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Abstract A Holling type predator-prey model with
stage structure for the predator and a time delay due to
the gestation of the mature predator is investigated. By
analyzing the characteristic equations, the local stabil-
ity of a predator-extinction equilibrium and a coexis-
tence equilibrium of the model is addressed and the ex-
istence of Hopf bifurcations at the coexistence equilib-
rium is established. By means of the persistence the-
ory on infinite dimensional systems, it is proven that
the system is permanent if the coexistence equilib-
rium is feasible. By using Lyapunov functionals and
the LaSalle invariance principle, it is shown that the
predator-extinction equilibrium is globally asymptot-
ically stable when the coexistence equilibrium is not
feasible, and sufficient conditions are derived for the
global stability of the coexistence equilibrium. Numer-
ical simulations are carried out to illustrate the main
theoretical results.

Keywords Stage structure · Time delay · Hopf
bifurcation · The LaSalle invariance principle ·
Global stability

R. Xu (�)
Institute of Applied Mathematics, Shijiazhuang
Mechanical Engineering College, No. 97 Heping West
Road, Shijiazhuang 050003, Hebei Province, P.R. China
e-mail: rxu88@yahoo.com.cn

1 Introduction

Predator-prey models are important in the modelling
of multi-species populations interactions and have
been studied by many authors (see, for example, [4, 7,
11]). It is assumed in the classical predator-prey model
that each individual predator admits the same ability
to prey. This assumption seems not to be realistic for
many animals. In the natural world, there are many
species whose individuals have a life history that takes
them through two stages, immature and mature, where
immature predators are raised by their parents, and the
rate they attack at prey and the reproductive rate can be
ignored. Stage-structured population models have re-
ceived great attention in the last two decades (see, for
example, [1, 6, 14, 16, 18, 19]). In order to analyze the
effect of a stage structure for the predator on the dy-
namics of a predator–prey system, in [16], Wang con-
sidered the following stage-structured predator-prey
model:

ẋ(t) = x(t)

(
r − ax(t) − a1y2(t)

1 + mx(t)

)
,

ẏ1(t) = a2x(t)y2(t)

1 + mx(t)
− r1y1(t) − Dy1(t), (1.1)

ẏ2(t) = Dy1(t) − r2y2(t).

In (1.1), x(t) represents the density of the prey at time
t , y1(t) and y2(t) represent the densities of the imma-
ture and the mature predator at time t , respectively;
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the parameters a, a1, a2,m, r, r1, r2, and D are posi-
tive constants in which a is the intraspecific competi-
tion rate of the prey, r is the intrinsic growth rate of
the prey, r1 and r2 are the death rates of the imma-
ture and the mature predator, respectively, a1x

1+mx
is the

response function of the mature predator, a1 is the cap-
turing rate of the mature predator, a2/a1 is the rate of
conversing prey into new immature predator, D > 0
denotes the rate of immature predator becoming ma-
ture predator. It is assumed that this rate is proportional
to the density of the immature predator. Sufficient con-
ditions were derived in [16] for the global stability of
a coexistence equilibrium of system (1.1) by using a
general Lyapunov function and Razumikhin-type the-
orem. In [18], Xiao and Chen further considered sys-
tem (1.1) and sufficient conditions were obtained for
the global asymptotic stability of the coexistence equi-
librium of system (1.1) by using the theory of compet-
itive systems, compound matrices and stability of pe-
riodic orbits, and the work of Wang [16] was therefore
improved. In [6], Georgescu and Hsieh further studied
the global dynamics of system (1.1). By constructing a
suitable Lyapunov function and using the LaSalle in-
variance principle, the global asymptotic stability of
the coexistence equilibrium of system (1.1) is derived
under weaker hypotheses than those used in Xiao and
Chen [18].

Time delays of one type or another have been incor-
porated into biological models by many researchers;
we refer to the monographs of Cushing [5], Gopal-
samy [8], Kuang [12], and MacDonald [13] for general
delayed biological systems and to Bartlett [2], Beretta
and Kuang [3], and Wangersky and Cunningham [17],
and references cited therein for studies on delayed
predator-prey systems. In general, delay differential
equations exhibit much more complicated dynamics
than ordinary differential equations since a time delay
could cause a stable equilibrium to become unstable
and cause the population to fluctuate. Time delay due
to gestation is a common example, because generally
the consumption of prey by the predator throughout its
past history governs the present birth rate of the preda-
tor. Therefore, more realistic models of population in-
teractions should take into account the effect of time
delays.

Motivated by the work of Georgescu and Hsieh
[6], Wang [16], Wangersky and Cunningham [17], and
Xiao and Chen [18], in the present paper, we are con-
cerned with the combined effect of stage structure for

the predator and time delay due to the gestation of
mature predator on the global dynamics of a predator-
prey model with Holling type functional response. To
this end, we consider the following delay differential
system:

ẋ(t) = x(t)

(
r − ax(t) − a1y2(t)

1 + mx(t)

)
,

ẏ1(t) = a2x(t − τ)y2(t − τ)

1 + mx(t − τ)
− r1y1(t)

(1.2)
− Dy1(t),

ẏ2(t) = Dy1(t) − r2y2(t).

In system (1.2), x(t) represents the density of the prey
at time t , y1(t) and y2(t) represent the densities of the
immature and the mature predator at time t , respec-
tively; the parameters a, a1, a2, r, r1, r2, and D are de-
fined as in model (1.1). The constant τ ≥ 0 denotes the
time delay due to the gestation of the mature predator,
that is, mature adult predators can only contribute to
the reproduction of the predator biomass. This is based
on the assumption that the change rate of predators de-
pends on the number of prey and of mature predators
present at some previous time.

The initial conditions for system (1.2) take the form

x(θ) = φ(θ), y1(θ) = ψ1(θ),

y2(θ) = ψ2(θ),

φ(θ) ≥ 0, ψ1(θ) ≥ 0, ψ2(θ) ≥ 0, (1.3)

θ ∈ [−τ,0),

φ(0) > 0, ψ1(0) > 0, ψ2(0) > 0,

where (φ(θ),ψ1(θ),ψ2(θ)) ∈ C([−τ,0],R
3
+0), the

Banach space of continuous functions mapping the in-
terval [−τ,0] into R

3
+0, where R

3
+0 = {(x1, x2, x3) :

xi ≥ 0, i = 1,2,3}.
It is well known by the fundamental theory of func-

tional differential equations [9], system (1.2) has a
unique solution (x(t), y1(t), y2(t)) satisfying initial
conditions (1.3). It is easy to show that all solutions of
system (1.2) corresponding to initial conditions (1.3)
are defined on [0,+∞) and remain positive for all
t ≥ 0.

The organization of this paper is as follows. In
the next section, by analyzing the corresponding char-
acteristic equations, the local stability of a predator-
extinction equilibrium and a coexistence equilibrium
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of system (1.2) is discussed and the existence of Hopf
bifurcations at the coexistence equilibrium is estab-
lished. In Sect. 3, by means of the persistence theory
on infinite dimensional systems, we prove that sys-
tem (1.2) is permanent when the coexistence equilib-
rium exists. In Sect. 4, by using Lyapunov function-
als and the LaSalle invariance principle, we show that
the predator-extinction equilibrium is globally asymp-
totically stable when the coexistence equilibrium does
not exist, and sufficient conditions are obtained for the
global asymptotic stability of the coexistence equilib-
rium of system (1.2). A brief remark is given in Sect.
5 to conclude this work.

2 Local stability and Hopf bifurcation

In this section, we study the local stability of each of
feasible equilibria of system (1.2) and the existence of
Hopf bifurcations at the coexistence equilibrium.

System (1.2) always has a trivial equilibrium
E0(0,0,0) and a predator-extinction equilibrium
E1(r/a,0,0). Further, if the following holds:

(H1) a2rD > r2(a + mr)(D + r1),

then system (1.2) has a unique coexistence equilibrium
E∗(x∗, y∗

1 , y∗
2 ), where

x∗ = r2(D + r1)

a2D − mr2(D + r1)
, y∗

1 = r2

D
y∗

2 ,

(2.1)

y∗
2 = a2D[a2rD − r2(a + mr)(D + r1)]

a1[a2D − mr2(D + r1)]2
.

It is easy to show that the trivial equilibrium
E0(0,0,0) is always unstable.

The characteristic equation of system (1.2) at the
predator-extinction equilibrium E1 takes the form

(λ + r)
[
λ2 + P1λ + P0 + Q0e

−λτ
] = 0, (2.2)

where

P0 = r2(D + r1), P1 = D + r1 + r2,

(2.3)

Q0 = − a2rD

a + mr
.

Clearly, (2.2) has a negative real root λ = −r , other
roots are determined by the following equation:

λ2 + P1λ + P0 + Q0e
−λτ = 0. (2.4)

Let

f (λ) = λ2 + P1λ + P0 + Q0e
−λτ .

If (H1) holds, it is easy to show that, for λ real,

f (0) = −a2rD − r2(a + mr)(D + r1)

a + mr
< 0,

lim
λ→+∞f (λ) = +∞.

Hence, f (λ) = 0 has at least one positive real root.
Therefore, if (H1) holds, the equilibrium E1 is unsta-
ble.

If a2rD < r2(a + mr)(D + r1), it is readily seen
from (2.4) that E1 is locally asymptotically stable
when τ = 0. In this case, it is easy to show that

P 2
1 − 2P0 = (D + r1)

2 + r2
2 > 0,

P 2
0 − Q2

0 =
[
r2(D + r1) + a2rD

a + mr

]

×
[
r2(D + r1) − a2rD

a + mr

]
> 0.

By Theorem 3.4.1 in Kuang [12], we see that if
a2rD < r2(a + mr)(D + r1), E1 is locally asymptoti-
cally stable for all τ ≥ 0.

The characteristic equation of system (1.2) at the
coexistence equilibrium E∗ is of the form

λ3 + p2λ
2 + p1λ + p0 + (q1λ + q0)e

−λτ = 0, (2.5)

where

p0 = r2x
∗

1 + mx∗ (D + r1)
(
a − mr + 2amx∗),

p1 = r2(D + r1) + x∗

1 + mx∗ (D + r1 + r2)

× (
a − mr + 2amx∗),

p2 = D + r1 + r2 + x∗

1 + mx∗ (2.6)

× (
a − mr + 2amx∗),

q0 = −r2(D + r1)
(−r + 2ax∗),

q1 = −r2(D + r1).

When τ = 0, (2.5) becomes

λ3 + p2λ
2 + (p1 + q1)λ + p0 + q0 = 0. (2.7)
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It is easy to show that

p0 + q0 = a1r2(D + r1)y
∗
2

(1 + mx∗)2
,

p1 + q1 = (D + r1 + r2)
x∗(a − mr + 2amx∗)

1 + mx∗ .

Hence, by the Routh–Hurwitz theorem, the equilib-
rium E∗ of system (1.2) is locally asymptotically sta-
ble when τ = 0 if the following holds:

(H2) x∗(D + r1 + r2)
(
a − mr + 2amx∗)

×
[
x∗(a − mr + 2amx∗)

1 + mx∗ + D

+ r1 + r2

]
>

a1r2(D + r1)y
∗
2

1 + mx∗ ,

and E∗ is unstable if the inequality in (H2) is reversed.
If iω (ω > 0) is a solution of (2.5), separating real

and imaginary parts, we have

−ω3 + p1ω = q0 sinωτ − q1ω cosωτ,

(2.8)
p2ω

2 − p0 = q0 cosωτ + q1ω sinωτ.

Squaring and adding the two equations of (2.8), it fol-
lows that

ω6 + (
p2

2 − 2p1
)
ω4 + (

p2
1 − 2p0p2 − q2

1

)
ω2

+ p2
0 − q2

0 = 0. (2.9)

It is easy to show that

p2
2 − 2p1 = x∗2(a − mr + 2amx∗)2

(1 + mx∗)2

+ (D + r1)
2 + r2

2 ,

p2
1 − 2p0p2 − q2

1 = x∗2(a − mr + 2amx∗)2

(1 + mx∗)2

× [
(D + r1)

2 + r2
2

]
,

p0 − q0 = r2(D + r1)

1 + mx∗

× [
r − ax∗ + 2

(
2ax∗ − r

)(
1 + mx∗)].

Hence, if p0 > q0, (2.9) has no positive real roots. Ac-
cordingly, if (H2) and p0 > q0 hold, then the equilib-
rium E∗ is locally asymptotically stable for all τ ≥ 0.
If p0 < q0, then (2.9) has a unique positive root ω0,

that is, (2.5) has a pair of purely imaginary roots of the
form ±ω0. Denote

τ0n = 1

ω0
arccos

q0(p2ω
2
0 − p0) + q1ω0(ω

3
0 − p1ω0)

q2
0 + q2

1ω2
0

+ 2nπ

ω0
, n = 0,1,2, . . . .

Noting that if (H2) holds, E∗ is locally stable when
τ = 0, by the general theory on characteristic equa-
tions of delay differential equations from [12] (The-
orem 3.4.1), E∗ remains stable for τ < τ0, where
τ0 = τ00.

We now claim that

d(Reλ)

dτ

∣∣∣∣
τ=τ0

> 0.

This will show that there exists at least one eigenvalue
with positive real part for τ > τ0. Moreover, the con-
ditions for the existence of a Hopf bifurcation [9] are
then satisfied yielding a periodic solution. To this end,
differentiating (2.5) with respect τ , it follows that

(
3λ2 + 2p2λ + p1

)dλ

dτ
+ q1e

−λτ dλ

dτ

− τ(q1λ + q0)e
−λτ dλ

dτ

= λ(q1λ + q0)e
−λτ ,

which yields

(
dλ

dτ

)−1

= 3λ2 + 2p2λ + p1

−λ(λ3 + p2λ2 + p1λ + p0)

+ q1

λ(q1λ + q0)
− τ

λ
.

Hence, a direct calculation shows that

sgn

{
d(Reλ)

dτ

}
λ=iω0

= sgn

{
Re

(
dλ

dτ

)−1}
λ=iω0

= sgn

{
− (p1 − 3ω2

0)(ω
2
0 − p1) + 2p2(p0 − p2ω

2
0)

(ω3
0 − p1ω0)2 + (p0 − p2ω

2
0)

2

− q2
1

q2
0 + q2

1ω2
0

}
.
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Fig. 1 The temporal solution found by numerical integration of system (1.2) with r = 5, a = 16, a1 = 5, a2 = 3, D = 1, m = 1/10,
r1 = r2 = 1/8, (a) τ = 1.5, (b) τ = 2.3; (φ,ψ1,ψ2) ≡ (0.1,0.1,0.1)

It follows from (2.8) that
(
ω3

0 − p1ω0
)2 + (

p0 − p2ω
2
0

)2 = q2
0 + q2

1ω2
0.

Hence, we derive that

sgn

{
d(Reλ)

dτ

}
λ=iω0

= sgn

{
3ω4

0 + 2(p2
2 − 2p1)ω

2
0 + p2

1 − 2p0p2 − q2
1

q2
0 + q2

1ω2
0

}

> 0.

Therefore, the transversal condition holds and a Hopf
bifurcation occurs at ω = ω0, τ = τ0.

We conclude the discussions above as follows.

Theorem 2.1 For system (1.2), we have the following:

(i) The equilibrium E0(0,0,0) is always unstable.
(ii) If a2rD < r2(a+mr)(D+r1), then the predator-

extinction equilibrium E1(r/a,0,0) is locally
asymptotically stable; if a2rD > r2(a + mr) ×
(D + r1), then E1 is unstable.

(iii) Let (H1) and (H2) hold. If ax∗ + (2ax∗ − r) ×
(1+2mx∗) > 0, then the coexistence equilibrium
E∗(x∗, y∗

1 , y∗
2 ) is locally asymptotically stable

for all τ ≥ 0; if ax∗ + (2ax∗ − r)(1+2mx∗) < 0,
then there exists a positive number τ0 such that
E∗ is locally asymptotically stable if 0 < τ < τ0

and is unstable if τ > τ0. Further, system (1.2)
undergoes a Hopf bifurcation at E∗ when τ = τ0.

We now give an example to illustrate the result in
Theorem 2.1.

Example 1 In (1.2), let r = 5, a = 16, a1 = 5, a2 = 3,
D = 1, r1 = r2 = 1/8,m = 1/10. It is easy to show
that system (1.2) has a unique coexistence equilibrium
E∗(0.0471,0.1067,0.8533). By calculation, we have
p0 − q0 ≈ −0.3880 < 0, p2(p1 + q1) − (p0 + q0) ≈
1.2247, τ0 ≈ 1.6856. By Theorem 2.1, E∗ is locally
asymptotically stable if 0 < τ < τ0 and is unstable if
τ > τ0, and system (1.2) undergoes a Hopf bifurcation
at E∗ when τ = τ0. Numerical simulation illustrates
this fact (see Fig. 1).

3 Permanence

In this section, we are concerned with the permanence
of system (1.2).

Definition 3.1 System (1.2) is said to be permanent
(uniformly persistent) if there are positive constants
m1,m2,M1, and M2 such that each positive solution
(x(t), y1(t), y2(t)) of system (1.2) satisfies

m1 ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ M1;

m2 ≤ lim inf
t→+∞ yi(t) ≤ lim sup

t→+∞
yi(t) ≤ M2,

i = 1,2.
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In order to study the permanence of system (1.2),
we refer to the persistence theory on infinite dimen-
sional systems developed by Hale and Waltman in
[10].

Let X be a complete metric space with metric d.
Suppose that T is a continuous semiflow on X, i.e.,
a continuous mapping T : [0,∞) × X → X with the
following properties:

Tt ◦ Ts = Tt+s , t, s ≥ 0, T0(x) = x, x ∈ X,

where Tt denotes the mapping from X to X given by
Tt (x) = T (t, x). The distance d(x,Y ) of a point x ∈ X

from a subset Y of X is defined by

d(x,Y ) = infy∈Y d(x, y).

Recall that the positive orbit γ +(x) through x is de-
fined as γ +(x) = ⋃

t≥0{T (t)x}, and its ω-limit set is

ω(x) = ⋂
s≥0

⋃
t≥s{T (t)x}. Define Ws(A) the strong

stable set of a compact invariant set A as

Ws(A) = {
x : x ∈ X,ω(x) �= φ,ω(x) ⊂ A

}
.

(C1) Assume that X0 is open and dense in X and
X0 ∪ X0 = X,X0 ∩ X0 = φ. Moreover, the C0-
semigroup T (t) on X satisfies

T (t) : X0 → X0, T (t) : X0 → X0.

Let Tb(t) = T (t)|X0 and Ab be the global attractor for
Tb(t). Define Ãb = ⋃

x∈Ab
ω(x).

Lemma 3.1 (Hale & Waltman [10]) Suppose that
T (t) satisfies (C1) and the following conditions:

(i) There is a t0 ≥ 0 such that T (t) is compact for
t > t0;

(ii) T (t) is point dissipative in X;
(iii) Ãb is isolated and has an acyclic covering M̂ ,

where

M̂ = {
M̃1, M̃2, . . . , M̃n

};
(iv) Ws(M̃i) ∩ X0 = φ for i = 1,2, . . . , n.

Then X0 is a uniform repeller with respect to X0,
that is, there is an ε > 0 such that for any x ∈ X0,
lim inft→+∞ d(T (t)x,X0) ≥ ε.

Lemma 3.2 There are positive constants M1 and M2

such that for any positive solution (x(t), y1(t), y2(t))

of system (1.2),

lim sup
t→+∞

x(t) < M1, lim sup
t→+∞

y1(t) < M2,

lim sup
t→+∞

y2(t) < M2. (3.1)

Proof Let (x(t), y1(t), y2(t)) be any positive solution
of system (1.2) with initial conditions (1.3). Denote
r0 = min{r1, r2}. Define

V (t) = a2

a1
x(t − τ) + y1(t) + y2(t).

Calculating the derivative of V (t) along positive solu-
tions of system (1.2), it follows that

d

dt
V (t) = a2

a1
x(t − τ)

(
r − ax(t − τ)

)
− r1y1(t) − r2y2(t)

= −r0x(t) − r1y1(t) − r2y2(t)

+ a2

a1
x(t − τ)

(
r + r0 − ax(t − τ)

)

≤ −r0V (t) + a2(r + r0)
2

4aa1
,

which yields

lim sup
t→+∞

V (t) ≤ a2(r + r0)
2

4aa1r0
.

Letting M1 = (r + r0)
2/(4ar0),M2 = a2(r + r0)

2/

(4aa1r0), then (3.1) follows. This completes the
proof. �

We are now able to state and prove the result on the
permanence of system (1.2).

Theorem 3.1 If (H1) holds, then system (1.2) is per-
manent.

Proof We need only to show that the boundaries of
R

3
+0 repel positive solutions of system (1.2) uniformly.
Let C+([−τ,0],R

3
+0) denote the space of continu-

ous functions mapping [−τ,0] into R
3
+0. Define

C1 = {
(φ,ψ1,ψ2) ∈ C+([−τ,0],R

3
+0

) :
φ(θ) ≡ 0, θ ∈ [−τ,0]},

C2 = {
(φ,ψ1,ψ2) ∈ C+([−τ,0],R

3
+0

) :
φ(θ) > 0,ψi(θ) ≡ 0, θ ∈ [−τ,0], i = 1,2

}
.
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Denote C0 = C1 ∪ C2,X = C+([−τ,0],R
3
+0) and

C0 = intC+([−τ,0],R
3
+0).

In the following, we show that the conditions in
Lemma 3.1 are satisfied. By the definition of C0 and
C0, it is easy to see that C0 and C0 are positively in-
variant. Moreover, the conditions (i) and (ii) in Lemma
3.1 are clearly satisfied. Thus, we need only to show
that the conditions (iii) and (iv) hold. Clearly, cor-
responding to x(t) = y1(t) = y2(t) = 0 and x(t) =
r/a, y1(t) = y2(t) = 0, respectively, there are two con-
stant solutions in C0 : Ẽ0 ∈ C1, Ẽ1 ∈ C2 satisfying

Ẽ0 = {
(φ,ψ1,ψ2) ∈ ([−τ,0],R

3
+0

) :
φ(θ) ≡ 0,ψ1(θ) ≡ 0,ψ2(θ) ≡ 0, θ ∈ [−τ,0]},

Ẽ1 = {
(φ,ψ1,ψ2) ∈ ([−τ,0],R

3
+0

) : φ(θ) ≡ r/a,

ψ1(θ) ≡ 0,ψ2(θ) ≡ 0, θ ∈ [−τ,0]}.
We now verify the condition (iii) of Lemma 3.1. If
(x(t), y1(t), y2(t)) is a solution of system (1.2) initi-
ating from C1, then ẏ1(t) = −(D + r1)y1(t), ẏ2(t) =
Dy1(t) − r2y2(t), which yields y1(t) → 0, y2(t) → 0
as t → +∞. If (x(t), y1(t), y2(t)) is a solution of sys-
tem (1.2) initiating from C2 with φ(0) > 0, then it
follows from the first equation of system (1.2) that
ẋ(t) = x(t)(r − ax(t)) which yields x(t) → r/a as
t → +∞. Noting that C1 ∩C2 = φ, we see that the in-
variant sets Ẽ0 and Ẽ1 are isolated. Hence, {Ẽ0, Ẽ1} is
isolated and is an acyclic covering satisfying the con-
dition (iii) in Lemma 3.1.

We now verify that Ws(Ẽ0)∩C0 = φ, and Ws(Ẽ1)

∩ C0 = φ. Here, we only prove the second equa-
tion since the proof of the first equation is simple.
Assume Ws(Ẽ1) ∩ C0 �= φ. Then there is a positive
solution (x(t), y1(t), y2(t)) satisfying limt→+∞(x(t),
y1(t), y2(t)) = (r/a,0,0).

Since (H1) holds, we can choose ε > 0 sufficiently
small such that

a2D(r/a − ε)

1 + m(r/a − ε)
> r2(D + r1). (3.2)

Since limt→+∞ x(t) = r/a, for ε > 0 sufficiently
small satisfying (3.2), there is a t0 > 0 such that, if
t > t0,

r

a
− ε < x(t) <

r

a
+ ε.

For ε > 0 sufficiently small satisfying (3.2), it follows
from the second and the third equations of system (1.2)

that, for t > t0 + τ ,

ẏ1(t) ≥ a2D(r/a − ε)

1 + m(r/a − ε)
y2(t − τ)

− (D + r1)y1(t), (3.3)

ẏ2(t) = Dy1(t) − r2y2(t).

Consider the following auxiliary equations:

u̇1(t) = a2D(r/a − ε)

1 + m(r/a − ε)
u2(t − τ)

− (D + r1)u1(t), (3.4)

u̇2(t) = Du1(t) − r2u2(t),

with initial conditions (1.3).
Define

Aε =
⎛
⎝−(D + r1)

a2D(r/a − ε)

1 + m(r/a − ε)
D −r2

⎞
⎠.

Since Aε has positive off-diagonal elements, by the
Perron–Frobenius theorem, there is a positive eigen-
vector v for the maximum eigenvalue α of Aε .
Noting that (3.2) holds, a direct calculation shows
that α > 0. Using a similar argument as that in the
proof of Theorem 2.1 in [15], one can show that
limt→+∞ ui(t) = +∞(i = 1,2). By comparison, it
follows that limt→+∞ yi(t) = +∞(i = 1,2). This
contradicts Lemma 3.2. Hence, we have Ws(Ẽ1) ∩
C0 = φ. By Lemma 3.1, we conclude that C0 repels
positive solutions of system (1.2) uniformly. There-
fore, system (1.2) is permanent. The proof is com-
plete. �

4 Global stability

In this section, we study the global stability of the
predator-extinction equilibrium E1 and the coexis-
tence equilibrium E∗ of system (1.2), respectively.
The strategy of proofs is to use Lyapunov functionals
and the LaSalle invariance principle.

Theorem 4.1 If a2rD < r2(a +mr)(D + r1), then the
predator-extinction equilibrium E1(r/a,0,0) of sys-
tem (1.2) is globally asymptotically stable.

Proof Let (x(t), y1(t), y2(t)) be any positive solution
of system (1.2) with initial conditions (1.3). Denote
x0 = r/a.
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Define

V11(t) = x − x0 − x0 ln
x

x0
+ c1y1 + c2y2, (4.1)

where c1 = a1(1 + mx0)/a2, c2 = c1(D + r1)/D.
Calculating the derivative of V11(t) along positive

solutions of system (1.2), it follows that

d

dt
V11(t) =

(
1 − x0

x

)[
x(t)

(
r − ax(t)

)

− a1x(t)y2(t)

1 + mx(t)

]

+ c1

[
a2x(t − τ)y2(t − τ)

1 + mx(t − τ)

− r1y1(t) − Dy1(t)

]

+ c2[Dy1 − r2y2]. (4.2)

On substituting r = ax0 into (4.2), we obtain that

d

dt
V11(t) =

(
1 − x0

x

)[
−ax(t)(x(t) − x0)

− a1x(t)y2(t)

1 + mx(t)

]

+ c1

[
a2x(t − τ)y2(t − τ)

1 + mx(t − τ)

− r1y1(t) − Dy1(t)

]

+ c2
[
Dy1(t) − r2y2(t)

]
= −a

(
x(t) − x0

)2 − a1(1 + mx0)

× x(t)y2(t)

1 + mx(t)
+ c1a2

x(t − τ)y2(t − τ)

1 + mx(t − τ)

+ a1

aa2D

[
a2rD − r2(D + r1)

× (a + mr)
]
y2(t). (4.3)

Define

V1(t) = V11(t) + c1a2

∫ t

t−τ

x(s)y2(s)

1 + mx(s)
ds. (4.4)

We derive from (4.3) and (4.4) that

d

dt
V1(t) = −a(x(t) − x0)

2

+ a1

aa2D

[
a2rD − r2(D + r1)

× (a + mr)
]
y2(t). (4.5)

If a2rD < r2(a + mr)(D + r1), it then follows from
(4.5) that V ′

1(t) ≤ 0. By Theorem 5.3.1 in [9], so-
lutions limit to M, the largest invariant subset of
{V ′

1(t) = 0}. Clearly, we see from (4.5) that V ′
1(t) =

0 if and only if x = x0, y2 = 0. Noting that M is
invariant, for each element in M, we have x(t) =
x0, y2(t) = 0. It therefore follows from the third equa-
tion of system (1.2) that

0 = ẏ2(t) = Dy1(t),

which yields y1(t) = 0. Hence, V ′
1(t) = 0 if and

only if (x, y1, y2) = (x0,0,0). Accordingly, the global
asymptotic stability of E1 follows from LaSalle’s in-
variance principle. This completes the proof. �

We are now in a position to state and prove our re-
sult on the global asymptotic stability of the coexis-
tence equilibrium E∗(x∗, y∗

1 , y∗
2 ) of system (1.2).

Theorem 4.2 Let (H1) hold. Then the coexistence
equilibrium E∗(x∗, y∗

1 , y∗
2 ) of system (1.2) is globally

asymptotically stable provided that

(H3) x > r/(2a).

Here, x > 0 is the persistency constant for x satisfying
lim inft→+∞ x(t) ≥ x.

Proof Assume that (x(t), y1(t), y2(t)) is any positive
solution of system (1.2) with initial conditions (1.3).
Since x > r/(2a), it is seen that there is a T > 0 such
that x(t) > r/(2a) for all t ≥ T and also that x∗ >

r/(2a). Consequently, by Theorem 2.1, E∗ is locally
asymptotically stable for all τ ≥ 0.

Define

V21(t) = x − x∗ − x∗ ln
x

x∗

+ k1

(
y1 − y∗

1 − y∗
1 ln

y1

y∗
1

)

+ k2

(
y2 − y∗

2 − y∗
2 ln

y2

y∗
2

)
, (4.6)

where k1 = a1(1+mx∗)/a2, k2 = k1(D + r1)/D. Cal-
culating the derivative of V21(t) along positive solu-
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tions of system (1.2), it follows that

d

dt
V21(t) =

(
1 − x∗

x

)[
x(t)

(
r − ax(t)

)

− a1x(t)y2(t)

1 + mx(t)

]

+ k1

(
1 − y∗

1

y1

)[
a2x(t − τ)y2(t − τ)

1 + mx(t − τ)

− r1y1(t) − Dy1(t)

]

+ k2

(
1 − y∗

2

y2

)[
Dy1(t) − r2y2(t)

]
. (4.7)

On substituting r = ax∗ + a1y
∗
2/(1 + mx∗) into (4.7),

we derive that

d

dt
V21(t) =

(
1 − x∗

x

)[
x(r − ax) − x∗(r − ax∗)

+ a1x
∗y∗

2

1 + mx∗

]

− a1

[
1 + mx∗ − x∗(1 + mx)

x

]

× x(t)y2(t)

1 + mx(t)

+ k1

(
1 − y∗

1

y1

)[
a2x(t − τ)y2(t − τ)

1 + mx(t − τ)

− r1y1(t) − Dy1(t)

]

+ k2

(
1 − y∗

2

y2

)[
Dy1(t) − r2y2(t)

]

=
(

1 − x∗

x

)[
x(r − ax) − x∗(r − ax∗)

+ a1x
∗y∗

2

1 + mx∗

]

− a1
(
1 + mx∗) x(t)y2(t)

1 + mx(t)

+ k1a2
x(t − τ)y2(t − τ)

1 + mx(t − τ)

− k1a2
y∗

1x(t − τ)y2(t − τ)

y1(t)(1 + mx(t − τ))

+ k1(D + r1)y
∗
1

− k2Dy∗
1
y∗

2

y∗
1

y1(t)

y2(t)
+ k2r2y

∗
2 . (4.8)

Define

V2(t) = V21(t) + k1a2

∫ t

t−τ

[
x(s)y2(s)

1 + mx(s)

− x∗y∗
2

1 + mx∗ − x∗y∗
2

1 + mx∗

× ln
(1 + mx∗)x(s)y2(s)

x∗y∗
2 (1 + mx(s))

]
ds. (4.9)

It follows from (4.8) and (4.9) that

d

dt
V2(t) =

(
1 − x∗

x

)[
x(r − ax) − x∗(r − ax∗)

+ a1x
∗y∗

2

1 + mx∗

]
− k1a2

× x∗y∗
2

1 + mx∗
y∗

1 (1 + mx∗)x(t − τ)y2(t − τ)

x∗y∗
2y1(t)(1 + mx(t − τ))

+ k1(D + r1)y
∗
1 − k2Dy∗

1
y∗

2

y∗
1

y1(t)

y2(t)

+ k2r2y
∗
2 + k1a2

x∗y∗
2

1 + mx∗

× ln
(1 + mx(t))x(t − τ)y2(t − τ)

x(t)y2(t)(1 + mx(t − τ))
. (4.10)

Noting that

k2r2y
∗
2 = k2Dy∗

1 = k1(D + r1)y
∗
1

= k1a2
x∗y∗

2

1 + mx∗ = a1x
∗y∗

2 ,

and

a1x
∗y∗

2

1 + mx∗

(
1 − x∗

x

)
= a1x

∗y∗
2

(
1 − x∗(1 + mx)

(1 + mx∗)x

)
,

we derive from (4.10) that

d

dt
V2(t) = (x − x∗)2

x

[
r − a

(
x + x∗)]

− a1x
∗y∗

2

[
x∗(1 + mx)

(1 + mx∗)x
− 1

− ln
x∗(1 + mx)

(1 + mx∗)x

]
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− a1x
∗y∗

2

[
y∗

2y1(t)

y∗
1y2(t)

− 1 − ln
y∗

2y1(t)

y∗
1y2(t)

]

− a1x
∗y∗

2

[
y∗

1 (1 + mx∗)x(t − τ)y2(t − τ)

x∗y∗
2y1(t)(1 + mx(t − τ))

− 1 − ln
y∗

1 (1 + mx∗)x(t − τ)y2(t − τ)

x∗y∗
2y1(t)(1 + mx(t − τ))

]
.

(4.11)

If x(t) > r/(2a) for t ≥ T , we have

(x − x∗)2

x

[
r − a

(
x + x∗)] ≤ 0,

with equality if and only if x = x∗. This, together
with (4.11), implies that if x(t) > r/(2a) for t ≥
T , V ′

2(t) ≤ 0, with equality if and only if x = x∗,
y∗

1 (1+mx∗)x(t−τ)y2(t−τ)

x∗y∗
2 y1(t)(1+mx(t−τ))

= y∗
2 y1(t)

y∗
1 y2(t)

= 1. We now look for

the invariant subset M within the set

M =
{
(x, y1, y2) : x = x∗,

y∗
1 (1 + mx∗)x(t − τ)y2(t − τ)

x∗y∗
2y1(t)(1 + mx(t − τ))

= y∗
2y1(t)

y∗
1y2(t)

= 1

}
.

Since x = x∗ on M and consequently, 0 = ẋ(t) =
x∗(r − ax∗ − a1y2(t)

1+mx∗ ), which yields y2(t) = y∗
2 . It fol-

lows from the third equation of system (1.2) that 0 =
ẏ2(t) = Dy1(t)−r2y

∗
2 , which leads to y1 = y∗

1 . Hence,
the only invariant set in M is M = {(x∗, y∗

1 , y∗
2 )}.

Using the LaSalle invariance principle, the global
asymptotic stability of E∗ follows. This completes the
proof. �

We now give an example to illustrate the result in
Theorem 4.2.

Example 2 In (1.2), let r = 3.5, a = 16, a1 = 5,
a2 = 1, D = 1,m = 1/10, r1 = r2 = 1/8. By calcu-
lation, we derive that a2rD − r2(a + mr)(D + r1) ≈
1.2008 > 0. Hence, by Theorem 3.1, system (1.2) is
permanent. It is easy to show that system (1.2) has
a unique coexistence equilibrium E∗(0.1426,0.0309,
0.2471). From the proof of Lemma 3.2, we have
lim supt→+∞ y2(t) ≤ M2 := a2(r + r0)

2/(4aa1r0).
Hence, for ε > 0 sufficiently small, there is a T1 > 0

Fig. 2 The temporal solution found by numerical integration
of system (1.2) with r = 3.5, a = 16, a1 = 5, a2 = 1, D = 1,
m = 1/10, r1 = r2 = 1/8, τ = 5, (φ,ψ1,ψ2) ≡ (0.3,0.3,0.3)

such that if t > T1, y2(t) < M2 +ε. It follows from the
first equation of system (1.2) that, for t > T1,

ẋ(t) > x(t)
[
r − ax(t) − a1(M2 + ε)

]
,

which yields

lim inf
t→+∞ x(t) ≥ r − a1M2

a
:= x.

By calculation, we derive that x ≈ 0.1161, r/(2a) ≈
0.1094. By Theorem 4.2, we see that the coexistence
equilibrium E∗ is globally asymptotically stable. Nu-
merical simulation illustrates the result above (see
Fig. 2).

5 Concluding remark

In this paper, the global dynamics of a delayed
predator-prey model with stage structure for the preda-
tor and Holling type-II functional response was in-
vestigated using Lyapunov functionals and LaSalle’s
invariance principle. It has been shown that, under hy-
pothesis guaranteeing the uniform persistence of the
system, a priori lower bound condition on the density
of the prey population ensures the global asymptotic
stability of the coexistence equilibrium. That is, if the
prey is always abundant enough, the coexistence equi-
librium is a global attractor of the system. On the other
hand, it has been shown that under some conditions,
the time delay due to the gestation of the mature preda-
tor may destabilize the coexistence equilibrium of the
system and cause the population to fluctuate.
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