent proper-
ties. It is assumed that the plate is made from a mix-
ture of ceramics and metals. The bottom surface of the
plate is ceramic-rich, whereas the top surface is metal-
rich. The materials properties P , such as the Young’s
modulus E or the coefficient of thermal expansion α,
can be expressed as

P = PcVc + PmVm (1)

P can also be expressed by a function of temperature
[34]

P = P0
(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3) (2)

where Pc and Pm denote the temperature-dependent
properties of the ceramics and metals, respectively.
P0,P−1,P2, and P3 are the coefficients of tempera-
ture T and are unique to the constituent materials.

Fig. 1 The model of an FGM circular plate and the coordinate
system

Vc and Vm are the ceramics and metal volume frac-
tions and satisfy the following relations:

Vc + Vm = 1, Vc =
(

2z + h

2h

)n

(3)

where n is volume fraction index.
It is assumed that the effective Young’s modulus E

and thermal expansion coefficient α are temperature-
dependent, whereas the mass density ρ, Poisson ratio
μ and thermal conductivity κ are independent to the
temperature. From (1)–(3), one has

E(z,T ) = (
Ec(T ) − Em(T )

)(2z + h

2h

)n

+ Em(T )

(4a)

α(z,T ) = (
αc(T ) − αm(T )

)(2z + h

2h

)n

+ αm(T )

(4b)

μ(z) = (μc − μm)

(
2z + h

2h

)n

+ μm (4c)

ρ(z) = (ρc − ρm)

(
2z + h

2h

)n

+ ρm (4d)

κ(z) = (κc − κm)

(
2z + h

2h

)n

+ κm (4e)

We assume that the temperature variation occurs in
the thickness direction only and one dimensional tem-
perature field is constant in the rθ plane of the plate.
In such a case, the temperature distribution along the
thickness can be obtained by solving a steady-state
heat transfer equation

− d

dz

[
κ(z)

dT

dz

]
= 0 (5)

The boundary conditions are T = �Tc at (z = h/2)

and T = �Tm at (z = −h/2). The solution of this
equation can be expressed as polynomial series [35].

3 Equations of motion

Assuming the Poisson ratio μ as a constant and tak-
ing into account the thermal effects, the stress strain
relationship is as follows:

σr = E(z)

1 − μ

[
1

1 + μ
(εr + μεθ ) − α(z)�T (z)

]
(6a)
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σθ = E(z)

1 − μ

[
1

1 + μ
(εθ + μεr) − α(z)�T (z)

]
(6b)

Based on the classical Kirchhoff plate theory, the
nonlinear strain-displacement relations are
{

εr

εθ

}
=

{
ε0
r

ε0
θ

}
+ z

{
ε1
r

ε1
θ

}
(7)

where
{

ε0
r

ε0
θ

}
=

{
∂u0
∂r

+ 1
2 (

∂w0
∂r

)2

u0
r

}

denotes the strain of the middle surface,
{

ε1
r

ε1
θ

}

=
{

∂2w0
∂r2

1
r

∂w0
∂r

}

denotes the curvature of the middle surface and the
change of the twist. u0 and w0 are the displacements
of the middle surface.

The circular functionally graded plate is acted by
transverse harmonic load and thermal load. Introduc-
ing stress function ψ(r, t) and combining (4), (5), (6),
and (7), the nonlinear governing equations of motion
for the FGM plate are derived by using the principle
of virtual work

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
− ψ

r2
= −B1h

2r

(
∂w0

∂r

)2

(8)

(
h3B2

2

B1(1 − μ2)
− h3B4

1 − μ2

)
(∇4w0

) + 1

r

∂

∂r

(
ψ

∂w0

∂r

)

+ hB2

B1(1 − μ2)

[
r
∂4ψ

∂r4
+ (5 − μ)

∂3ψ

∂r3

+ 3 − 2μ

r

∂2ψ

∂r2
+ μ

r2

(
∂ψ

∂r
− ψ

r

)]

+ h2B2

1 − μ2

[
∂w0

∂r

∂3w0

∂r3
+ (2 − μ)

r

∂w0

∂r

∂2w0

∂r2

+
(

∂2w0

∂r2

)2]
+ Pz

= I0
∂2w0

∂t2
+ δ

∂w0

∂t
(9)

u0 = r

B1h

∂ψ

∂r
− μ

B1h
ψ + B2h

B1

∂w0

∂r
+ rB3

B1
(10)

where Pz is the transverse excitation, δ is the damp-
ing coefficient, t is time variation, I0 = ∫ h/2

−h/2 ρ(z)dz

is the area mass density. Bi (i = 1–4) are constants
which depend on the thermal properties and the vol-
ume fraction index:

B1 =
∫ h/2

−h/2

E(z)

h
dz

B2 =
∫ h/2

−h/2

E(z)

h2
zdz

B3 =
∫ h/2

−h/2

E(z)α(z)�T (z)

h
dz

B4 =
∫ h/2

−h/2

E(z)

h3
z2 dz

4 Local bifurcation

The plate edge is clamped and immovable in r direc-
tion. The boundary conditions can be expressed: at
r = 0, u0 = ∂w0

∂r
= 0; at r = R,u0 = w0 = ∂w0

∂r
= 0.

The transversal excitations acted on the FGM plate are
represented by q1(r) cosω1t and q2(r) cosω2t . Here,
ω1 and ω2 are the frequencies of the transversal exci-
tations. Thus, we write w0 as follows:

w0 = f (t)

[
1 − 2

(
r

R

)2

+
(

r

R

)4]
(11)

where f (t) is the amplitude of the first mode.
Substituting (11) into (8)–(10) and introducing

small parameter ε, the Duffing dimensionless equation
of transverse motion of the FGM plate is

g̈+g = −εη̃1ġ−εη̃2g
3 +η3(q1 cosΩ1τ +q2 cosΩ2τ)

(12)

where g(τ) = f/h is the dimensionless amplitude,
τ = ω0t is the dimensionless time variation. The co-
efficients are

η̃1 = η1

ε
, η̃2 = η2

ε

ω2
0 = 320

3I0R4

[
h3B4

1 − μ2
− h3B3

B1(1 − μ2)

]
+ 20B3h

3R2

η1 = δ

I0ω0
, η2 = h3B1

I0R4ω2
0

[
(50 − 30μ)

9(1 − μ)
− 40

21

]

η3 = 5q1

3I0hω2
0

, η3 = 5q2

3I0hω2
0
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Ω1 = ω1
ω0

, and Ω2 = ω2
ω0

denote the dimensionless exci-
tation frequencies. ġ and g̈ denote the first and the sec-
ond derivatives of the dimensionless amplitude with
respect the time variable, respectively.

According to the multiple scale method [36], the
linear approximate solution of (12) is

g(τ ; ε) = g0(T0, T1) + εg1(T0, T1) (13)

where T0 = τ and T1 = ετ .
Substituting (13) into (12) and equating the coeffi-

cients of ε0 and ε1 on both sides, we obtain

ε0: D2
0g0 + g0 = η3(q1 cosΩ1t + q2 cosΩ2t) (14)

ε1: D2
0g1 + g1 = −2D0D1g0 − η̃1D0g0 − η̃2g

3
0

(15)

where the partial differential operators are D0 =
∂

∂T0
,D1 = ∂

∂T1
and D2

0 = ∂2

∂T 2
0

, respectively.

The general solution of (14) can be written as

g0 = A(T1) exp(iT0) + Λ1 exp(iΩ1T0)

+ Λ2 exp(iΩ2T0) + cc (16)

where A(T1) is an undetermined function at this point.
It will be determined by eliminating the secular terms
from g1. In (16), cc stands for the complex conjugate
terms. Λn is denoted Λn = η3

2 qn(1 − Ω2
n)−1 and i is

imaginary unit.
Substituting (16) into (15) gives

D2
0g1 + g1

= −[
i(2A′ + η̃1A) + 3η̃2A

2A + 6η̃2AΛ2
1

+ 6η̃2AΛ2
2

]
exp(iT0) − [

iΩ1η̃1 + 3η̃2(2AA

+ Λ2
1 + 2Λ2

2)
]
Λ1 exp(iΩ1T0) − [

iΩ2η̃1

+ 3η̃2(2AA + 2Λ2
1 + Λ2

2)
]
Λ2 exp(iΩ2T0)

− η̃2A
3 exp(3iT0) − η̃2Λ

3
1 exp(3iΩ1T0)

− η̃2Λ
3
2 exp(3iΩ2T0)

− 3η̃2A
2Λ1 exp

[
i(2 + Ω1)T0

]

− 3η̃2A
2Λ2

2 exp
[
i(2 + Ω2)T0

]

− 3η̃2A
2Λ1 exp

[
i(2 − Ω1)T0

]

− 3η̃2A
2Λ2 exp

[
i(2 − Ω2)T0

]

− 3η̃2AΛ2
1 exp

[
i(1 + 2Ω1)T0

]

− 3η̃2AΛ2
2 exp

[
i(1 + 2Ω2)T0

]

− 3η̃2AΛ2
1 exp

[
i(1 − 2Ω1)T0

]

− 3η̃2AΛ2
2 exp

[
i(1 − 2Ω2)T0

]

− 6η̃2AΛ1Λ2 exp
[
i(1 + Ω1 + Ω2)T0

]

− 6η̃2AΛ1Λ2 exp
[
i(1 − Ω1 − Ω2)T0

]

− 6η̃2AΛ1Λ2 exp
[
i(1 − Ω1 + Ω2)T0

]

− 6η̃2AΛ1Λ2 exp
[
i(1 + Ω1 − Ω2)T0

]

− 3η̃2Λ
2
1Λ2 exp

[
i(2Ω1 + Ω2)T0

]

− 3η̃2Λ
2
1Λ2 exp

[
i(2Ω1 − Ω2)T0

]

− 3η̃2Λ1Λ
2
2 exp

[
i(Ω1 + 2Ω2)T0

]

− 3η̃2Λ1Λ
2
2 exp

[
i(2Ω2 − Ω1)T0

] + cc (17)

where an apostrophe indicates derivative of A with re-
spect to τ .

We note that for the two-frequency excitation,
where Ω2 > Ω1, the combination resonances can oc-
cur are 1 ≈ Ω2 ± 2Ω1,2Ω1 − Ω2,1 ≈ 2Ω2 ± Ω1 and
1 ≈ (Ω2 ± Ω1)/2.

In this paper, we consider the case in which 1 ≈
(Ω2 + Ω1)/2. We introduce a detuning parameter σ

and let 1 = (Ω1 + Ω2)/2 − εσ . Then, according to
(17), the secular terms will be eliminated if

i(2A′ + η̃1A) + 3η̃2A
2Ā + 6η̃2AΛ2

1 + 6η̃2AΛ2
2

+ 6η̃2AΛ1Λ2 exp(i2σT1) = 0 (18)

Letting A = 1
2a exp(iθ) in (18), where a and θ are

real, using the definition of Λn, and separating real and
imaginary parts, we obtain

a′ = −1

2
η̃1a − η̃2Γ2a sinγ (19a)

aγ ′ = (2σ − 2η̃2Γ1)a − 3

4
η̃2a

3 − 2η̃2Γ2a cosγ

(19b)

where

Γ1 = 3

4
η2

3

[
q2

1

(
1 − Ω2

1

)−2 + q2
2

(
1 − Ω2

2

)−2]

Γ2 = 3

4
η2

3

[
q1q2

(
1 − Ω2

1

)−1(1 − Ω2
2

)−1]

γ = 2σT1 − 2θ

To find the bifurcation response equation, letting
a′ = γ ′ = 0 in (19) and then eliminating γ results in
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the following algebraic equation:

a4 + ζ 2 + k1a
2 + k2 = 0 (20)

where

ζ 2 =
[

8(εσ − η2Γ1)

3η2

]2

k1 = −16(εσ − η2Γ1)

3η2

k2 = 16η2
1

9η2
2

− 64

9
Γ 2

2

Taking the germ that g0(a, ζ ) = a4 + ζ 2, where
its codimension is 5, we have the universal unfolding
[37, 38]

G(a, ζ,α1, α2, α3, α4, α5)

= a4 + ζ 2 + α1a
2ζ + α2aζ + α3a

2 + α4a + α5

(21)

where α1, α2, α3, α4, and α5 are unfolding parameters.
It is very difficult to discuss the bifurcation behav-

ior of (21) in full detail. Considering (20) and letting
α1 = α2 = α4 = 0, α3 = k1, α5 = k2, we only analyze
the engineering unfolding as follows:

G(a, ζ,α3, α5) = a4 + ζ 2 + α3a
2 + α5 (22)

We know that transition set Σ of an universal unfold-
ing G : R × R × RK → R is formulated as follows
(see p. 140 in Golubitsky and Schaeffer (1985)) [39]:

• Bifurcation point set

B = {
α ∈ RK : there exists (a, ζ ) ∈ R × R such

that G = Ga = Gζ = 0 at (a, ζ,α)
}

• Hysteresis set

H = {
α ∈ RK : there exists (a, ζ ) ∈ R × R such

that G = Ga = Gaa = 0 at (a, ζ,α)
}

• Double limit point set

D = {
α ∈ RK : there exists (a1, a2, ζ )

∈ R × R × R,a1 �= a2 such that

G = Ga = 0 at (ai, ζ,α), i = 1,2
}

• Transition set Σ = B ∪ H ∪ D

Fig. 2 The transition set in (α3, α5) plane

According to the singularity theory, the transition
set of (22) is as follows:

(1) Bifurcation point set:

B1 = {α5 = 0}

B2 =
{
α5 = 1

4
α2

3 and α3 < 0

}

(2) Hysteresis set:

H = {α3 = 0 and α5 ≤ 0}
(3) Double limit point set:

D = Φ(null set)

From Fig. 2, we can see that the (α3, α5) parametric
plane is divided by the transition set into four differ-
ent regions. The six different topological structures of
curves in different regions and in the transition set are
shown in Fig. 3. According to the unfolding parame-
ters, the bifurcation diagrams can be divided into two
classes that are persistent and nonpersistent. More-
over, the bifurcation diagrams (2), (3), and (5) in Fig. 3
are persistent and the bifurcations are generic. It is in-
dicated that the perturbed bifurcation diagrams in the
universal unfolding (22) would remain unchanging if
subjected to an additional small perturbation; the bi-
furcation diagrams (1), (4), and (6) in Fig. 3 are non-
persistent and the bifurcations are degenerate.

5 Numerical simulations of dynamic bifurcation

In the following investigation, the fourth-order Runge–
Kutta algorithm is utilized to numerically analyze the
periodic and chaotic motions of the FGM circular plate
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Fig. 3 The diagrams of
static bifurcation

subjected to thermal and mechanical loads. The ra-
dius and thickness of the plate are R = 0.3 m and
h = 0.004 m, respectively. The environmental temper-
ature is T0 = 300 K. The set of material mixture con-
sidered is zirconium oxide and titanium alloy, referred
to as ZrO2/Ti-6Al-4V. The upper surface of this FGM
plate is metal-rich and the lower surface is ceramic-
rich. The mass density and thermal conductivity
are: ρc = 3000 kg/m3, κc = 1.80 W/mK for ZrO2;
ρm = 4429 kg/m3, κm = 7.82 W/mK for Ti-6Al-4V.
Young’s modulus and thermal expansion coefficients
of these materials are assumed to be temperature-
dependent and from the literature [40]. Poisson’s ra-
tio is assumed to be a constant for ZrO2/Ti-6Al-4V
μ = 0.3 and the volume fraction index is n = 200.
We consider the temperature over upper and lower
surface is �Tm = 300 K and �Tc = 370 K, respec-
tively. The first excitation frequency is Ω1 = 0.4 and
the second load is q2 = 400 N/m2. The detuning pa-
rameter is assumed to be εσ = 0.01. Changing the
first load q1, we obtain the dynamics of the FGM
plate.

The global bifurcation diagram of the dynamical
system is shown in Fig. 4. It denotes that the dimen-
sionless vibration amplitude exists jump phenomenon
with the change of the excitation q1. In the case of
1 ≈ (Ω2 +Ω1)/2, it is obviously seen that the bifurca-
tion with combination resonance is very complicated.
The period response where period doubling occurs and
chaotic response occur alternately. For clarity, we plot
the enlarged bifurcation diagrams and corresponding
them for the regions (1) and (2), as shown in Figs. 5
and 6, respectively. They indicate that the maximum
Lyapunov exponent is λmax < 0 when the periodic mo-

Fig. 4 The bifurcation for the load q1

tion occurs for the FGM plate and the maximum Lya-
punov exponent is λmax > 0 when the chaos occurs for
the FGM plate.

Here, considering the results of the figures
(Figs. 5–6), we discuss the dynamical responses of the
FGM plate with different excitation q1 and obtain the
phase portrait, Poincaré map, and Lyapunov exponent
spectrum. Initially, the response of the system is given
in Fig. 7 when the load is q1 = 1350 N/m2. Figure 7
(a) and (b), respectively, denote the phase portrait and
Poincaré map. Figure 7(c) represents the Lyapunov ex-
ponents λ1 and λ2 evolving the dimensionless time τ .
It can be shown that the Lyapunov exponent spectrum
gradually became stabile and λ1 = λ2 < 0. Combining
Fig. 7(b) with Fig. 7(c), we can know the phase portrait
in Fig. 7(a) is period-4 attractor and the system exits
period-4 motion. Increasing the excitation q1, the pe-
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Fig. 5 The enlarged
bifurcation diagram of
region (1) and the
corresponding maximum
Lyapunov exponents

Fig. 6 The enlarged
bifurcation diagram of
region (2) and the
corresponding maximum
Lyapunov exponents

Fig. 7 The period-4 motion of the system exists when q1 = 1350 N/m2

riod doubling bifurcation occurs near q1 = 1420 N/m2

and the motion becomes period-8 from period-4. For
instance, the Poincaré map expresses eight points
when q1 = 1470 N/m2 in Fig. 8. When the excitation
is increased to q1 = 1520 N/m2, the period-16 mo-
tion can be found, as shown in Fig. 9. Continuously
increasing the excitation to q1 = 1600 N/m2, Fig. 10
shows that the chaotic motions of the FGM plate occur
and the stable Lyapunov exponent λ1 > 0.

The results from the Fig. 4 show that when the
forcing excitation q1 is increasing, the system exists
period doubling and chaotic motion. It can be seen
clearly in Fig. 6. The figure illustrates that chaotic mo-
tions mostly occur in [2850 N/m2,3150 N/m2], how-
ever, many kinds of period doubling motion exist here.
Figure 11 indicates that the period-12 motion of the
FGM plate occur when the forcing excitation changes
to q1 = 2875 N/m2. Figure 12 shows that the chaotic
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Fig. 8 The period-8 motion of the system exists when q1 = 1470 N/m2

Fig. 9 The period-16 motion of the system exists when q1 = 1520 N/m2

Fig. 10 The chaotic motion of the system exists when q1 = 1600 N/m2

motion of the FGM plate again occurs when the forc-
ing excitation changes to q1 = 2900 N/m2. It is found
that a regular assemblage of black dots in Fig. 12(b)
and the stable Lyapunov exponents λ1 > 0, λ2 < 0 in
Fig. 12(c). When the excitation exceeds 4000 N/m2,
the FGM plate mostly exists chaotic motions. For ex-
ample, when the excitation is q1 = 5000 N/m2, the
system occurs chaos, as shown in Fig. 13.

6 Conclusions

The bifurcation and chaotic dynamics of a circular
FGM plate with combination resonance under two-
term harmonic excitations are investigated. The non-
linear dynamic equations of FGM plate subjected to
transverse harmonic excitation force and thermal load
are derived using the principle of virtual work. The
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Fig. 11 The period-12 motion of the system exists when q1 = 2875 N/m2

Fig. 12 The chaotic motion of the system exists when q1 = 2900 N/m2

Fig. 13 The chaotic motion of the system exists when q1 = 5000 N/m2

multiscale method is utilized to obtain the bifurcation
equation. The universal unfolding problem of the bi-
furcation equation is studied using singularity theory.
The bifurcation of the FGM plate is a high codimen-
sional problem with codimension 5 and the singularity
has complex bifurcation behaviors. Numerical simu-
lation is carried out to investigate the dynamic bifur-
cation of the FGM plate and the influence of period

doubling bifurcation with the change of an external
excitation. The results obtained in this paper indicate
that the FGM plate with combination resonance has
complex dynamic behaviors and the period doubling
response and chaotic response occurs alternately. The
excitation can be considered to be a controlling force,
which can control the responses of the circular FGM
plate from the period-n motions to the chaotic motion.
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