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Abstract We explore a process for identifying the
topology of networks. We find that it is possible to esti-
mate the accurate topological structure of synchronous
networks by analyzing their transient processes. Some
novel conditions are given to ensure the uncertain con-
nection topology approach to the true value. Our ex-
amples further illustrate the feasibility of these pro-
posed methods.
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1 Introduction

The study of complex networks pervades all of science
and our lives, ranging from physics to computer sci-
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ence, from biology to meteorology, from transporta-
tion to the Internet, to mention a few [1, 2]. Until now,
the research on complex networks has focused on dy-
namical analysis, control, and modeling [3–14]. The
prominent issue of a network is structural, because
structure always affects function. From this perspec-
tive, the researches [9–13] on identifying the topolog-
ical structure of a network have attracted increasing
attention in recent years. Indeed, it is crucial to solv-
ing many problems in real-world phenomena, such as
the monitoring of neural networks and social networks
[14, 17, 18].

So far, various studies on identifying either a single
dynamical system [19–26, 31–33, 35–37] or a network
topology mainly employ the adaptive control method
[9–40, 44–47]. Therein, previously, a persistent excita-
tion (PE) condition was widely applied to ensure para-
metric convergence. And then, recently, a linear inde-
pendence (LI) condition [26, 31] is addressed for esti-
mating parameters. In [32], based on the Gram-matrix
theory, the special relationship between the persistent
excitation condition and the linear independence con-
dition was presented. Naturally, these conditions can
be extended to guaranteeing the topology of networks
converge to the true values.

In this paper, we explore the influence of the tran-
sient process in synchronization phenomenon on the
result of network topology identification. As long as
some conditions are satisfied, we find that it is possible
to estimate the precise connection topology during the
transient process. This issue has not been discussed in
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prior works and cannot be explained by the traditional
linearly independent condition or the persistent excita-
tion condition. We specifically study this process, pro-
pose some new conditions, and further give our ex-
planation in detail. Two premises should be ensured as
follows: (i) some special conditions should be satisfied
and (ii) the persistence time (i.e., the time range which
the special conditions are satisfied) is much longer
than the transient time which the estimated network
runs from the initial state to the stable state. Then the
uncertain connection topology could approach to the
true value. Experiments will further illustrate the va-
lidity of our proposed methods.

The outline of this paper is as follows. In Sect. 2, we
present a scheme for identifying the topology of a net-
work. Section 3 analyzes the feasibility of successful
identification during the transient process in synchro-
nization phenomenon. Some examples are shown for
further verification in Sect. 4. Some discussions and
conclusions are summarized in Sect. 5.

2 A Scheme of Network Identification

Consider a dynamical network consisting of N cou-
pled oscillators, with each node being an n-dimen-
sional dynamical system given by

ẋi = Fi (xi ) +
N∑

j=1

cij H(xj ), i = 1,2, . . . ,N, (1)

where xi = (xi1, xi2, . . . , xin)
T is the sate vector of

the ith oscillator, the function Fi is the corresponding
nonlinear vector field, and H(·) is the linear or non-
linear output function of the individual oscillator. The
topology of the network is determined by the coupling
matrix C = (cij )N×N , in which cij �= 0 if there is a
coupling from i to j (j �= i), and cij = 0 otherwise.
Here, we do not concern whether C is symmetric, ir-
reducible, or diffusive.

To estimate the elements of C, the network in (1)
is taken as the drive system. If the vector function Fi

and H(·) satisfy the Lipschitz condition, i.e., there exist
positive constants αi and β such that

∥∥Fi (x) − Fi (y)
∥∥ ≤ αi‖x − y‖,

∥∥H(x) − H(y)
∥∥ ≤ β‖x − y‖,

Fig. 1 The block diagram of the system

where ‖ · ‖ denotes the Euclidean vector norm, the re-
sponse network with adaptive-feedback law can be de-
signed as

ẏi = Fi (yi ) +
N∑

j=1

dij H(yj ) + ui , (2)

ui = kiei , k̇i = ai‖ei‖2, (3)

ḋij = ei
T H(yj ), (4)

where yi = (yi1, yi2, . . . , yin)
T , ui is the controller for

the oscillator i, ki is an adaptive parameter, ai is a pos-
itive constant, dij represents the estimate of cij , and
ei = xi − yi denotes the synchronous error. The block
diagram of the system is depicted in Fig. 1.

Note 1: If do not have some restrictions on the func-
tion Fi and H(·), the controller ui can be designed as
other forms, such as

ui = −Fi (yi ) + Fi (xi )

′ +
N∑

j=1

dij

(
H(xj ) − H(yj )

) + ei . (5)

This type of controller has the similar effect of the con-
troller in (3).

In the following, we will show how the unknown
cij may dynamically be identified from dij in the re-
sponse system in detail.

The synchronous error system between system (1)
and (2) can be expressed as follows:

ėi = Fi (xi ) − Fi (yi )

+
N∑

j=1

(
cij H(xj ) − dij H(yj )

) − kiei . (6)
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Construct a Lyapunov function in the form of

V = 1

2

N∑

i=1

eT
i ei + 1

2

N∑

i=1

N∑

j=1

(cij − dij )
2

+ 1

2

N∑

i=1

1

ai

(ki − k∗)2, (7)

where k∗ is a large enough constant. Furthermore, the
time derivative of V along the trajectories is

V̇ =
N∑

i=1

eT
i

[
Fi (xi ) − Fi (yi )

+
N∑

j=1

(
cij H(xj ) − dij H(yj )

)
]

−
N∑

i=1

eT
i kiei −

N∑

i=1

N∑

j=1

(cij − dij )ei
T H(yj )

+
N∑

i=1

(ki − k∗)‖ei‖2

≤
N∑

i=1

(αi − k∗)‖ei‖2 + β

N∑

i=1

N∑

j=1

cij‖ei‖ · ‖ej‖

= ET PE, (8)

where E = (e1, e2, . . . , eN)T , P = diag((α1 − k∗),
(α2 −k∗), . . . , (αN −k∗))+βC. As long as k∗ is large
enough, the matrix P can be negative definite, namely,
V̇ = ET PE ≤ 0. It is obvious that V̇ = 0 if and only
if ei = 0,i = 1,2, . . . ,N . From Barbalat’s lemma, we
can obtain ei → 0 as t → 0, i = 1,2, . . . ,N . The
largest invariant set [12, 41] M can be described by
M = {ei ,

∑N
j=1(cij − dij ), (ki − k∗)|ei = 0, ki = k∗,

ḋij = 0,
∑N

j=1(cij −dij )H(xj ) = 0, i, j =1,2, . . . ,N}.
In such circumstance, the following equation can be
satisfied:

N∑

j=1

(cij − dij )H(xj ) = 0, i = 1,2, . . . ,N. (9)

Let cij − dij = pj and then (9) can be written as

N∑

j=1

pj H(xj ) = 0, i = 1,2, . . . ,N. (10)

Denote H(xj ) as (h1(xj ), h2(xj ), . . . , hn(xj ))
T

(j = 1,2, . . . ,N), where hi is a subfunction of H(xj ).
Then take gij = ∫ t+τ

t
H(xi (s))

T H(xj (s)) ds (i, j =
1,2, . . . ,N) and thereby G = (gij )N×N which is
called the Gram matrix [32, 42] of H(x1(s)),

H(x2(s)), . . . ,H(xN(s)).
Premultiply (10) by H(xi )

T for both sides and inte-
grate the equation for a period of time τ , such that

∫ t+τ

t

H(xi )
T

[
N∑

j=1

pj H(xj )

]
ds = 0,

i = 1,2, . . . ,N. (11)

If H(xi ) satisfies persistent excitation condition
[43] or the linearly independent condition, i.e., G is
full rank for any t ≥ 0 [32], and (10) admits an unique
zero solution. Then dij = cij , i.e., the topology of the
network of (1) is successfully identified.

To summarize the above analysis, the following
theorem is thus proved.

Theorem 1 For the drive system (1) and the response
system (2), provided that H(xi ) satisfies the persistent
excitation condition or the linearly independent con-
dition, (10) ensures that dij = cij . Then the accurate
topological identification is achieved.

Note 2: We have proved that the persistent excita-
tion condition is equivalent to the linearly independent
condition in [32].

Note 3: If we take (5) as the controller, we merely
need to design another form of Lyapunov function V

and the derivation process is similar to the process
when consider (3) as the controller.

3 Discussions of Successful Identification During
the Transient Process of Synchronization

Some recent works showed that the topology identi-
fication would fail if the network is in a synchronous
situation [9–12]. They considered that when all func-
tion H(xi ) were linearly independent, then (10) ex-
isted unique zero solution pj , i.e., dij = cij . If the
drive network synchronized (take complete synchro-
nization for example), namely, H(xi ) = H(xj ), the
linearly independent condition would not be ten-
able and dij � cij and, therefore, the synchroniza-
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tion inevitably made the network topology unidentifi-
able.

Hereinafter, we will investigate the successful
topology identification in the process which the drive
network reaches the synchronism. As stated pre-
viously, utilizing the existing linearly independent
condition or persistent excitation condition can not
explain this phenomenon. Consequently, we seek
whether there are some new conditions which can
guarantee the precise estimation as well as achieve
the synchronization. Since the unknown system needs
certain excitation to converge to the true value, these
new conditions must at first accomplish the parameter
convergence and then realize the synchronous effect.
Hence, we make those traditional conditions are satis-
fied in a finite period time in order to estimate the ac-
curate topological structure and after that let the drive
network gradually synchronize. In this case, some new
conditions are defined.

Definition 1 (Finite-time Persistent Excitation)
A continuous function F : R≥0 → Rm×n is called
finite-time persistently exciting if there exist two
strictly positive number μ and τ during [t1, t2] for any
t such that
∫ t+τ

t

F T
(
x(s)

)
F

(
x(s)

)
ds ≥ μI, (12)

where 0 ≤ t1 ≤ t ≤ t2 and tp = t2 − t1 is named as the
persistence time.

Note 4: The above definition reveals that the left
side of the above formula is supposed to be a pos-
itive definite matrix and must be full rank [32, 43].
Thus, the problem of judging the finite-time persis-
tent excitation condition is reduced to calculating the
rank of the matrix. The left side of the above formula
can be denoted as the Gram matrix of F . And then if
the Gram matrix is full rank during a period of time,
the finite-time persistent excitation condition is satis-
fied [32].

Due to the equivalence relationship between the
persistent excitation condition and the linearly inde-
pendent condition, we can also define another form of
Finite-time Linearly Independent condition [48].

Definition 2 (Finite-time Linearly Independent) The
function Fi(x(t)) is finite-time linearly independent,
if there does not exist nonzero constants ki (i =

1,2, . . . ,N), such that k1F1(x(t)) + k2F2(x(t)) +
· · · + kNFN(x(t)) = 0 in the time range [t1, t2] for
any t , where 0 ≤ t1 ≤ t ≤ t2 and tp = t2 − t1 is the
persistence time.

Result 1 For the network of (1), if H(xi ) satisfies
the Finite-time Persistent Excitation condition (or the
Finite-time Linearly Independent condition), and the
time difference (tp − tf ) between the persistence time
tp and the transient time tf is long enough, then ei and
(cij −dij ) converge to zero as t → ∞ for any arbitrary
initial conditions.

According to the Result 1, we will discuss the im-
pact of the transient process in synchronization on
the result of the topology identification. Running from
the initial state to the stable state is a process which
takes a transient time tf for estimated error to decay
to zero. As a result, the transient process is particu-
larly important for the identification. When the per-
sistence time tp of finite-time persistent excitation is
much longer than the transient time tf , that is to say,
there exists enough time to drive the estimated system,
so that the uncertain connection topology could con-
verge to the true value. From the perspective of energy,
if the persistence time of finite-time persistent excita-
tion is long enough, the estimated system may have
adequate energy to approach to the topological struc-
ture of the drive network. The following examples will
vigorously illustrate the feasibility of the above discus-
sions.

4 Illustrative Examples

In the following, some examples are used to show the
effectiveness of our proposed methods.

As an application of our strategy, we first consider
the following network, which takes the chaotic Lorenz
systems as the dynamics of every node in the net-
work: ẋi = Fi (xi ) = (σ (xi2 − xi1);γ xi1 − xi1xi3 −
xi2;xi1xi2 − bxi3), for i = 1,2,3,4 with σ = 10, γ =
28, and b = 8

3 . The drive network is written as

ẋi = Fi (xi ) + L

N∑

j=1

cij H(xj ), (13)

with N = 4 and H(xj ) = xj , where the coefficient
L is a constant which can control the length of tp .
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Fig. 2 (Color online)
Orbits of xi1, xi2, xi3
(i = 1,2,3,4)

Equation (2) describes the response network. In ad-
dition, the topology is set by the coupling matrix C,
where c1,2 = c2,1 = 1, c1,3 = c3,1 = 0, c1,4 = c4,1 =
1, c2,3 = c3,2 = 1, c2,4 = c4,2 = 0, c3,4 = c4,3 = 1, and
cii = 0.

In such case, we aim at adjusting the coefficient
L and thereby extending the persistence time tp , so
as to make the uncertain connection topology gain
enough time to tend to the true value. For this purpose,
by numerical simulations, we set L = 0.48. Orbits of
xi1, xi2, xi3 are presented in Fig. 2. Figure 3 depicts
the synchronized behavior of the drive network, which
takes a long time to run from the initial state to the
synchronized state in the time range [0,30]. And af-
ter t = 30, the synchronous errors of the drive network
decay to zero. In what follows, we analyze whether
the finite-time persistent excitation condition is satis-
fied or not whereby to calculate the rank of the Gram
matrix.

Through precisely calculation by simulation, the re-
sult shows that the Gram matrix is full rank during the
period [0,30], namely, the finite-time persistent exci-
tation condition is satisfied and the persistence time
tp = 30. Figure 4 shows the corresponding process
of identifying the network topology. It is approximate
that after a transient time tf = 20, dij → cij , i.e., the

uncertain parameters of the adjacency matrix converge
to the true values. The persistence time tp is obviously
longer than the transient time tf . Subsequently, even if
the synchronized errors of the drive network approach
to zero, there is no influence on the result of the iden-
tification.

In order to further demonstrate the feasibility, an-
other example is given which takes the chaotic Lü sys-
tems as the dynamics of every node in the network:
ẋi = Fi (xi ) = (σ (xi2 − xi1);γ xi2 − xi1xi3;xi1xi2 −
bxi3), for i = 1,2,3,4 with σ = 36, γ = 20, and
b = 3. Consider (13) as the drive network and (2)
as the response network, with N = 4 and H(xj ) =
xj , where the coefficient L is a constant and the
topology C is described by c1,2 = 1, c2,1 = 0, c1,3 =
0, c3,1 = 1, c1,4 = c4,1 = 1, c2,3 = c3,2 = 1, c2,4 =
c4,2 = 0, c3,4 = c4,3 = 1, and cii = −2. By numeri-
cal simulations, we set L = 0.72. Figure 5 depicts the
synchronized behavior of the drive network and after
t = 110, the synchronous errors of the drive network
decay to zero. Calculating the rank of the Gram ma-
trix during these time range, it shows that the finite-
time persistent excitation condition is satisfied and the
persistence time tp = 110. Figure 6 shows the corre-
sponding process of identifying the network topology,
where the transient time tf = 20. Since the persistence
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Fig. 3 (Color online) Time
evolution of synchronized
errors ei1, ei2, ei3
(i = 1,2,3,4) of the drive
network

Fig. 4 (Color online) Time
evolution of adaptive
parameters dij in the
estimated adjacency matrix

time is long enough and is longer than the transient
time, the topology identification succeeds as Fig. 6 de-
picted.

It follows that a counterexample is given to verify
that when the finite-time persistent excitation condi-
tion is not satisfied, the topology identification will
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Fig. 5 (Color online) Time
evolution of synchronized
errors ei1, ei2, ei3
(i = 1,2,3,4) of the drive
network

Fig. 6 (Color online) Time
evolution of adaptive
parameters dij in the
estimated adjacency matrix

fail. Consider the same drive network and the same
response network as the above examples, with the
chaotic Lorenz systems as the dynamics of every node
in the network: ẋi = Fi (xi ) = (σ (xi2 − xi1);γ xi1 −

xi1xi3 − xi2;xi1xi2 − bxi3), for i = 1,2,3,4 with
σ = 10, γ = 28, and b = 8

3 . The topology C is set by
c1,2 = 1, c2,1 = 0, c1,3 = 0, c3,1 = 1, c1,4 = c4,1 = 1,
c2,3 = c3,2 = 1, c2,4 = c4,2 = 0, c3,4 = c4,3 = 1, and
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Fig. 7 (Color online) Time
evolution of synchronized
errors ei1, ei2, ei3
(i = 1,2,3,4) of the drive
network

Fig. 8 (Color online) Time
evolution of adaptive
parameters dij in the
estimated adjacency matrix

cii = −2. By numerical simulations, we set L = 0.58.
Figure 7 depicts the synchronized behavior of the drive
network and after t = 15, the synchronous errors of
the drive network decay to zero. Calculating the rank

of the Gram matrix during these time range, it shows
that the finite-time persistent excitation condition is
not satisfied. Figure 8 shows the corresponding pro-
cess of identifying the network topology, where the
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transient time tf = 10. Since the finite-time persistent
excitation condition cannot be satisfied, the uncertain
topological connection cannot converge to the true val-
ues as Fig. 8 depicted, namely, the identification fails.

The proposed methods are highly applicable in the
real physical systems, such as neural network, social
network and so on. Taken the biological neural net-
work for example, firstly, our scheme can clearly de-
scribe a general form of the neural network, where
each node represents each neuron. And the classical
neuron model can be easily transferred to our scheme,
such as the Hindmarsh–Rose (HR) model. In addition,
due to the nature of the neural network, which is usu-
ally nonlinear and complex, it is suitable to identify
and monitor its topology by the adaptive control ap-
proach [14, 17, 18]. Therefore, our methods can be
readily employed to estimate its topological structure.
The concrete procedure follows the aforementioned
steps in Sect. 2.

5 Discussion and Conclusion

In this paper, we explore the network topology identifi-
cation during the transient process of synchronization.
We find that during the transient process, as long as the
Finite-time Persistent Excitation (or the Finite-time
Linearly Independent) is satisfied, and the time differ-
ence (tp − tf ) between the persistence time tp and the
transient time tf is long enough, the accurate topol-
ogy identification can be achieved. Compared with
the conventional PE and LI condition, the Finite-time
Persistent Excitation (or the Finite-time Linearly In-
dependent) emphasizes that it is satisfied in the time
range [t1, t2] for any t . However, the traditional PE
and LI condition do not describe the restriction on the
time domain which define the conditions are tenable
for any t > 0. Therefore, the proposed conditions can
clearly explain it is possible to identify the topolog-
ical structure of synchronous networks by analyzing
their transient processes, which cannot be illustrated
by the traditional PE and LI condition. Recently, in
[5], the authors presented a new method to precisely
identify links among nodes based on the noise-induced
relationship between dynamical correlation and topol-
ogy [5]. In [49], the author studied the steady-state
control based topology identification method. Since
our obtained conditions are based on the adaptive con-
trol method, the above two methods are different from
ours.

In conclusion, we specifically analyze the effect of
the transient process in synchronization phenomenon
on the topology identification. Some novel conditions
are given to guarantee the successful identification of
a synchronous network during the transient process.
Intuitively, our approach can be generalized to esti-
mate the topology of networks with time-delay and the
weights of a weighted network in future research.
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