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Abstract So far, control of robot manipulators has
frequently been developed based on the torque-control
strategy. However, two drawbacks may occur. First,
torque-control laws are inherently involved in com-
plexity of the manipulator dynamics characterized by
nonlinearity, largeness of model, coupling, uncertainty
and joint flexibility. Second, actuator dynamics may
be excluded from the controller design. The novelty
of this paper is the use of voltage control strategy to
develop robust tracking control of electrically driven
flexible-joint robot manipulators. In addition, a novel
method of uncertainty estimation is introduced to ob-
tain the control law. The proposed control approach
has important advantages over the torque-control ap-
proaches due to being free of manipulator dynamics.
It is computationally simple, decoupled, well-behaved
and has a fast response. The control design includes
two interior loops; the inner loop controls the motor
position and the outer loop controls the joint posi-
tion. Stability analysis is presented and performance
of the control system is evaluated. Effectiveness of the
proposed control approach is demonstrated by simula-
tions using a three-joint articulated flexible-joint robot
driven by permanent magnet dc motors.
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1 Introduction

Electric motors provide low torque at high speed. They
are equipped with power transmission systems to pro-
vide high torque at low speed for driving a robot.
However, deformation of the transmission system pro-
duces flexibility in the joints. This phenomenon is the
main source of vibration in industrial robot manipu-
lators [1]. Compared with rigid robots, number of de-
grees of freedom becomes twice as number of control
actions due to flexibility in the joints, and the matching
property between nonlinearities and inputs is lost [2].
Performing high-precision applications by a flexible-
joint robot seems to be difficult since the link position
cannot directly follow the actuator position. As a re-
sult, the flexibility in joints should be compensated to
improve the performance and avoid unwanted oscilla-
tions.

The flexible-joint robot manipulator presents seri-
ous problems such as nonlinearity, largeness of model,
coupling, uncertainty, and joint flexibility in the mod-
eling and control. This has attracted a great deal of
research in developing advance controls. For instance,
PD control [3], feedback linearization technique [4],
integral manifold approach [5], singular perturbation
theory [6], robust control [7], sliding mode control
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[8], adaptive control [9], fuzzy control [10], learning
control [11], neural network approach [12], passivity-
based impedance control [13], state observer based
control [14] have been devoted to deal with the con-
trol of flexible-joint robot. Time delay control [15] and
uncertainty estimation [16] can be used to control such
a complicated nonlinear system by estimating current
effects of unknown dynamics and disturbances.

So far, robot manipulators have been frequently
controlled using the torque-control strategy. How-
ever, two drawbacks may occur. First, the torque-
control laws are inherently involved in complexity
of the manipulator dynamics characterized by nonlin-
earity, largeness of model, coupling, uncertainty, and
joint flexibility. Second, actuator dynamics may be ex-
cluded from the controller design. The novelty of this
paper is the use of voltage control strategy for being
free of manipulator dynamics. As a result, the pro-
posed control approach is free of many effects caused
by manipulator dynamics. This is an important advan-
tage of the proposed control approach over the torque-
based control approaches.

Based on the modeling analysis, four variables for
each joint either “the position, velocity, acceleration
and jerk of the link [7]” or “the position and velocity of
the actuator and the link” are required to perform the
feedback control [17]. Measuring the acceleration and
jerk experiences many difficulties in practice. How-
ever, an observer may be used to substitute the actual
variable. Assuming global link coordinates and their
time derivatives as outputs, a nonlinear observer was
proposed which asymptotically reconstructs all state
variables [18]. However, an observer is designed based
on the model, thus errors may be produced due to us-
ing an imprecise model. This paper develops a control
approach that uses available feedbacks as an important
advantage from practical point of view. The design in-
cludes two interior loops; the inner loop controls the
motor position using the motor position and velocity
while the outer loop controls the joint position by a
PID (Proportional-Integral-Derivative) controller.

Feedback linearization is a helpful technique to fa-
cilitate the control design particularly by canceling the
nonlinearities and decoupling the system. Generally,
a flexible-joint robot cannot be feedback linearized
by static feedback [3]. However, under some assump-
tions, a simplified model was introduced which can be
feedback linearized [7]. Moreover, it was proven that
the whole class of elastic joint robots could be lin-
earized via dynamic feedback [19]. However, model

of the flexible robot is so large, computationally ex-
tensive and imprecise. Thus, model-based techniques
such as feedback linearization cannot work well. This
paper proposes a control law that is free of manipula-
tor dynamics.

To overcome uncertainty, many valuable robust
control approaches have been developed to control
robot manipulators in the joint-space [20, 21] and in
the task-space [22, 23]. However, robust control may
involve in complexity raised from the manipulator dy-
namics. Great attention has been attracted to overcom-
ing this shortcoming. A proper uncertainty bound pa-
rameter has been proposed to simplify and improve
robust control of robot manipulators [24]. It is found
that the voltage control strategy [25] is superior to the
torque-control strategy in the robust control of rigid
manipulators [26] in terms of simplicity in the con-
troller design and performance of the control system.
Since flexibility in the joints provides a complex dy-
namics, the voltage control strategy will be more effi-
cient than the torque-control strategy. This paper uses
the voltage control strategy for robust tracking con-
trol of electrically driven flexible-joint robot manipu-
lators. In addition, a novel method of uncertainty es-
timation is introduced and used to obtain the control
law. Stability analysis is presented and effectiveness
of the proposed control approach is demonstrated by
simulations.

This paper is organized as follows: Section 2 de-
velops modeling of the electrical flexible-joint manip-
ulator driven by geared permanent magnet dc motors.
Section 3 presents the proposed robust control. Sec-
tion 4 deals with stability analysis and performance
evaluation. Section 6 considers the uncertainty esti-
mation. Section 7 presents the simulation results and
finally, Section 7 concludes the paper.

2 Modeling

In a simplified model of flexible-joint robot [7], the
manipulator links are assumed rigid and motors are
elastically coupled to the links. The motor torques are
assumed as inputs of the robotic system. In this pa-
per, the simplified model is applied for an electrically
driven robot with some modifications to obtain the mo-
tor voltages as the inputs. Consider a robot with revo-
lute joints driven by geared permanent magnet dc mo-
tors. If the joint flexibility is modeled by a linear tor-
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sional spring, dynamic equation of motion can be ex-
pressed as

D(θ)θ̈ + C(θ , θ̇)θ̇ + g(θ) = K(rθm − θ) (1)

Jθ̈m + Bθ̇m + rK(rθm − θ) = τ (2)

where θ ∈ Rn is a vector of joint angles and θm ∈ Rn

is a vector of rotor angles. Thus, this system possesses
2n coordinates as [θ θm ]. D(θ) is a n × n matrix of
manipulator inertia, C(θ , θ̇) θ̇ ∈ Rn is a vector of cen-
trifugal and Coriolis forces, g(θ) ∈ Rn is a vector of
gravitational forces and τ ∈ Rn is a torque vector of
motors. J, B and r are n × n diagonal matrices to rep-
resent coefficients of the motor inertia, motor damping
and reduction gear, respectively. The diagonal matrix
K represents the lumped flexibility provided by the
joint and reduction gear. To simplify the model, both
the joint stiffness and gear coefficients are assumed
constant. The vector of gravitational forces g(θ) is as-
sumed function of only the joint positions as used in
the simplified model [7]. Note that vectors and matri-
ces are represented in bold form for clarity.

System (1)–(2) is highly nonlinear, extensively
computational, heavily coupled, multi-input/multi-
output system with the 2n coordinates. Complexity
of the model has been a serious challenge in robot
modeling and control in literature. It is expected to
face a higher complexity if the proposed model in-
cludes the actuator dynamics. In order to obtain the
motor voltages as inputs, consider electrical equation
of the geared permanent magnet dc motors in the ma-
trix form

v = RIa + Lİa + Kbθ̇m (3)

where v ∈ Rn is a vector of motor voltages, Ia ∈ Rn

is a vector of motor currents and θ̇m is a vector of
rotor velocities. R, L and Kb represent the n × n di-
agonal matrices for the coefficients of armature resis-
tance, armature inductance, and back-emf constant, re-
spectively. The motor torques τ as input for dynamic
equation (2) is produced by the motor currents as

KmIa = τ (4)

where Km is a diagonal matrix of the torque constants.
Equations (1)–(4) form the robotic system such that
the voltage vector v is the input vector and the joint

angle vector θ is the output vector. We use (1)–(4) to
obtain the state-space model

ẋ = f(x) + bv (5)

where

f(x)=

⎡
⎢⎢⎢⎢⎣

x2
D−1(x1)(−g(x1) − Kx1 − C(x1,x2)x2 + Krx3)

x4
J−1(rKx1 − r2Kx3 − Bx4 + Kmx5)

−L−1(Kbx4 + Rx5)

⎤
⎥⎥⎥⎥⎦

,

b =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

L−1

⎤
⎥⎥⎥⎥⎦

, x =

⎡
⎢⎢⎢⎢⎣

θ

θ̇

θm

θ̇m

Ia

⎤
⎥⎥⎥⎥⎦

The state-space model of the robotic system expressed
by (5) shows a highly nonlinear coupled large system.

3 Robust control

To control such a complicated system, a control ap-
proach is proposed based on the voltage control strat-
egy. The proposed controller design includes two in-
terior loops; the inner loop controls the rotor position
while the outer loop provides a desired rotor position
for controlling the joint angle. Electrical equation of
motor is given by

v = RIa + Lİa + kbθ̇m + ϕ(t) (6)

where ϕ(t) represents an external disturbance. It is
very interesting to note that (6) is a single-input/single-
output (SISO) system while the robot manipulator is
a multivariable multi-input system. The motor current
Ia contains effects of coupling between the motor and
the manipulator. Thus, canceling this coupling will ob-
tain a control law that is free of manipulator dynamics.
We may write (6) by the use of nominal parameters as

v = R̂Ia + k̂bθ̇m + vd (7)

where R̂ and k̂b are the nominal parameters for the ac-
tual parameters given by R and kb , respectively. The
lumped uncertainty vd may cover the parametric er-
rors, unmodeled dynamics, and external disturbances.
Substituting (6) into (7) yields

vd = (R − R̂)Ia + Lİa + (kb − k̂b)θ̇m + ϕ(t) (8)
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where vd is the lumped uncertainty, (R − R̂)Ia +
(kb − k̂b)θ̇m expresses the effect of parametric uncer-
tainty, Lİa represents the unmodeled dynamics and
ϕ(t) denotes the external disturbance. The lumped un-
certainty vd purposefully includes Lİa in (8). As a re-
sult, the obtained nominal model is free of İa for con-
trol purposes. In practice, measurement of İa is not
common, however, it can be measured based on a prin-
cipal that the induced voltage in a coil is proportional
with İa .

The nominal parameters are known with our best
knowledge about the actual parameters whereas the
lumped uncertainty is unknown. To estimate the
lumped uncertainty, we propose

v̂d (t) = v(t − ε) − R̂Ia(t) − k̂bθ̇m(t) (9)

where v̂d is the estimate of the lumped uncertainty
and ε is a small positive value. We have used this
kind of observer to estimate the uncertainty in the ro-
bust impedance control of a hydraulic suspension sys-
tem [27]. A control law is proposed based on the feed-
back linearization as

v = R̂Ia + k̂bu + v̂d (t) (10)

where u is a new control input. v̂d (t) is obtained us-
ing the available information stated by (9). Then, v̂d (t)

is used in the control command v(t) given by (10).
This means that v(t) is not available when calculat-
ing v̂d (t). Instead of v(t), we have to use v(t − ε) in
the RHS of (9) to obtain v̂d (t). The value of v(t − ε)

is a recent past information of v(t). Substituting (9)
into (10) yields

v = v(t − ε) + k̂b(u − θ̇m) (11)

A control law is proposed to track a desired trajectory
as

u = θ̇md + β(θmd − θm) (12)

where β is a constant gain and θmd is the desired rotor
angle provided by the outer loop.

Substituting (12) into (11) yields

v = v(t − ε) + k̂b

(
θ̇md − θ̇m + β(θmd − θm)

)
(13)

Assume that voltage of every motor is limited to pro-
tect the motor against over voltages. Therefore, control
law (13) is modified as

v(t) = U for |U | ≤ umax (14)

v(t) = umaxsgn(U) for umax < |U | (15)

where umax is a positive constant called as the maxi-
mum permitted voltage of motor and U is expressed
as

U = v(t − ε) + k̂b

(
θ̇md − θ̇m + β(θmd − θm)

)
(16)

To track the desired joint angle, the outer loop is
formed by a PID controller of the form

θmd = kd ė + kpe + ki

∫
e dt (17)

e = θd − θ (18)

where kp , kd and ki are proportional, derivative and
integral gains, respectively. θ is the actual joint angle,
θd is the desired joint angle, and e is the joint tracking
error. The time derivative of PID controller in (17) is

kd ë + kpė + kie = θ̇md (19)

Substituting (19) into (16) yields

U = v(t − ε)

+ k̂b

(
kd ë + kpė + kie − θ̇m + β(θmd − θm)

)
(20)

It is important to note that the proposed control law
(14)–(17) is free of the manipulator dynamics and de-
pends only on one parameter of motor denoted by k̂b .
The obtained control law is similar to the time delay
control from a point of view that employs the avail-
able information of the system response and the con-
trol inputs in the present and the recent past through
the time delay. However, the proposed approach dif-
fers from the time delay control that calculates the es-
timate of uncertainty to obtain the control law. The
estimate of uncertainty is not calculated to obtain the
control law (14)–(17). Then, we use the voltage con-
trol strategy to develop a new control approach that
requires only a few measurements rather than many
measurements/estimations as used in the time delay
control.

The position and velocity of the joint should be
measured to form the PID controller in (17). In the
case of using only the joint position measurement,
the PID controller amplifies the measurement noise of
the joint position through differentiation. The perfor-
mance of the controller is then degraded in the face of
the measurement noise. How to compensate the noise
effects is an interesting topic that requires an extensive
discussion.
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4 Stability analysis and performance evaluation

Stability analysis of the control system is presented to
evaluate the proposed control law in (14)–(17). Since
the proposed control law is a decentralized control,
stability analysis is presented for every individual joint
to verify stability of the robotic system.

It follows from (7) that the lumped uncertainty vd

enters the system the same channel as the control
input v. Thus, the uncertainty is said to satisfy the
matching condition [28] or equivalently is said to be
matched. This property ensures robust stabilizability
[20].

To make the dynamics of the tracking error well
defined such that the robot can track the desired tra-
jectory, we make the following assumption.

Assumption 1 The desired trajectory θd must be
smooth in the sense that θd and its derivatives up
to a necessary order are available and all uniformly
bounded.

As a necessary condition to design a robust control,
the external disturbance must be bounded.

Assumption 2 The external disturbance ϕ(t) is
bounded as

|ϕ(t)| ≤ ϕmax (21)

where ϕmax is a positive constant.

By multiplying both sides of (6) by Ia , one obtains
the following power equation

vIa = RI 2
a + LİaIa + kbθ̇mIa + ϕ(t)Ia (22)

Motor receives the electrical power expressed by vIa

to provide the mechanical power stated as kbθ̇mIa

in (22). The power RI 2
a is the loss in the windings and

the power LİaIa is the time derivative of the magnetic
energy. From (22), we can write for t ≥ 0

∫ t

0

(
v − ϕ(t)

)
Ia dt

=
∫ t

0
RI 2

a dt +
∫ t

0
LİaIa dt +

∫ t

0
kbθ̇mIa dt (23)

with Ia(0) = 0, (23) is

∫ t

0

(
v − ϕ(t)

)
Ia dt

= RI 2
a t + 0.5LI 2

a +
∫ t

0
kbθ̇mIa dt (24)

Since RI 2
a t ≥ 0 and 0.5LI 2

a ≥ 0,

∫ t

0
kbθ̇mIa dt ≤

∫ t

0

(
v − ϕ(t)

)
Ia dt (25)

The upper bound of mechanical energy is given by

∫ t

0
kbθ̇mIa dt =

∫ t

0

(
v − ϕ(t)

)
Ia dt (26)

Hence, at the upper bound of mechanical energy

kbθ̇m = v − ϕ(t) (27)

Therefore, θ̇m is limited as

|θ̇m| ≤ (|v| + ∣∣ϕ(t)
∣∣)/kb (28)

Control law (14)–(17) leads to

|v| ≤ umax (29)

Substituting (29) and (21) into (28) yields

|θ̇m| ≤ (umax + ϕmax)/kb
Δ= θ̇m,max (30)

where θ̇m,max is the maximum velocity of motor.
From (6), we can write

RIa + Lİa = w (31)

where

w = v − kbθ̇m − ϕ(t) (32)

v, θ̇m and ϕ(t) are bounded as stated by (29), (30)
and (21), respectively. Consequently, the input w

in (31) is bounded. The linear differential equa-
tion (31) is a stable linear system based on the Routh–
Hurwitz criterion. Since the input w is bounded, the
output Ia is bounded. From (31)

Lİa = w − RIa (33)

Since w and Ia are bounded, İa is bounded.
Control law (14)–(17) operate in two areas of

umax ≤ |U | and umax > |U |. The tracking performance
should be evaluated in both areas.
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(a) Area of |U | ≤ umax Substituting (14) into (6), one
obtains the closed-loop system

v(t − ε) + k̂b

(
θ̇md − θ̇m + β(θmd − θm)

)

= RIa + Lİa + kbθ̇m + ϕ(t) (34)

From (6), we can write

v(t − ε) = RIa(t − ε) + Lİa(t − ε)

+ kbθ̇m(t − ε) + ϕ(t − ε) (35)

Substituting (35) into (34) yields the closed-loop sys-
tem

Ė + βE = η(t) (36)

where

E = θmd − θm (37)

represents the motor tracking error and η(t) is ex-
pressed as

η(t) = R(Ia(t) − Ia(t − ε)) + L(İa(t) − İa(t − ε)) + kb(θ̇m(t) − θ̇m(t − ε)) + ϕ(t) − ϕ(t − ε)

k̂b

(38)

where η(t) is called the residual uncertainty in the
closed-loop system. Since the variables Ia(t), İa(t),
θ̇m(t), and ϕ(t) are bounded, and k̂b is a constant, then
η(t) is bounded as

|η(t)| ≤ ρ(t) (39)

where ρ(t) is a positive scalar called as the uncertainty
bound parameter.

The residual uncertainty η(t) can be expressed in
terms of control efforts using (6) into (38) as

η(t) = (
v(t) − v(t − ε)

)
/k̂b (40)

From (40) and (29), one obtains that

|η(t)| ≤ (∣∣v(t)
∣∣ + ∣∣v(t − ε)

∣∣)/k̂b ≤ 2umax/k̂b (41)

Solution of differential equation (36) is given by

E(t) = exp(−βt)E(0)

+
∫ t

0
exp

(−β(t − τ)
)
η(τ) dτ

for t ≥ 0 (42)

where E(0) is the initial motor tracking error. Since
β > 0 and the residual uncertainty η(t) is bounded,
the motor tracking error E(t) is bounded as
∣∣E(t)

∣∣ ≤ ∣∣ exp(−βt)E(0)
∣∣

+ ∣∣η(t)
∣∣
∣∣∣∣
∫ t

0
exp

(−β(t − τ)
)
dτ

∣∣∣∣
≤ ∣∣ exp(−βt)E(0)

∣∣ + ∣∣η(t)
∣∣/β (43)

Since exp(−βt) → 0 as t → ∞, |E(t)| → |η(t)|/β as
t → ∞. If the initial error be zero, |E(t)| ≤ |η(t)|/β .

Evaluation of the tracking performance presented
by (42) and (43) is twofold.

(1) The motor tracking error converges exponentially
with a time constant of 1/β .

(2) The tracking error is within the precision of
|η(t)|/β for t ≥ 0 if E(0) � 0, otherwise, this pre-
cision is obtained after about t ≥ 5/β .

If the uncertainty bound parameter ρ is sufficiently
small, the motor tracking error E in (36) stays close
to zero for an initial error E(0) � 0. In the case of
E(0) = 0, the tracking error is bounded from (43) as
∣∣E(t)

∣∣ ≤ ∣∣η(t)
∣∣/β ≤ ρ/β for t ≥ 0 (44)

In order to consider boundedness of the joint track-
ing error e, substituting (19) and (37) into (36) yields
the dynamics of closed-loop system as

kd ë + kpė + kie = η(t) + θ̇m − βE (45)

All three terms η(t), θ̇m and E in the RHS of (45)
are bounded as stated by (39), (30) and (43), respec-
tively. System (45) is a second order linear system
with a bounded input given by η(t) + θ̇m − βE. Since
the input is bounded and all three gains kd , kp and ki

are positive, system (45) is stable based on the Routh–
Hurwitz criteria. Therefore, e, ė and ë are bounded.

Since the desired joint angle θd and its time deriva-
tive θ̇d are bounded, the bounded variables e and ė im-
ply that θ = θd − e and θ̇ = θ̇d − ė are bounded. Since
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Ia is limited, (4) implies that τ is bounded. From (2),
we have

J θ̈m + Bθ̇m + r2Kθm = τ + rKθ (46)

System (57) is a second order linear system with pos-
itive gains J , B , r2K , and a limited input τ + rKθ .
This system is stable based on the Routh-Hurwitz cri-
terion and implies that θm, θ̇m and θ̈m are bounded.
Since all states associated with each joint i.e. θ , θ̇ , θm,
θ̇m, and Ia are bounded, vectors θ , θ̇ , θm, θ̇m, and Ia

are bounded. As a result, the robotic system in (5) has
the Bounded-Input/Bounded-Output (BIBO) stability.

(b) Area of umax < |U | To consider the convergence
of tracking error E in the area that umax ≤ |U |, a posi-
tive definite function is proposed as

V = 0.5kbE
2 (47)

where V (0) = 0 and V (E) > 0 for E �= 0. The time
derivative of V is calculated as

V̇ = kbEĖ (48)

Substituting control law (15) into (6) forms the closed-
loop system

RIa + Lİa + kbθ̇m + ϕ(t) = umaxsgn(U) (49)

Substituting (37) and (49) into (48) yields

V̇ = E(kbθ̇md − kbθ̇m)

= E
(
kbθ̇md + RIa + Lİa + ϕ(t) − umaxsgn(U)

)
(50)

Assume that there exits a positive scalar denoted by μ

that
∣∣kbθ̇md + RIa + Lİa + ϕ(t)

∣∣ < μ (51)

To establish the convergence, the condition V̇ < 0
should be satisfied. For this purpose, it is sufficient that

umaxsgn(U) = μsgn(E) (52)

Proof Substituting (52) into (50) yields

V̇ = E
(
kbθ̇md + RIa + Lİa + ϕ(t) − μsgn(E)

)
(53)

Since

E
(
kbθ̇md + RIa + Lİa + ϕ(t)

)

≤ |E|∣∣kbθ̇md + RIa + Lİa + ϕ(t)
∣∣ < |E|μ (54)

Hence

E
(
kbθ̇md + RIa + Lİa + ϕ(t)

) − μ|E| < 0 (55)

Using E sgn(E) = |E| into (54) yields

V̇ = E
(
kbθ̇md + RIa + Lİa + ϕ(t)

) − μ|E| (56)

Substituting (55) into (56) proves that V̇ < 0. Thus,
the motor tracking error is converged until the con-
trol system comes into the area governed by control
law (14). As discussed above, even if the robotic sys-
tem starts from the area of umax < |U |, it goes into the
area of |U | ≤ umax. Equation (52) implies that

umax = μ (57)

Therefore, the maximum voltage of motor should sat-
isfy (57) for the convergence of the tracking error E.

As mentioned above, starting from an arbitrary
E(0) under the condition umax = μ, value of |E| is re-
duced and motor will move to the area of umax ≥ |U |
that all states are bounded. From the closed-loop sys-
tem (49), we can obtain

RIa + Lİa = umaxsgn(U) − kbθ̇m − ϕ(t) (58)

The RHS of (58) is bounded as

∣∣umaxsgn(U) − kbθ̇m

∣∣
≤ |umax|

∣∣sgn(U)
∣∣ + |kbθ̇m| + ∣∣ϕ(t)

∣∣
≤ umax + kbθ̇m,max + ϕmax (59)

Thus, the linear stable system (58) under the bounded
input umaxsgn(U) − kbθ̇m − ϕ(t) obtains the bounded
output Ia . Since Ia is limited, (4) implies that τ

is bounded. Then, linear stable system (46) under
bounded input τ + rKθ obtains that variable θm, θ̇m

and θ̈m are bounded. Consider (19) as a second order
linear system with positive gains and a limited input
θ̇md . Thus e, ė and ë are bounded. Since the desired
joint angle θd and its time derivative θ̇d are bounded,
the bounded variables e, and ė imply that θ = θd − e

and θ̇ = θ̇d − ė are bounded. Since all states θ , θ̇ , θm,
θ̇m, and Ia associated with each joint are bounded then
vectors θ , θ̇ , θm, θ̇m, and Ia are bounded. As a conclu-
sion of this analysis, the robotic system in (5) has the
BIBO stability. �
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5 Uncertainty estimation

It is worthy to note that the lumped uncertainty stated
in (8) includes the parametric uncertainty, unmodeled
dynamics and external disturbances. The lumped un-
certainty, vd , is unknown and enters to the system as
an unwanted input, however, can be compensated by a
suitable controller. We wish to know whether the esti-
mate of the lumped uncertainty converges to its actual
value or not. From (7) and (9) we have

vd − v̂d = v(t) − v(t − ε) (60)

As a result, the estimation error expressed as vd − v̂d

is given by the change of control input in the pe-
riod of ε stated as v(t) − v(t − ε) in (60). If v̇(t) −
v̇(t − ε) is bounded, value of v(t) − v(t − ε) will
be small in a given small value to ε. This means that
v(t) � v(t − ε) if ε is selected close to zero. The time
delay ε as a control design parameter has a main role
in the performance of uncertainty estimation.

Control law (14)–(17) verifies that v(t) = umax if
U > umax, v(t) = −umax if U < −umax, and v(t) = U

if |U | ≤ umax. Consequently, it can be said that v(t)

is a saturation function denoted as v(t) = sat(U) with
the upper limit umax and the lower limit −umax. We
can conclude that v(t) is a continuous function of U .
When robotic system operates in the areas U > umax

or U < −umax, control law v(t) is constant, imply-
ing v(t) = v(t − ε), thus vd = v̂d . Therefore, estima-
tion error is zero. We are concerned about the area of
|U | ≤ umax. Taking the time derivatives of (36) and
using (40) one obtains

Ë + βĖ = (
v̇(t) − v̇(t − ε)

)
/k̂b (61)

As verified in Sect. 4, θ̈m, θ̇m and θm are bounded.
In addition, the desired trajectory θmd and its time
derivatives θ̇md and θ̈md are the bounded signals. Thus,
Ë = θ̈md − θ̈m and Ė = θ̇md − θ̇m are bounded. There-
fore, (v̇(t) − v̇(t − ε))/k̂b expressed in (61) is nec-
essarily bounded. As a result, v(t) � v(t − ε) if the
time delay ε is selected close to zero. Consequently,
the lumped uncertainty is estimated well using the pro-
posed novel estimation method.

6 Simulation

The proposed control law is applied to control an artic-
ulated robot manipulator with a symbolic representa-
tion in Fig. 1. The Denavit-Hartenberg (DH) param-
eters of the articulated robot are given in Table 1,
where the parameters θi , di , ai and αi are called the
joint angle, link offset, link length and link twist, re-
spectively. Parameters of the manipulator are given
in Table 2, where for the ith link, mi is the mass,
rci = [xci yci zci ]T is the center of mass of the ith

Table 1 The Denavit–Hartenberg parameters

Link θ d a α

1 θ1 d1 0 π/2

2 θ2 0 a2 0

3 θ3 0 a3 0

Fig. 1 Symbolic
representation of the
articulated robot
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Table 2 The dynamical
parameters Link DH xi yi zi mi Ixxi Iyyi Izzi Ixyi Ixzi Iyzi

1 d1 = 0.280 0 −0.22 0 19 0.34 0.36 0.31 0 0 0

2 a2 = 0.760 −0.51 0 0 18.18 0.18 1.32 1.31 0 0 0

3 a3 = 0.930 −0.67 0 0 10.99 0.07 0.92 0.93 0 0 0

Table 3 The motor
parameters Motors v R Kb L J B r k

1, 2, 3 40 1.6 0.26 0.001 0.0002 0.001 0.02 500

Fig. 2 The desired joint trajectory

frame. The inertia tensor in the center of mass frame
is expressed as

Ii =
⎡
⎣

Ixxi Ixyi Ixzi

Ixyi Iyyi Iyzi

Ixzi Iyzi Izzi

⎤
⎦ (62)

Motor parameters are given in Table 3. The control
law depends only on one parameter of motor given by
k̂b as the nominal value of kb . To consider the para-
metric uncertainties, k̂b is assumed to be 95% of the
real value kb . The external disturbance is assumed as
a pulse function to consider a sudden change with a
period of 10 sec and amplitude of 1 V inserted to the
voltage input of each motor. This is just an example of
any bounded disturbances. The maximum voltage of
each is set to umax = 50 V. The desired joint trajectory
for the joints is shown in Fig. 2. The desired trajectory
should be sufficiently smooth such that all its deriva-
tives up to the required order are bounded. The control
laws for all three motors are the same with the gain

Fig. 3 Performance of control system under joint stiffness
k = 500

values of β = 1, ε = 0.001 s, kp = 500, kd = 12 and
ki = 200 selected by trial and error method to show a
satisfactory performance. An optimization algorithm
such as particle swarm optimization algorithm can be
applied to find an optimum values for control design
parameters to achieve a desired performance [29].

Simulation 1 Performance of the control system is
shown in Fig. 3 while the joint tracking error reduces.
The initial tracking errors are high since the joint stiff-
ness is low and the manipulator is under a high load
when starting. The least initial tracking error occurs
in joint 1 and the highest one occurs in joint 3. The
motors behave well under the permitted voltages as
shown in Fig. 4. The motor voltages oscillate when
starting to compensate the errors caused by the load
torque. In addition, it has a fast response to compen-
sate the external disturbance as presented by sudden
changes on the curves. The control efforts are un-
der the permitted voltages without chattering problem.
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Fig. 4 Voltages of motors

Fig. 5 Joint torques of the articulated robot

The joint torques are shown in Fig. 5. Joint 1 has the
least torque while Joint 2 has the highest torque. Since
the joints experience different loads, the control efforts
behave differently to compensate for the errors.

Simulation 2 The time delay ε has a significant role
in the performance of controller to overcome uncer-
tainties. A smaller ε provides a smaller estimation er-
ror vd − v̂d . A comparison on the performance of con-
troller in different values of the time delay is shown
in Fig. 6. As the time delay decreases the tracking er-
ror decreases. However, the same results are provided
for the time delay ε = 0.001 s and ε = 0.0005 s. This
may be due to some limitations in the computation al-
gorithm use for simulation.

Fig. 6 A comparison on time delay ε in tracking error of joint 2

Fig. 7 Performance of controller with high gains

Simulation 3 The control law is checked for different
gains. The control system is stable and the tracking
error is bounded. As the gains kp, kd and ki are in-
creased, the tracking error is decreased. However, the
sensitivity of control system becomes higher. Perfor-
mance of the control law with the high gains kp =
4000, kd = 100 and ki = 10000 is shown in Fig. 7. We
set β = 0.1 and ε = 0.001 s in this simulation. The
tracking error has been highly reduced in compared
with Fig. 3. The control efforts are still satisfactory as
shown in Fig. 8.

Simulation 4 This simulation is for considering a
large parametric uncertainty. The tracking perfor-
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Fig. 8 Control efforts high-gain controllers

Fig. 9 Tracking performance under k̂b = 0.8kb

mance is presented for a given k̂b = 0.8kb while other
control design parameters are the same as Simula-
tion 1. The performance of control system is shown in
Fig. 9. It behaves roughly the same as case k̂b = 0.95kb

shown in Fig. 3. The lumped uncertainty vd is bounded
as shown in Fig. 10. It jumps initially because of the
effect of İa and presents a pulse function due to the
given external disturbances.

Simulation 5 Set point control is simulated. The ex-
ternal disturbance is removed, however, the parametric
uncertainty is given by k̂b = 0.8kb. The desired joint
angles are set to 1 rad. The control law for three mo-
tors is the same with the gains β = 1, ε = 0.001 s,

Fig. 10 Lumped uncertainty

Fig. 11 Set point performance

kp = 100, kd = 10 and ki = 65. Set point performance
is shown in Fig. 11. The joint tracking error asymptot-
ically approaches zero as expected.

Simulation 6 Performance of the controller is eval-
uated in tracking a fast varying trajectory. The mo-
tor velocity is limited as stated in (30). Therefore, we
should check whether velocity of the desired fast vary-
ing trajectory is permitted or not. If velocity of the de-
sired trajectory becomes twice as one used in Simu-
lation 1, it is still permitted. In this case, the control
efforts perform well, however, the joint tracking er-
rors will be higher than ones in Simulation 1. After
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Fig. 12 Tracking a fast varying trajectory

starting, the maximum value of the tracking error for
joint 1 reaches to about 0.077 rad in Fig. 12 while it
is about 0.045 rad in Fig. 3 for Simulation 1. The PID
gains can be regulated to decrease the tracking error.

Simulations have presented tracking performance
through figures. They present the following results.

(a) All presented signals are bounded.
(b) Joint tracking error presents a limited precision in

the tracking application, and approaches zero in
the set point application.

(d) Control efforts behave well within their limits
without chattering problem.

(e) Selecting a smaller time delay presents a smaller
tracking error.

7 Conclusion

The voltage control strategy is superior to the torque-
control strategy in the control of electrically driven
robot manipulators. The torque-control laws are in-
volved in the complexity of manipulator dynamics
whereas the voltage control is free of manipulator dy-
namics. The proposed control law has performed well
on a flexible-joint robot that has a complicated dy-
namics. It has been proven that the closed-loop sys-
tem has the BIBO stability. Simulation results present
a good tracking performance of the control system as
verified by performance evaluation. The tracking er-
ror approaches zero in the set point application and

converges to a limited precision in the tracking ap-
plication. Among the control design parameters, the
time delay ε has a main role in the performance of un-
certainty estimation. A smaller time delay provides a
smaller estimation error and a smaller tracking error,
as well.
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