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Abstract Multibody systems are called underactuated
if they have less control inputs than degrees of free-
dom, e.g. due to passive joints or body flexibility. For
trajectory tracking of underactuated multibody sys-
tems often advanced modern nonlinear control tech-
niques are necessary. The analysis of underactuated
multibody systems might show that they possess in-
ternal dynamics. Feedback linearization is only possi-
ble if the internal dynamics remain bounded, i.e. the
system is minimum phase. Also feed-forward control
design for minimum phase systems is much easier to
realize than for non-minimum phase systems. How-
ever, often the initial design of an underactuated multi-
body system is non-minimum phase. Therefore, in this
paper a procedure for integrated mechanical and con-
trol design is proposed such that minimum phase un-
deractuated multibody systems are obtained. Thereby
an optimization-based design process is used, whereby
the geometric dimensions and mass distribution of the
multibody systems are altered.
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1 Introduction

Underactuated multibody systems have less control in-
puts than degrees of freedom. Typical underactuated
multibody systems are manipulators with body flex-
ibility or joint elasticity, systems with passive joints
and crane structures. Underactuated systems become
increasingly important in modern system designs. For
example body flexibility often arises in modern energy
efficient fast moving light weight manipulators. Also
passive joints might be used to reduce the number of
actuators and therefore reduce the total mass of a sys-
tem to decrease the energy consumption. Also passive
joints might arise due to actuator failure or might be
used intentionally to introduce compliance. In the case
of underactuation the controller design is often much
more involved than in the fully actuated case. For ex-
ample for end-effector trajectory tracking the method
of computed torque known from fully actuated sys-
tems, see e.g. [2, 23], cannot be used due to the un-
deractuation. Thus, for trajectory tracking of under-
actuated multibody systems generally more advanced
modern nonlinear control techniques are necessary.

Feedback linearization is a nonlinear control tech-
nique based on differential-geometric concepts which
is well suited for output trajectory tracking [4, 7,
13, 22]. These concepts can also be used for feed-
forward control design [13], which can be used in a
two-degree of freedom control structure. Using these
nonlinear control concepts the analysis of the mechan-
ical design of underactuated multibody systems might
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show that they possess internal dynamics. Internal dy-
namics arise for example often in the case of flexible
manipulators [5, 12, 18] or in multibody systems with
passive joints [11, 20]. In contrast manipulators with
joint elasticity [5] and cranes [3] are often differen-
tially flat, possessing no internal dynamics. This paper
focus on the first case, namely multibody systems with
internal dynamics.

Using feedback linearization this internal dynamics
is rendered unobservable and its behavior must be an-
alyzed carefully to guarantee that it remains bounded.
Therefore, often the concept of zero dynamics is used.
This is the internal dynamics under the constraint of
constant zero output. Systems with asymptotically sta-
ble zero dynamics are called minimum phase, other-
wise non-minimum phase. Only for minimum phase
systems feedback linearization is possible. Also in
this case the design of feed-forward control is rather
straight forward [19]. Conversely, for non-minimum
phase systems feedback linearization is not possible.
Also in this case feed-forward control design is much
more complex and requires the numerical solution of a
two-sided boundary value problem, see [6, 18, 20, 24].

Due to these difficulties the aim should be to design
an underactuated multibody system in such a way that
it is minimum phase. Therefore, in this paper an inte-
grated mechanical and control design process is pro-
posed. Thus, already in the early state of the design
process mechanical design and control design are con-
sidered concurrently. This integrated design approach
is based on an optimization procedure for the mechan-
ical design. Thus, underactuated multibody systems
with bounded internal dynamics are designed. In [1] a
similar design methodology is used to design differen-
tially flat underactuated planar manipulators by using
a special mass distribution. In this case, no internal dy-
namics remains and full-state linearization is possible;
however, the approach might require the use of larger
counterweights.

In the proposed optimization procedure, the de-
sign parameters are identified as the geometric dimen-
sions and mass distribution of the multibody systems.
Different design parameterizations such as the use of
small counterweights are proposed. It is shown that
minimum phase property can be achieved with only
a modest or no increase of the total mass of the un-
deractuated multibody systems. For computational ef-
ficiency the proposed optimization criteria has two
steps and firstly requires that all eigenvalues of the lin-
earized zero dynamics are in the left half-plane, and

secondly that initial errors in the nonlinear zero dy-
namics decay rapidly. The analysis of this optimiza-
tion problem shows that it is discontinuous and local
minima might exist. Therefore, a particle swarm opti-
mization procedure is used. This optimization-based
design approach is demonstrated by simulations for
manipulators with two and four passive joints, respec-
tively. The comparison with alternative control strate-
gies of the initial non-minimum phase design shows
the efficiency of the proposed integrated design ap-
proach; and also its robustness is demonstrated by sim-
ulation.

The paper is organized in the following way. In
Sect. 2 the trajectory tracking control design for un-
deractuated multibody systems is described. Thereby
also a linearly combined system output is introduced
in order to simplify the analysis of the internal dynam-
ics. In Sect. 3 the optimization procedure for designing
minimum phase systems is discussed. In Sect. 4 appli-
cation examples are presented, before the findings of
the paper are summarized in Sect. 5.

2 Trajectory tracking control

The equation of motion in minimal coordinates of a
multibody system with f degrees of freedom and gen-
eralized coordinates q ∈ R

f is given by

M(q)q̈ + k(q, q̇) = g(q, q̇) + B(q)u. (1)

Thereby M ∈ R
f ×f is the mass matrix, k ∈ R

f

the vector of generalized gyroscopic and centrifugal
forces, and g ∈ R

f the vector of applied forces. The
input matrix B ∈ R

f ×m distributes the m control in-
puts u ∈ R

m onto the f directions of the generalized
coordinates. The multibody system has the system out-
put

y = h(q), (2)

where it is generally assumed that the number of sys-
tem outputs and control inputs agree, i.e. y ∈ R

m. For
a multibody system the system output could be an end-
effector position ref(q) which should track a prede-
fined trajectory.

In the case of a fully actuated multibody system
there are as many control inputs as generalized coor-
dinates, i.e. m = f . Then, the equation of motion can
be inverted by algebraic manipulations; and classical
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computed torque can be used for trajectory tracking
control, see e.g. [2, 23]. In contrast, if the multibody
system has less control inputs than generalized coor-
dinates, i.e. m < f , the system is underactuated. In
this case the input matrix B cannot be inverted and the
classical approach of computed torque cannot be used.
Thus, more advanced nonlinear control techniques are
necessary. For the analysis and control design of un-
deractuated multibody systems it is often useful to par-
tition the equation of motion (1) into two parts,
[
Maa Mau

MT
au Muu

][
q̈a

q̈u

]
+

[
ka

ku

]
=

[
ga

gu

]
+

[
Ba

Bu

]
u. (3)

Thereby, the submatrix Ba ∈ R
m×m has rank m. The

first m rows of the partitioned equation of motion (3)
are referred to as actuated part associated with the m

actuated coordinates qa . The remaining f − m rows
are referred to as the unactuated part associated with
the f − m unactuated coordinates qu. In the follow-
ing it is assumed that Ba = I is the identity matrix
and Bu = 0. These special choices represent impor-
tant cases of underactuated multibody systems in tree
structure. Examples include rigid multibody systems
with passive joints and planar flexible manipulators,
where the shape functions of the flexible bodies are
chosen according to clamped boundary conditions, see
e.g. [5]. It should be noted that the calculations pre-
sented in this paper can also be applied to other cases
of Ba,Bu.

2.1 Input–output normal-form

The nonlinear input–output normal-form is the basis
for feedback linearization as well as for feed-forward
control design by exact model inversion. These ap-
proaches are based on concepts from differential ge-
ometry and its theoretical background is described
in [7, 13, 22]. This input–output normal-form is ob-
tained by applying a nonlinear coordinate transfor-
mation to the equation of motion. This diffeomor-
phic coordinate transformation is given by z = �(x),
where x = [qT , q̇T ]T ∈ R

2f are the original coordi-
nates and z ∈ R

2f are the coordinates of the input–
output normal-form. In general the determination of
the new coordinates z requires a state-space repre-
sentation of the nonlinear system (1) and the sym-
bolic computation of Lie-derivatives of the system
output (2), see [7, 13, 22]. However, even for multi-
body systems with very few degrees of freedom, these

necessary symbolic calculations become very compli-
cated. Therefore, in the following they are directly per-
formed on the second-order equation of motion. The
first two derivatives of the system output are

ẏ = ∂h(q)

∂q
q̇ = H (q)q̇, (4)

ÿ = H (q)q̈ + h̄(q, q̇), (5)

where H is the Jacobian-matrix of the system output
and h̄ = Ḣ q̇ is its local acceleration. In the expression
for ÿ in (5) the second derivative of the generalized
coordinates q̈ can be replaced by the equation of mo-
tion (1),

ÿ = Hq̈ + h̄ = HM−1[g − k + Bu] + h̄

= HM−1Bu + HM−1[g − k] + h̄. (6)

If the matrix P = HM−1B is nonsingular the input
u can be computed from (6). In this case P is called
the decoupling matrix. Then, no further derivatives are
necessary and the first part of the coordinate transfor-
mation is found. In this case the system is said to have
vector relative degree r = {r1, . . . , rm} = {2, . . . ,2},
since each output is differentiated twice until the input
u can be computed. This is typical for many multi-
body systems with passive joints or flexible bodies.
Otherwise, further derivatives might have to be calcu-
lated. Examples for this second case are flat mechani-
cal systems such as manipulators with joint elasticities
or cranes, see e.g. [3]. For systems with relative degree
r = {2, . . . ,2} the nonlinear coordinate transformation
is given by

z = �(x) =
⎡
⎣z1

z2

z3

⎤
⎦ with

z1 = y = h(q)

z2 = ẏ = H (q)q̇

z3 = �3(q, q̇).

(7)

Thereby the coordinates z3 ∈ R
2(f −m) must be deter-

mined in such a way that z = �(x) forms at least a lo-
cal diffeomorphic coordinate transformation. This re-
quires that the Jacobian-matrix J = ∂�(x)

∂x is nonsin-
gular [7, 13]. If the function h(q) contains all actuated
coordinates qa such that H a = ∂H (q)

∂qa
is regular, then

the unactuated coordinates are often a good choice for
the coordinates z3 = [qT

u , q̇T
u ]T . Applying the coordi-

nate transformation (7) to the equation of motion (1)
yields the nonlinear input–output normal-form
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y = z1 (8)

ż1 = z2 (9)

ż2 = Pu + HM−1[g − k] + h̄

= β(z)u + α(z) (10)

ż3 = ρ(z) + σ (z)u. (11)

It should be noted that P and β are the same decou-
pling matrix, however, given in original and new co-
ordinates, respectively. The input–output normal-form
consists of two nonlinear subsystems: The first sub-
system describes the relationship between the input u

and output y. It consist of the output equation (8)
and the differential equations (9)–(10), which in to-
tal have dimension 2 m. The second subsystem (11) of
the normal-form describes the so-called internal dy-
namics and has dimension 2(f −m). From this input–
output normal-form the analysis of the internal dy-
namics, feedback linearization and feed-forward con-
trol design can be performed. It should be noted that
for fully actuated multibody systems no internal dy-
namics exist and the equation of motion (1) is already
in input–output normal-form, if the system output are
the generalized coordinates, i.e. y = q .

2.2 Feedback linearization

Feedback linearization is very well suited for output
trajectory tracking and is based on the presentation
of the nonlinear system in the input–output normal-
form. Then, nonlinearities in the transformed sys-
tem (8)–(11) are canceled using state-feedback, result-
ing in an exactly linearized system or subsystem, see
[4, 7, 13, 22]. This approach is fundamentally differ-
ent from Jacobian linearization, in which the nonlinear
system is approximated by a linear system. The non-
linearities in (10) of the input–output normal-form are
canceled by the linearizing feedback control law

u = β−1(z)
[
v − α(z)

]
, (12)

where v is a new input. It should be noted that this
linearizing feedback law depends on all states z of
the transformed system. Applying the linearizing feed-
back law (12) to the input–output normal-form (8)–
(11), yields the partially linearized system

y = z1 (13)

ż1 = z2 (14)

ż2 = v (15)

ż3 = ρ(z) + σ (z)β−1(z)
[
v − α(z)

]
. (16)

Again, the system consists of two subsystems: Now
the first subsystem describes the linear relationship be-
tween the new input v and the output y, and consists of
m chains of two integrators. Therefore, this approach
is also called input–output linearization. The second
subsystem (16) results from the internal dynamics and
is in general nonlinear. From (14)–(16) it is seen that
only the first subsystem influences the output. Thus the
feedback law (12) renders the states z3 of the internal
dynamics unobservable.

In this paper the control goal is trajectory tracking
of a desired system output y = yd . Following [7, 13]
the new input v in (15) can be used in order to achieve
asymptotic output trajectory tracking. The first sub-
system is in canonical controllable form. Thus, lin-
ear control methods can be used to design a feedback
controller, which influences the output y in a desired
way with the new input v. The investigated underac-
tuated multibody systems have vector relative degree
r = {2, . . . ,2} and therefore the tracking control law
reads

v = ÿd + p1(ẏd − ẏ) + p0(yd − y). (17)

Thereby, the coefficients p0,p1 are diagonal matri-
ces. In the special case of a constant reference tra-
jectory, y = const, ∀t , the tracking control law (17)
reduces to a control law for stabilization around a sta-
tionary point. Introducing the output trajectory error
e = yd − y and applying control law (17) to the lin-
earized subsystem (14)–(15), yields the linear error
dynamics

ë + p1ė + p0e = 0. (18)

From this follows that the diagonal matrices p0,p1
can be used to place the eigenvalues of the error dy-
namics in the left half-plane. Then, due to a suitable
choice of p0,p1 the system output y converges to the
desired reference trajectory yd .

It should be noted that the linearizing state-feedback
law (12) can be implemented in original coordinates x

instead of z and reads in this case

u = P −1(v − HM−1[g − k] − h̄
)
. (19)

The presented control structure is shown schemati-
cally in Fig. 1 and consists of an inner and an outer
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Fig. 1 Control structure with inner and outer loop for underactuated multibody system with vector relative degree r = {2, . . . ,2}

loop. In the inner loop exact input–output lineariza-
tion is achieved by using state-feedback law (19). The
outer loop is used for eigenvalue assignment of the er-
ror dynamics (18) by control law (17). This is exactly
the same control structure as using computed torque
for fully actuated multibody systems. The only differ-
ence lies in the existence of the additional internal dy-
namics in the case of underactuation. The presented
control structure requires full-state measurement. For
multibody systems with passive joint this is easily re-
alizable, using the direct measurement of unactuated
generalized coordinates.

The task of controller design is not only to influence
the output y in a desired way, but also to achieve that
the whole dynamics of the system behaves well. Thus,
the control design given by control law (17) can only
be used, if the unobservable states z3 of the internal
dynamics remain bounded. Thus, a detailed investiga-
tion of the internal dynamics is necessary.

2.3 Analysis of the internal dynamics

The analysis of the behavior of the internal dynam-
ics (11) is crucial for nonlinear control design. Since
this analysis is often quite complex, the concept of
zero dynamics is used to draw important conclusions
about the boundedness of the states z3 of the internal
dynamics. The zero dynamics is the internal dynamics
under the constraint that the output is kept constant or
identical zero, i.e. y = ẏ = ÿ = z1 = z2 = ż2 = 0, ∀t .
Thereby it is assumed that the new coordinates are
chosen in such a way that zo = 0 is an equilibrium
point of the system. From (10) follows the required
control input for this task as

u0 = −β−1(z)α(z) with z = [0,0,z3]T . (20)

Applying this input u0 to the internal dynamics (11)
yields the zero dynamics of the system

ż3 = ρ(z) − σ (z)β−1(z)α(z) with z = [0,0,z3]T .

(21)

The zero dynamics is still a nonlinear system, how-
ever, it is time-invariant. Thus, in a first step local sta-
bility can be easily checked using Lyapunov’s indi-
rect method. Following [7, 13] a nonlinear system is
called asymptotically (exponentially) minimum phase
if the equilibrium point zo = 0 of the zero dynamics is
asymptotically (exponentially) stable. Otherwise, the
system is called non-minimum phase. The minimum
phase property is independent of the choice of coordi-
nates, and thus is invariant under a diffeomorphic co-
ordinate transformation z = �(x). However, the mini-
mum phase property depends on the system dynamics
given by the equation of motion (1) and the choice of
the system output (2).

The internal dynamics (16) under the control law
(17) can be viewed as a nonlinear time-varying sys-
tem driven by the desired output trajectory yd(t). In a
first step the special case of tracking a constant output
yd = const, ∀t is considered. In this case the tracking
control law (17) coincides immediately with a stabi-
lizing control law and leads to the requirement that the
zero dynamics has to be asymptotically stable; i.e. the
nonlinear system is minimum phase, see [7, 13, 22].
In the case of tracking a time-varying trajectory yd(t),
this is a necessary, but initially rather weak condition.
However, from a practical point of view this is the
crucial point for the analysis of the behavior of the
internal dynamics. Then, additional conditions exist,
which strengthen the requirement of minimum phase,
see [7, 13, 22] for details. For example in [22] it is
shown that for exponentially minimum phase nonlin-
ear systems the desired trajectory yd and its first ri −1
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Fig. 2 Rotational arm with one active and one passive joint

derivatives must be small enough, in order to guaran-
tee that control law (17) yields to convergence of the
tracking error e and bounded internal states z3. In this
paper these additional conditions are verified by simu-
lation.

2.4 System with linearly combined output

The exact linearizing feedback law (19) can be imple-
mented in original coordinates, and the complete co-
ordinate transformation of the equation of motion is
not necessary. However, for the analysis of the inter-
nal dynamics or feed-forward control design the ex-
plicit symbolic transformation is mostly necessary. For
a general nonlinear output function y = h(q), such
as an end-effector position ref(q), this is often not
possible, since the symbolic solution of the nonlinear
equation y = h(q) might be necessary. Therefore, a
simplified linearly combined system output is intro-
duced, which yields a good approximation of the de-
sired end-effector position of manipulators with pas-
sive joints. This output allows a symbolic transforma-
tion of the equation of motion into the nonlinear input–
output normal-form. Therefore, it is assumed that the
end-effector position can be approximately described
by an output of form

y = qa + �qu, (22)

where � ∈ R
m×f −m. Thus, this output is a linear com-

bination of actuated and unactuated generalized coor-
dinates. Such an output cannot only be used to de-
scribe the end-effector position of manipulators with
passive joints, as shown in this paper, but is also used
for flexible manipulators as presented in [5, 18].

In the following the choice of such a linearly com-
bined output is demonstrated exemplarily for a rota-
tional arm with one passive joint. The arm consists
of two links, connected by one active and one passive
joint. The rotational arm is shown in Fig. 2, whereby
the links have the length l1, l2. An input torque T acts

on link 1. Link 2 is connected by a passive joint to
link 1, which is supported by a spring-damper combi-
nation. The arm is described by the generalized coor-
dinates q = [α, β]T , whereby β denotes the unactu-
ated coordinate. The control goal is tracking of the de-
sired trajectory r1d of the end-effector position r1(q)

in e1-direction. Assuming a stiff spring-damper com-
bination, the β angle remains small. Then, r1(q) can
be approximately described by the linearly combined
output y = α + �β such that

r1(q) = l1 sin(α) + l2 sin(α + β)

≈ (l1 + l2) sin(α + �β) = (l1 + l2) sin(y). (23)

Then, instead of tracking the position r1, the output y

can be tracked, which can be interpreted as an auxil-
iary angle to approximate the end-effector point. The
desired trajectories yd of the output can be computed
from the desired trajectory r1d and (23) using inverse
kinematics. In order to determine the value �, a lin-
earization around the nominal angles αs and βs = 0 is
performed,

�r1 = (l1 + l2) cos(αs)α̃ + l2 cos(αs)β̃

≈ (l1 + l2) cos(αs)α̃ + (l1 + l2)� cos(αs)β̃, (24)

where α̃, β̃ are small deviations from the nominal an-
gles. Thus, in the linearized case the output y describes
exactly the position r1 if � = l2/(l1 + l2). It should be
noted that this relationship can also be derived using
geometric considerations, see e.g. [18] for a flexible
manipulator. Linearly combined outputs for manipu-
lators with several passive joints are presented later in
this paper for specific examples.

With such a special linearly combined system out-
put (22), the nonlinear input–output normal-form can
be directly derived from the partitioned equation of
motion (3). The coordinate transformation z = �(x)

is given by

z =

⎡
⎢⎢⎣

y

ẏ

qu

q̇u

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

qa + �qu

q̇a + �q̇u

qu

q̇u

⎤
⎥⎥⎦ . (25)

This forms a local diffeomorphic coordinate transfor-
mation. In order to derive the input–output normal-
form, the starting point is the expression of the ac-
tuated coordinates qa in terms of the output y and
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Fig. 3 Graphical
representation of the
input–output normal-form
of underactuated MBS with
linearly combined output

the unactuated coordinates qu, i.e. qa = y − �qu,
q̇a = ẏ − �q̇u and q̈a = ÿ − �q̈u. Then, these expres-
sions can be used in the equation of motion (3). Note
that the actuated coordinates qa are also replaced in
all the entries of M , k and g. For reasons of readabil-
ity these dependencies are dropped in most of the fol-
lowing calculations. From the unactuated part of the
differential equation (3) an expression for q̈u can be
obtained as

q̈u = (
Muu − MT

au�
)−1(

gu − ku − MT
auÿ

)
. (26)

Inserting (26) in the actuated part of (3) and reordering
yields

M̃(y,qu)ÿ = g̃(y, ẏ,qu, q̇u) − k̃(y, ẏ,qu, q̇u) + u,

(27)

where the terms are summarized according to the con-
vention

M̃ = Maa − (Mau − Maa�)
(
Muu − MT

au�
)−1

MT
au,

g̃ = ga − (Mau − Maa�)
(
Muu − MT

au�
)−1

gu,

k̃ = ka − (Mau − Maa�)
(
Muu − MT

au�
)−1

ku.

Solving (27) for ÿ and inserting in (26) yields a differ-
ential equation for q̈u. Summarizing these calculations
yields the nonlinear input–output normal-form

M̃ÿ = g̃ − k̃ + u, (28)[
Muu − MT

au�
]
q̈u

= gu − ku − MT
auM̃

−1[
g̃ − k̃ + u

]
. (29)

Equation (28) is a second-order differential equation
of dimension m and describes the relationship between
the input u and output y, corresponding to (9)–(10).
The second part of the normal-form, given by (29), has

dimension f − m and describes the internal dynamics
and corresponds to (11). A graphical representation of
the nonlinear input–output normal-form of an under-
actuated multibody system with the linearly combined
system output (22) is shown in Fig. 3.

Finally, for underactuated multibody systems with
linearly combined output, the zero dynamics can be
simply derived in symbolic form from the input–
output normal-form (28)–(29) by setting y = ẏ =
ÿ = 0, ∀t . Thus, the required control input for keeping
the output constant zero follows from (28) as

u0 = k̃(0,0,qu, q̇u) − g̃(0,0,qu, q̇u). (30)

With this input u0 the internal dynamics (29) reduces
to the zero dynamics

[
Muu(0,qu) − MT

au(0,qu)�
]
q̈u

= gu(0,0,qu, q̇u) − ku(0,0,qu, q̇u). (31)

This zero dynamics is symbolically available for the
stability investigations and is also used in the next
section for the optimization of the system. In the fol-
lowing the Jacobian linearization of the zero dynam-
ics (31) in state space is denoted by ˙̃z = Az̃, where A

is the system matrix.

2.5 A note on feed-forward control design

The use of feedback linearization might have several
drawbacks. For example, full-state information is nec-
essary which is not always available, e.g. the elastic
coordinates in flexible multibody systems. Also, due
to parameter uncertainty robustness issues might arise.
Thus, alternatively to feedback linearization a control
structure consisting of a feed-forward control and an
additional feedback controller to account for small dis-
turbances and uncertainties might be used. The feed-
forward control design is based on an inverse model
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which provides the input ud required for exact repro-
duction of the desired output trajectory yd . The inverse
model can be directly derived from the input–output
normal-form; see e.g. [13]. Here it is presented for a
linearly combined output. The input ud computed by
the feed-forward control follows from (28) as

ud = M̃(yd ,qu)ÿd − g̃(yd,qu, ẏd, q̇u)

+ k̃(yd ,qu, ẏd , q̇u). (32)

The computation of the input ud depends on the de-
sired output trajectory yd , ẏd and the unactuated states
qu, q̇u. These latter ones are the solution of the internal
dynamics (29), which is driven by yd , ẏd and ud . Re-
placing ud in the internal dynamics (29) by (32) yields
for the unactuated states qu, q̇u the differential equa-
tion

[
Muu − MT

au�
]
q̈u = gu − ku − MT

auÿd . (33)

Thus, the inverse model consists of three parts: a chain
of two differentiators for the desired output vector yd

producing the values ẏd and ÿd , the driven internal
dynamics (33) for the qu, q̇u coordinates and the alge-
braic equation (32), which computes from these values
the desired input ud . A solution for the driven inter-
nal dynamics (33) must be determined. This can only
be computed by forward time integration if the qu, q̇u

states of the internal dynamics remain bounded, which
implies that the system must be minimum phase.
Otherwise unbounded states qu, q̇u occur. For non-
minimum phase systems a bounded solution for the
states qu, q̇u can be computed in the feed-forward con-
trol by solving a two-sided boundary value problem,
see [6, 20, 24] for details. However, this is often a non-
trivial challenging task and yields a non-causal feed-
forward control. Therefore, also in the feed-forward
control design a minimum phase system is desired.

3 Design of stable zero dynamics

As discussed in the previous section, feedback lin-
earizable is only possible if the system is minimum
phase. Also in this case the design of feed-forward
control is significantly simplified. However, the analy-
sis of the initial design of an underactuated multibody
system might show that it possess unstable zero dy-
namics; and is therefore non-minimum phase. Thus,

Fig. 4 Rotational arm with one active and one passive joint

it is desired to design the multibody system in such
a way that the zero dynamics is stable. As shown in
Sect. 2.3, the zero dynamics depends on the choice of
the system output y and the equation of motion (1) of
the multibody system. Output relocation is a method
where a different system output ŷ is chosen in order to
achieve minimum phase property. An analysis of this
approach for a flexible two-arm manipulator is given
in [12]. However, the use of this approach is limited
in trajectory tracking of an end-effector point, since
the relocated output normally does not approximate
the desired output well. Thus, minimum phase prop-
erty can only be achieved by modifying the system
dynamics, which means the mechanical design of the
underactuated multibody system must be altered.

3.1 Identification of possible design parameters

In a first step possible physical design parameters
which influence the stability properties of the zero dy-
namics are identified. For this task the explicit sym-
bolically derived input–output normal-form (28)–(29)
and the resulting zero dynamics (31) are used. The in-
vestigation is performed exemplarily for a single rota-
tional arm with a passive joint, which is presented in
Fig. 4. The arm consist of two links i = 1,2, whose
center of mass is denoted by Ci . The links have length
li , mass mi , inertia Iiz and the position of the center
of mass is described by si . Link 2 is connected by a
passive joint to link 1, which is supported by a spring-
damper combination with spring constant c and damp-
ing coefficient d . The arm is described by the general-
ized coordinates α and β , whereby β denotes the un-
actuated coordinate. The arm moves in the horizontal
plane perpendicular to the direction of gravity.

As described in Sect. 2.4 the end-effector point can
be described approximately by the linear combined
system output y = α + �β with � = l2/(l1 + l2). In
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this case the zero dynamics of the rotational arm is

[
l1(I2z + m2s

2
2) − l1l2m2s2

l1 + l2
cosβ

]
β̈

= −cβ − dβ̇ − l1l
2
2m2s2

(l1 + l2)2
β̇2 sinβ.

This shows that the zero dynamics of the rotational
arm is influenced by the length l1, l2 of both links,
mass m2, inertia I2z and center of mass s2 of the sec-
ond link as well as the coefficients c, d of the spring-
damper combination. For a further analysis the lin-
earized zero dynamics around the equilibrium point
β = 0 is considered,

[
l1(I2z + m2s

2
2) − l1l2m2s2

l1 + l2

]
¨̃
β + d

˙̃
β + cβ̃

= a2
¨̃
β + a1

˙̃
β + a0β̃ = 0, (34)

where a2, a1, a0 correspond to the coefficients of the
characteristic polynomial. Thus, the linearized zero
dynamics of the rotational arm is only asymptoti-
cally stable, if all coefficients a2, a1, a0 have the same
sign and are non-zero. Since the constants c, d of the
spring-damper combination are by nature positive also
the coefficient a2 has to be positive. Thus, in this case
c, d can only be used to shape the dynamic response
of the zero dynamics, but cannot be used to change its
stability property. However, the stability property of
the zero dynamics can be influenced by changing the
mass distribution of the second link, which is given by
the mass m2, inertia I2z and center of mass s2. In ad-
dition a change of the geometry, i.e. length of the links
l1, l2, can be used to alter the stability property. This
analysis, which shows the influence of the mass dis-
tribution and geometry on the stability of the zero dy-
namics, is representative for all underactuated multi-
body systems considered in this paper.

The mass distribution of the unactuated link and the
geometry of both links could be used here directly as
design variables,

p = [m2, I2z, s2, l1, l2]. (35)

However, these quantities are highly coupled, and an
optimization-based design procedure might yield val-
ues which cannot be realized from an engineering
point of view. Therefore, more sophisticated param-
eterizations of the design variables are necessary.

Fig. 5 Two possible design variants for altering the mass dis-
tribution of a link

In this paper different design parameterization ap-
proaches are used to alter the mass distribution and
geometry. Thereby, in all approaches it turns out that
the change of the center of mass of the links is cru-
cial. The basic approach proposed here, is based on
the introduction of additional small balancing weights.
Assuming the geometry is fixed, the mass distribu-
tion of an initially homogeneous design is altered by
adding a small mass ma to the unactuated link. The
additional mass is added at the location sa , which
changes the center of mass of the combined body. An
additional increase of the inertia I2z of the unactuated
link can be achieved, if the mass ma is located by an
offset da away from the axis of the link. Two possi-
ble design variants for an unactuated link are shown
schematically in Fig. 5, whereby the additional mass
is mounted as counterweight. Neglecting for simplic-
ity the weight of the mounting rods, the three design
variables p = [ma, sa, da] can be used to alter the mass
distribution of an unactuated link and yield

m2 = m̄2 + ma, s2 = m̄2s̄2 + masa

m2
,

I2z = Ī2z + m̄2(s̄2 − s2)
2 + ma(sa − s2)

2 + mad
2
a .

Thereby m̄2, Ī2z, s̄2 denote the values of the initial de-
sign of the unactuated link. In order to obtain a viable
physical design, bounds have to be put on the design
variables which results in the feasible design space for
one unactuated link

P = {
p ∈ R

3|0 ≤ ma ≤ mamax ,

samin ≤ sa ≤ samax ,0 ≤ da ≤ damax

}
.

For underactuated multibody systems with several
passive joints, the design variables p and the feasi-
ble design space P are the collection of the design
variables of all links whose mass distribution should
be altered. This basic parameterization can be fur-
ther modified, e.g. by adding the link length to the
design variables or by constraining the total mass of
the multibody system. Detailed description on these
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further reaching approaches are presented later in the
paper for specific examples.

3.2 Optimization criteria

For the minimum phase design of underactuated multi-
body systems an optimization-based design procedure
is proposed, using the previously identified design pa-
rameters p. The zero dynamics (31) depends only
on the unactuated states qu, q̇u and the design vari-
ables p. Therefore, the zero dynamics is given by
[
Muu(p,qu) − MT

au(p,qu)�
]
q̈u

= gu(p,qu, q̇u) − ku(p,qu, q̇u). (36)

In the following the system matrix of the linearized
zero dynamics (36) is denoted by A(p).

The primary design goal is to achieve a stable zero
dynamics, such that the underactuated multibody sys-
tem is feedback linearizable. However, in order to ob-
tain a powerful mechanical design, not only minimum
phase behavior must be guaranteed, but also distur-
bances in the zero dynamics should decay rapidly. This
is especially important in order to avoid that distur-
bances yield large undesired vibrations of the internal
dynamics during trajectory tracking. Therefore, a two-
step computation of the optimization criteria f (p) is
proposed, which should be minimized in the course
of the optimization. The two steps of the optimization
criteria computation are as follows.

Step 1: Firstly, Lyapunov’s indirect method is used,
see [10]. It requires that all eigenvalues of the lin-
earized zero dynamics are in the left half-plane,

Re
[
λ
(
A(p)

)]
< 0. (37)

If at least one eigenvalue has a non-negative real
part, a large default value for the optimization criteria
f (p) is returned. Otherwise, the linearized analysis
shows asymptotic stability and the optimization can
be proceeded with step 2.

Step 2: If all eigenvalues are in the left half-plane, the
final optimization criteria f (p) is calculated. In or-
der to achieve good damping properties, it is required
that initial errors in the nonlinear zero dynamics (36)
decay rapidly. The disturbance is given by the initial
conditions qu(t0) = qu0

, q̇u(t0) = q̇u0
. The damping

property is then described by the integrated error of
the unactuated coordinates qu in respect to the equi-
librium point qu = 0 of the zero dynamics. Thereby,

the optimization criteria is chosen as the maximum
of the integrated error of the f − m unactuated coor-
dinates qu. This is given by

f (p) = max
i

∫ t1

t0

q2
ui

dt, (38)

where t1 describes the final time of the simulation. By
evaluating only the attenuation of the least damped
coordinate of the zero dynamics, it is achieved that
improvements in the other coordinates with better
damping properties are ignored. Thus, the design
procedure concentrates on the improvement of the
damping properties of the least damped coordinate.

Besides evaluating the damping properties of the
zero dynamics, the second step provides also a very
good indication about the behavior of the nonlinear
zero dynamics. By choosing large initial conditions,
it can be checked, if the nonlinear zero dynamics re-
mains bounded in the case that their states qu q̇u are
pushed by a disturbance further away from the equilib-
rium point. If this is not the case, the states qu q̇u be-
come unbounded and the integration fails. Then, also
a large default value is returned for the optimization
criteria f (p).

In the criteria computation the most time consum-
ing part is the time integration of the zero dynamics in
the second step. However, in the first step of the cri-
teria computation many unfeasible designs are filtered
out; thus the number of time integrations is reduced by
the restriction on locally stable designs.

Also the first step can be efficiently used to achieve
further design goals, such as robustness to uncertain-
ties in the mass distribution. This means that the sys-
tem should remain its minimum phase property even if
there are some small unknown variations in the phys-
ical construction. These uncertainties can be either in
the initial mass distribution or in the optimal design
variables. Thus, for example in the first step, it can
also be desired that the eigenvalues for several pertur-
bation parameter sets p +�p are in the left half-plane
and (37) is supplemented by,

Re
[
λ
(
A(p + �p)

)]
< 0. (39)

In this paper up to 16 designs with perturbation are
tested, whereby the design parameters are varied in
different combination by up to 5% around the nominal
values p. By this approach, also some nominal designs
are filtered out which are close to an unstable region
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and yield unbounded states of the zero dynamics in the
following time integration. It should be noted that here
only a point-wise robustness test is performed, which
does not guarantee robustness over the entire region of
uncertainties. In order to achieve this, the point-wise
test can be replaced by a μ-analysis, see e.g. [21] for
details on analysis of system robustness. However, this
is computationally much more time consuming. In nu-
merical tests of the proposed optimization procedure
it turns out that the combination of the point-wise test
with the simulation of the nonlinear zero dynamics is
sufficient to obtain a robust mechanical design with
good damping properties in a time efficient way.

3.3 Particle swarm optimization

In the optimization procedure the criteria function
f (p) should be minimized with respect to the design
variables p,

min
p∈P

f (p). (40)

Due to the two-step criteria computation, the optimiza-
tion problem is discontinuous. Also, an analysis of this
optimization problem shows that there are many local
minima and the complexity of the optimization crite-
ria increases with the number of passive joints. There-
fore, gradient-based optimization algorithms cannot
be used and stochastic optimization algorithms must
be deployed. Here a particle swarm optimization pro-
cedure is used. This is a population-based optimization
method which originates in the study and simulation of
social behavior of bird and fish flocks, see [8]. The ba-
sic idea is the modeling of social interaction between
individual particles of a population on the quest for
the best point in the feasible design space. Thereby, it
is aspired to use the collective intelligence of a swarm
to solve complex optimization problems. A detailed
analysis of swarm intelligence is given in [9].

The basic step of the particle swarm optimization
is the recursive update equation to compute the new
parameter set pi of the i-th particle of the swarm

pk+1
i = pk

i + �pk+1
i

�pk+1
i = w�pk

i + c1r1
(
pbest,k

i − pk
i

)
(41)

+ c2r1
(
pbest,k

swarm − pk
i

)
.

Thereby, k is the number of iterations and r1, r2 are
evenly distributed numbers. The update of the parti-
cle’s parameters �pk+1

i consist of three contributions.

The first contribution describes the tradition and the
particle moves in the direction of the previous update
�pk

i . The second part describes the cognitive part and
the particle moves in the direction of the best parame-
ter set pbest,k

i , which it found on its own. The third part
describes the social behavior, and the particle moves in
the direction of the best parameter set pbest,k

swarm, which
the entire swarm has found so far. With the three pa-
rameters w,c1, c2 the contributions are weighted, and
the convergence speed and the width of the search can
be controlled.

An advantage of the particle swarm optimization
is that no gradient information is necessary, the solu-
tion is independent of initial sets of design parame-
ters p and there are no requirements on smoothness or
continuity of the optimization criteria. This approach
is well suited for finding global minima and is of-
ten easy to program and to adjust to specific prob-
lems. The used algorithm is a Matlab implementation
presented in [14, 15] and has been already success-
fully applied in the optimization of multibody systems.
Compared to gradient-based methods, a general disad-
vantage of stochastic optimization algorithms is their
large computational expense due to a large amount of
criteria evaluations. However, due to the two-step cri-
teria computation, the number of time intensive time
integrations is limited.

4 Examples

In this section the efficiency of the optimization-based
design approach for underactuated multibody systems
is demonstrated. Four examples are presented, which
are the design of planar manipulators with two and
four passive joints, respectively, and a kinematic re-
dundancy. Three different parameterizations for the
design variables are presented. Corresponding results
for a manipulator with one passive joint are presented
in [16, 17]. In the first example the advantages of the
presented integrated optimization-based design and
control approach are compared to other possible con-
trol strategies. The second and third example show two
different design parameterizations which can be used
to obtain a viable minimum phase design, while keep-
ing the mass of the system constant. In the forth ex-
ample the design for a larger system is presented, and
its robustness against uncertainty is demonstrated by
simulation.
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Fig. 6 Underactuated manipulator with two passive joints

Table 1 Initial parameters for underactuated manipulator with
two passive joints

Cart mc = 3 kg

Link 1 m1 = 6.875 kg I1 = 0.5743 kgm2 l1 = 1.0 m

Link i = 2,3,4 mi = 2.292 kg Ii = 0.0217 kgm2 li = 1/3 m

Load ml = 6 kg Il = 0.0147 kgm2

c = 400 Nm
rad d = 0.25 Nms

rad

4.1 Manipulator with two passive joints: change of
mass distribution

The first investigated manipulator is shown schemati-
cally in Fig. 6. The manipulator moves along the hor-
izontal plane and consists of a cart on which a chain
of four links is mounted. The homogeneous links have
length l1 and l2 = l3 = l3 and squared cross section
with width 50 mm. At the end-effector point an addi-
tional load is applied. The actuated generalized coor-
dinates are qa = [x,α1, α2]T and the unactuated gen-
eralized coordinates are qu = [β1, β2]T . These are de-
fined as relative joint coordinates. Thereby β1 is the
angle between link 2 and 3, β2 is the angle between
link 3 and 4. The manipulator is actuated by the con-
trol input u = [F,T1, T2]T . The system output is the
cart position and the end-effector position,

y = h(q) =
[

x

ref(q)

]
. (42)

The passive joints are supported by parallel spring-
damper combinations with spring constant c and
damping coefficient d . The physical properties are
summarized in Table 1.

For the analysis of the zero dynamics and the op-
timization the approximation of the end-effector posi-

tion

ref(qa,qu)

≈ ref(y)

=
[
y1 + l1 sin(y2) + (l2 + l3 + l4) sin(y2 + y3)

−l1 cos(y2) − (l2 + l3 + l3) cos(y2 + y3)

]
,

(43)

is used. Thereby, similar to Sect. 2.4, a linearly com-
bined system output y is chosen as

y = qa + �qu with � =
⎡
⎣ 0 0

0 0
�1 �2

⎤
⎦ . (44)

In this example a good approximation is achieved for
�1 = (l3 + l4)/(l2 + l3 + l4) = 2/3 and �2 = l4/(l2 +
l3 + l4) = 1/3. As described in Sect. 2.4 the angle
y3 = α2 + �1β1 + �2β2 can be viewed as an auxil-
iary angle to approximate the end-effector position, if
β1, β2 remain small. Using y as system output, their
desired trajectories can be computed from the desired
trajectory ref

d and (43) by inverse kinematics.
The analysis of the manipulator shows that the ini-

tial design is non-minimum phase. Thus the proposed
optimization procedure is used to alter the initial de-
sign in order to achieve a minimum phase manipulator.
The analysis of the zero-dynamics shows that its sta-
bility depends on the mass distribution of the unactu-
ated links 3 and 4. Following Sect. 3.1, the mass distri-
bution is altered by adding additional masses to these
two links. This represents the case of an already exist-
ing machine, where additional mass can be added, but
existing weight cannot be removed any more. Thus,
six design variables are introduced

p = [ma3 , sa3 , da3 , ma4 , sa4 , da4 ], (45)

describing the additional masses ma3 ,ma4 , their posi-
tions sa3 , sa4 along the link axis and the offset vari-
able da3, da4 for link 3 and 4, respectively. Thereby,
a negative value for sai

indicates that the additional
mass is added as counterweight to link i. Since this
manipulator moves in the horizontal plane, there are
infinity equilibrium points. In this considered exam-
ple, the zero-dynamics is identical for all these equi-
librium points. An analysis of the zero dynamics of
this manipulator shows that many designs with simi-
lar criteria values exist and the influence of the mass
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Table 2 Example 1—bounds and optimization results

link 3 ma3 [kg] sa3 [m] da3 [m]

Lower bound 0 −0.333 0

Upper bound 1 0.333 0.167

Optimization result 0.999 −0.293 0.062

link 4 ma4 [kg] sa4 [m] da4 [m]

Lower bound 0 −0.333 0

Upper bound 2 0.333 0.167

Optimization result 1.997 −0.333 0.166

Fig. 7 Attenuation of the zero dynamics of example 1 under
initial disturbance

distribution of the two unactuated arms on the zero dy-
namics is coupled.

Table 2 shows the bounds on the parameters and
the obtained optimization result. Thereby, the particle
swarm optimization uses 100 particles and 22 itera-
tions are performed. The optimization procedure is im-
plemented in Matlab, and it takes only approximately
240 s. In Fig. 7 the attenuation of an initial disturbance
in the unactuated coordinates β1, β2 of the zero dy-
namics is shown. Both coordinates have a relatively
even attenuation behavior. This is achieved by the op-
timization criteria (38), which concentrates on increas-
ing the damping properties of the least damped unac-
tuated coordinate of the zero dynamics. This example
shows that the presented approach is a very time effi-
cient method to design minimum phase underactuated
multibody systems with good damping properties. For
verification purpose the optimization is performed sev-
eral times. These show very similar designs, whereby

Fig. 8 Desired trajectory of end-effector and cart

only some variations in the da3 variables are observed.
However, the function value f are nearly identical, in-
dicating local minima. It is worth to notice that the ad-
ditional masses are always placed as counterweights.
It should be noted that the offset dai

is not necessary
to find a minimum phase design, however, it allows to
use smaller additional masses, see [16, 17] for details.

The obtained optimal designs are tested by simula-
tion considering a half-circular end-effector trajectory.
The center of the half-circle is at position (0,−1.5 m)

and the radius is 1 m. The end-effector point should
follow the trajectory in the short time period of 1.5 s,
which describes an aggressive maneuver. Also the
kinematic redundancy should be used to perform a
secondary task, which is moving the cart from starting
position −2 m to the final position 0 m. The motion
starts at time 0.2 s and ends at time 1.7 s. The desired
trajectories are shown in Fig. 8.

In the simulation the described feedback lineariza-
tion controller is applied to the obtained optimized de-
sign. Thereby, the exact end-effector point ref(qa,qu)

is used, as well as the approximated point ref(y),
which is used in the optimization. These results are
compared to those using two alternative control con-
cepts, which are applied to the initial design of the
manipulator. The first alternative control approach is a
feedback linearization, whereby minimum phase prop-
erty of the initial system is achieved by output reloca-
tion. An analysis of the zero dynamics shows that in
this example output relocation with �1 = 0.570 and
�2 = 0.333 yields a minimum phase design. The sec-
ond approach is a stable inversion-based feed-forward
control of the non-minimum phase initial system com-
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Fig. 9 Trajectory (top) and error in radial direction (bottom) of
end-effector (— optimized design with ref(y); – – optimized de-
sign with ref(qa,qu); – · – initial design with output relocation;
· · · initial design with stable inversion)

bined with a PID controller for the actuated coordi-
nates. The stable inversion is computed from the ex-
plicitly derived internal dynamics (33), which is based
on the linearly combined output (44). The stable in-
version requires the numerical solution of a two-sided
boundary value problem and yields a pre- and post-
actuation phase. Its computation is described for a
similar manipulator in [20].

The simulation results of the end-effector trajectory
and the trajectory error in radial direction of the half-
circular trajectory are given in Fig. 9. The simulations
show that the best result is achieved by the design with
optimized mass distribution of the unactuated links
and using the exact end-effector position ref(qa,qu)

Fig. 10 Unactuated coordinates using exact and approximated
output

as system output for feedback linearization. Hereby
the tracking error is less than 0.002 mm. Using the
linear combined output y to approximated the end-
effector point ref(y) yields tracking errors of approx-
imately 2.5 mm. This is true in the case of feedback
linearization of the optimized design as well as in the
case of stable inversion of the non-minimum phase ini-
tial design. Finally, the simulation clearly shows that
for this example output relocation is not a viable ap-
proach for end-effector trajectory tracking. Here, this
results in a very large error of nearly 20 mm and
is therefore not further considered. However, this ap-
proach might be useful in the case of stabilization or
working point changes.

Figure 10 shows for the considered output trajec-
tory the behavior of the unactuated coordinates β1 and
β2 which describe the internal dynamics. It is seen that
the internal dynamics for the exact end-effector posi-
tion ref(qa,qu) and the approximated end-effector po-
sition ref(y) behaves very similar. On the one hand
this justifies the use of the linear combined system
output (22) for analysis and optimization of the zero-
dynamics of the considered system. On the other hand,
it shows that for feedback linearization the approxima-
tion can be replaced by the exact end-effector position
as system output, yielding exact tracking of the end-
effector trajectories.

It should be noted that the optimized design yields
an increase of the total mass of the manipulator of
approximately 13%. Thus, compared to the stable
inversion approach the required mechanical energy
for tracking the described half-circular trajectory in-
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creases also by about 15%. However, the feedback lin-
earization approach has several significant advantages
compared to the stable inversion. Feedback lineariza-
tion yields an algebraic control law which is relatively
easy to implement and independent of the desired out-
put trajectory. In contrast, stable inversion of a non-
minimum phase system has to be computed off-line
for each desired trajectory separately by the compu-
tational expensive solution of a two-sided boundary
value problem, see e.g. [6, 20, 24]. Also, for the con-
sidered manipulator with passive joints the use of the
exact output is much easier to implement in feedback
linearization than in the stable inversion approach.

4.2 Manipulator with two passive joints:
parameterization with constant mass

The previous example shows that a minimum phase
design with good damping properties of the internal
dynamics can be achieved by changing the mass distri-
bution. Thereby, additional mass is added to the initial
design, increasing the total mass of the system. In the
two following examples, two alternative parameteriza-
tions of the mass distribution are presented which do
not yield a total mass increase of the system. These
parameterizations are applied to the same manipulator
as in the previous example.

In the second example, a similar parameterization
as in the first example, given by (45), is used. However,
the total mass of the manipulator is kept constant, by
reducing the mass of the passive links 3 and 4 to com-
pensate for the additional masses ma3 and ma4 . There-
fore, the cross section of these two links are reduced
equally by the scaling factor

s = m̄3 + m̄4 − ma3 − ma4

m̄3 + m̄4
, (46)

where m̄3, m̄4 are the masses of the initial design.
Thus, the masses of the optimized links are given by
m3 = s ·m̄3 +ma3 and m4 = s ·m̄4 +ma4 , respectively.
Table 3 shows for this parameterization the bounds on
the parameters and the obtained optimization result.
Again, it is seen that the additional masses are used
to move the center of mass of the unactuated links
closer to the passive joints. Figure 11 shows schemat-
ically the obtained design. The links 3 and 4 have
now a squared cross section with width 37.1 mm. The
good attenuation of the unactuated coordinates which

Table 3 Example 2—bounds and optimization results

Link 3 ma3 [kg] sa3 [m] da3 [m]

Lower bound 0 −0.333 0

Upper bound 1 0 0.167

Optimization result 1.000 −0.194 0.003

Link 4 ma4 [kg] sa4 [m] da4 [m]

Lower bound 0 −0.333 0

Upper bound 2 0 0.167

Optimization result 1.065 −0.333 0.166

Fig. 11 Example 2: proposed design with constant mass

Fig. 12 Attenuation of the zero dynamics of example 2 under
initial disturbance

is achieved by this design is shown in Fig. 12. Com-
pared to the first example, presented in Fig. 7, this de-
sign achieves an even better damping behavior.

In the third example, a parameterization with fo-
cus on changing the length of the unactuated homoge-
neous links l3 and l4 is proposed. Thereby, the length
of the second link l2 is chosen such that the total length
of all three links is 1 m, i.e. l2 = 1m − l3 − l4. How-



1554 R. Seifried

Fig. 13 Example 3: proposed design with change of link length

Table 4 Example 3—bounds and optimization results

l3 [m] n3 [–] l4 [m]

Lower bound 0.3 0.1 0.1

Upper bound 0.5 0.5 0.5

Optimization result 0.334 0.1 0.1

ever, it turns out that by only changing the link length
no viable minimum phase design is found. Therefore,
in addition to the change of the link length also the
center of gravity s3 of the third link is introduced as a
design variable. This is motivated by the previous re-
sults, where the center of mass of the unactuated links
is moved closer to the passive joints. Therefore, as de-
sign variables p = [l3, n3, l4]T are chosen. Thereby
the factor n3 = s3/l3 describes the relative position
of the center of mass of link 3. From an engineer-
ing point of view this parameterization can be easily
achieved by extending link 3 in the opposite direction,
see Fig. 13. Thus the total length of the third link is
given as lt3 = 2l3(1 − n3).

In the proposed design the links 2,3 and 4 should
have the same constant cross section. This cross sec-
tion is determined from the requirement that the total
mass of the three links should remain constant com-
pared to the initial design. In order to obtain a viable
physical design, bounds have to be put on the design
variables. These bounds and the optimization results
are summarized in Table 4. In the optimized design
the third link has total length lt3 = 0.6 m and the three
links have squared cross section with width 44.4 mm.
Figure 14 shows for this design the attenuation of the
zero-dynamics under a disturbance. It is noted that this
design yields a significant faster dynamic and stronger
damping behavior than the previous designs. This is

Fig. 14 Attenuation of the zero dynamics of example 3 under
initial disturbance

despite the fact that the constants c, d of the spring-
damper combination have not been changed.

In comparison to the previous two parameteriza-
tions of the mass distribution this third parameteriza-
tion has the advantage that only 3 design variables are
used. However, from the analysis of the intermediate
optimization results it is seen that only few combi-
nations of parameters yield stable designs. Thereby,
the designs must be close to the bounds n3 = 0.1 and
l4 = 0.1 m. Thus, for example always a very short link
4 is obtained.

For trajectory tracking the optimized designs in ex-
ample 2 and 3 yield similar results as in the first ex-
ample shown in the previous section. However, the re-
quired mechanical energy is now within 2% of the sta-
ble inversion result of the initial design. This is due
to the constant mass parameterization of the mass dis-
tribution in these two examples. This clearly demon-
strates that minimum phase designs with good damp-
ing properties can be achieved without a total mass
increase.

4.3 Manipulator with four passive joints

As last example, the design of an underactuated
manipulator with four passive joints is considered,
see Fig. 15. The actuated generalized coordinates are
again qa = [x,α1, α2]T and the unactuated general-
ized coordinates are now qu = [β1, β2, γ1, γ2]T . These
are again defined as relative joint coordinates. Thereby
β1 is the angle between link 1 and 2, β2 is the angle be-
tween link 2 and 3, γ1 is the angle between link 4 and 5
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Fig. 15 Underactuated manipulator with four passive joints

Table 5 Initial parameters for underactuated manipulator with
four passive joints

Cart mc = 3 kg

Link i = 1–6 mi = 2.292 kg Ii = 0.0217 kgm2 li = 1/3 m

Load ml = 6 kg Il = 0.0147 kgm2

c1 = 900 Nm
rad c2 = 300 Nm

rad d1 = 3 Nms
rad d2 = 1 Nms

rad

and γ2 is the angle between link 5 and 6. The manipu-
lator is actuated by the control input u = [F,T1, T2]T .
The physical properties are summarized in Table 5.
The links are homogeneous and have again a squared
cross section with initial width 50 mm. For the analy-
sis and optimization of the internal dynamics the end-
effector point ref is described approximately by using
the linearly combined system output

y = qa + �qu with � =
⎡
⎣ 0 0 0 0

2/3 1/3 0 0
1/3 2/3 2/3 1/3

⎤
⎦ .

(47)

As in the previous examples, the manipulator
moves in the horizontal plane and there are infin-
ity equilibrium points. In this example the zero-
dynamics depends indeed on the values y2, y3, how-
ever, inspection shows that their influence is rather
small. Thus, the analysis and optimization can be per-
formed at one equilibrium point and holds for the
entire range. Therefore, in the following it is chosen
y2 = y3 = 0. The analysis of the zero-dynamics shows
that its stability depends on the mass distribution of the
links 2–6. However, it turns out that for this example
it is sufficient to change the mass distribution of the
links 2,3,5 and 6. In this example the same approach

Table 6 Example 4—bounds and optimization results

Link 2 ma2 [kg] sa2 [m] da2 [m]

Lower bound 0 −0.667 0

Upper bound 3 0 0.333

Optimization result 1.6127 −0.2067 0.3019

Link 3 ma3 [kg] sa3 [m] da3 [m]

Lower bound 0 −0.667 0

Upper bound 3 0 0.333

Optimization result 2.4230 −0.6349 0.2778

Link 5 ma5 [kg] sa5 [m] da5 [m]

Lower bound 0 −0.667 0

Upper bound 2 0 0.333

Optimization result 0.8381 −0.1824 0.0865

Link 6 ma6 [kg] sa6 [m] da6 [m]

Lower bound 0 −0.667 0

Upper bound 2 0 0.167

Optimization result 1.5187 −0.3011 0.0096

as in example 2 is used. Thus, additional masses mai
at

position sai
and dai

are introduced for these four links.
The total mass of the manipulator is kept constant and
it is required that all 6 links have equal cross section.
Table 6 shows the bounds on the parameters and the
obtained optimization result. In this case 300 particles
and 10 iterations are used in the particle swarm op-
timization, requiring approximately 45 min computa-
tion time. The links have now a squared cross section
with width 36.6 mm. Figure 16 shows that with this
design a good and equal attenuation of an initial dis-
turbance in the zero dynamics is obtained.

The obtained manipulator is tested using the trajec-
tory presented in Fig. 8. Thereby feedback lineariza-
tion with the exact end-effector position r(qa,qu) as
system output is used. By simulation it is shown that
the obtained internal dynamics is also robust to pa-
rameter uncertainty and measurement noise. There-
fore, in the simulation model the mass of the load is
increased by 10%, the stiffness of the springs are in-
creased by 15% and the damping coefficients are re-
duced by 30%. Also measurement noise is added to
all generalized coordinates. While in the nominal case
a negligible tracking error occurs, a small tracking er-
ror of 0.338 mm occurs for the simulation with dis-
turbances and uncertainties. Figure 17 shows for the



1556 R. Seifried

Fig. 16 Attenuation of the zero dynamics of example 4 under
initial disturbance

desired output trajectory the behavior of the unactu-
ated generalized coordinates which describe the in-
ternal dynamics. It is seen that the internal dynam-
ics remains bounded for the nominal model as well
as for the model with uncertainties and disturbances.
This indicates that the minimum phase property of the
designed system is robust against some uncertainties
and disturbances. While a rigorous robustness proof is
beyond the scope of this paper, the obtained designs
show in simulation promising robustness properties
and might be the starting point for further reaching in-
vestigations. These designs might also be the basis for
further control concepts with good robustness proper-
ties, such as passivity-based control or sliding-mode
control, which generally require minimum phase sys-
tems.

5 Conclusions

An integrated approach for design and control of min-
imum phase underactuated multibody systems is pre-
sented. Thereby, systems with stable zero dynamics
and good damping properties of the zero dynamics
are designed by optimization. As design parameters,
which influence the zero dynamics, the geometric di-
mensions and mass distribution of the system are iden-
tified. The mass distribution can be influenced by
small masses, which are added to the unactuated bod-
ies, whereby the parameterization can be chosen in
such a way that no increase of the total mass oc-
curs. For the optimization a particle swarm algorithm

Fig. 17 Unactuated coordinates during trajectory tracking
without (top) and with (bottom) uncertainties and disturbances

is used. The two-step optimization criteria calculation
yields a time efficient optimization procedure which
provides reliable results. For the analysis and opti-
mization of the zero dynamics the end-effector point
is approximated by a linearly combined output. How-
ever, the presented optimization procedure is general
and not restricted to such system outputs. The effi-
ciency of the approach is demonstrated by simulation
using planar underactuated manipulators with two and
four passive joints, respectively. For the obtained mini-
mum phase systems feedback linearization is possible,
and also feed-forward control design is significantly
simplified.
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