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Abstract In this paper, the synchronization for time-
delayed complex networks with adaptive coupling
weights is studied. A pinning strategy and a local
adaptive scheme to determine coupling weights and
feedback gains are proposed. It is noted that our
control strategies only rely on some local informa-
tion other than the global information of the whole
network. Finally, the developed techniques are ap-
plied to two complex networks which are respectively
synchronized to an unstable equilibrium point and a
chaotic attractor.

Keywords Weighted complex network · Adaptive
coupling weight · Pinning control · Synchronization

1 Introduction

Currently, complex dynamical networks are being
studied across many fields of science and engineer-
ing. In general, a complex network is a large set of
interconnected nodes by edges, in which each node is
a fundamental unit with detailed contents. In fact, any
large-scale and complicated system in nature and so-
cieties can be modeled by a complex network, where
vertices are the elements of the system, and edges

C. Hu · J. Yu · H. Jiang (�) · Z. Teng
College of Mathematics and System Sciences, Xinjiang
University, Urumqi 830046, Xinjiang, P.R. China
e-mail: jianghai@xju.edu.cn

represent the interactions between them. Examples of
complex networks include the Internet, metabolic net-
works, neural networks, food webs, electrical power
grids, social networks, and many others [1, 2].

Over the past few decades, as a typical kind of dy-
namics, synchronization in complex networks attracts
lots of interests in various fields of science and engi-
neering due to the fact that it not only can well explain
many natural phenomena observed, but also has many
promising potential applications in image processing,
secure communication, etc. From mathematical point
of view, synchronization can be defined as a process
wherein two (or many) dynamical systems adjust a
given property of their motion to a common behav-
ior as time goes to infinity, due to coupling or forcing
[3]. Up to now, many different regimes of synchroniza-
tion have been investigated, including cluster synchro-
nization [3–7], phase synchronization [8], complete
synchronization [9–12], and generalized synchroniza-
tion [13–15]. Meanwhile, many effective control ap-
proaches have been developed to synchronize complex
networks such as impulsive control [16–18], intermit-
tent control [19, 20], adaptive feedback control [21–
25], and so on.

On the other hand, a complex network in the real
world normally has a large number of nodes, and it is
usually hard and even unfeasible to control all nodes
so that each follows a desired synchronous trajectory.
Recalling the distributed nature of complex networks,
it is feasible and reasonable to control them by acting
locally on certain nodes, and then through coupling
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between nodes, achieving synchronization of the en-
tire network, which is known as pinning control. So
far, pinning control has been extensively proposed to
provide an insight into regulatory mechanisms for con-
trolling networks of coupled dynamical systems. In
[26], the local and global synchronization of weighted
complex dynamical networks were both considered
by applying adaptive control to a fraction of network
nodes and the construction of a master stability func-
tion and a Lyapunov function. Several new stability
criteria of controlling a complex network with digraph
topology to a homogeneous trajectory of the uncou-
pled system were derived in [27] by a local pinning
control algorithm. In [28], a general criterion for en-
suring network synchronization has been derived by
using pinning control, adaptive techniques, and the au-
thors pointed out that nodes with low degrees should
be first pinned when the coupling strength is very
small. In [29], low-dimensional pinning criteria for
general complex dynamical networks were obtained,
and it was shown that the nodes whose out-degrees
are bigger than their in-degrees of a directed network
should be chosen as pinned candidates. Meanwhile,
some similar and useful criteria were also derived by
different authors such as [30–33].

A common feature of the research works in [26–33]
is that the synchronization conditions require calculat-
ing eigenvalues of the coupling weight matrix of the
network; in other words, the global information of the
whole networks is known beforehand, which can be
obtained for the networks with small size. However, if
the size of the network is very large, the prior knowl-
edge of the network and the calculation of eigenval-
ues of the coupling weight matrix are both difficult.
Therefore, it is natural to raise the following prob-
lem: can we pin the coupled complex network to a de-
coupled state with the prior partial information other
than the global knowledge of the network? In fact,
in many real-world networks, the coupling weights
are not some constant values and cannot be known
in advance, but are automatically adjusted and vary
in time according to different environmental condi-
tions. A typical example is wireless sensor networks
that gather and communicate data to a central base sta-
tion. Adaptation is also necessary to control networks
of robots when the operating conditions change un-
expectedly [23]. Motivated by these applications, the
adaptive coupling weights in complex networks are
more realistic and reasonable.

Nowadays, the synchronization results of complex
weighted networks by using adaptive coupling weights
are seriously lacking. In [34], a simple complex net-
work was studied:

ẋi (t) = f
(
xi(t), t

) +
N∑

j=1,j �=i

cij aij

[
xj (t) − xi(t)

]
,

i = 1,2, . . . ,N,

where xi(t) = (x1
i (t), . . . , xn

i (t))T is the state vector of
the ith node, f : Rn ×R+ is a continuous map, cij de-
notes the coupling strength between node i and node
j , and A = (aij )N×N represents the configuration ma-
trix. A decentralized adaptive pinning control scheme
for synchronization of this kind of networks was de-
signed by adjusting coupling strengths and feedback
gains, under which the whole network was pinned to a
stationary state.

In [23, 35], the authors considered the following
complex network:

dxi

dt
= f (xi) −

∑

j∈εi

σij (t)
[
h(xj ) − h(xi)

]
,

i = 1,2, . . . ,N,

where xi represents the state vector of the ith oscil-
lator, f : Rn → Rn is a nonlinear vector function de-
scribing the dynamics of isolated node, h : Rn → Rn

is the output function through which the systems in
the network are coupled, εi denotes all nodes directly
connected with the ith node, σij (t) is the coupling
strength. Some novel decentralized control approaches
were respectively derived by adjusting adaptively cou-
pling strengths to ensure the synchronization of the
above network.

In [36], the following coupled network was investi-
gated:

ẋi (t) = F(xi) +
N∑

j=1

aij (t)Γ xj (t),

i = 1,2, . . . ,N,

where xi(t) = (xi1(t), . . . , xin(t))
T is the state vec-

tor representing the state variables of node i, F(xi) =
(F1(xi), . . . ,Fn(xi))

T is a smooth nonlinear vector-
valued function, Γ = diag(γ1, . . . , γk0 ,0, . . . ,0) is the
inner coupling matrix with γi > 0 for i = 1,2, . . . , k0,
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and aij (t) is the coupling strength. The asymptoti-
cally stability led by partial state variables was real-
ized for the above network by setting adaptive update
law of aij (t).

Evidently, the research models are simple, and time
delays are not considered in those works. However, it
is well known that communication delays are ubiq-
uitous in networks due to the finite speeds of trans-
mission and spreading as well as traffic congestions.
Therefore, it is essential to investigate the synchro-
nization of complex networks model with time delays.
To the best of our knowledge, there are few even no
results concerning the asymptotical synchronization
of time-delayed complex networks by adaptive undate
law for coupling weights among nodes and local pin-
ning control. In addition, the adaptive parameter for
each controlled node in [3, 7, 24] contains the state in-
formation of all nodes. Just as the above discussion,
it is tough to access all information of the large-scale
networks. However, for a given node, the information
of nodes directly connected with it can be obtained.
Hence, a more satisfactory and reasonable feedback
scheme for a controlled node is to incorporate the state
information of the directly interacted nodes other than
all nodes.

Motivated by the above discussions, our aim in this
paper is to deal with the globally asymptotical syn-
chronization of weighted complex networks with vari-
able delays and adaptive coupling weights by virtue
of pinning control and local adaptive feedback strat-
egy without requiring global information of the net-
works. The main contribution of this paper lies in the
following aspects. First, a pinning scheme and a lo-
cal adaptive technique for coupling weights and feed-
back gains are designed. And then, by constructing
a Lyapunov functional and applying the LaSalle’s in-
variance principle, it is proven that the synchronization
of the addressed network can be achieved under those
control strategies. Particularly, some sufficient syn-
chronization criteria for a class of coupled neural net-
work are also derived. It is noted that the adaptive up-
date law of coupling weights in this paper is only de-
pendent on dynamical behaviors of partial connected
directly nodes. In numerical simulation, a ring com-
plex network and a star network are listed, which are
respectively synchronized to an unstable equilibrium
point of the decoupled system and a chaotic attractor,
and some numerical portraits are also provided.

This paper is organized as follows. In Sect. 2, some
model descriptions and useful preliminaries are given.

Some control schemes are designed in Sect. 3 to en-
sure the synchronization of the addressed networks. In
Sect. 4, two numerical examples are given to verify our
theoretical results. Conclusions are drawn in Sect. 5.

2 Preliminaries

Consider a weighted complex dynamical network with
time delays consisting of N identical coupled nodes, in
which each node is an n-dimensional dynamical sys-
tem; the entire network is described by

ẋi (t) = f
(
xi(t), xi

(
t − τ(t)

))

+
N∑

j=1,j �=i

cijωij (t)Γ
[
xj (t) − xi(t)

]
, (1)

where i ∈ I = {1,2, . . . ,N}, xi(t) = (xi1(t),

. . . , xin(t))
T denotes the n-dimensional state variable

of the ith node, f : Rn × Rn → Rn is a vector-valued
continuous function governing the evolution of each
individual node, the time delay τ(t) is bounded and
satisfies 0 ≤ τ(t) ≤ τ , Γ ∈ Rn×n is the inner connect-
ing matrix, ωij (t) = ωji(t) represent the time-varying
coupling weights or strengths between node i and
node j , and C = (cij )N×N is the configuration ma-
trix representing the underlying topology structure of
the network, in which cij is defined as follows: if there
is a connection between node i and node j (i �= j),
then cij = cji = 1; otherwise, cij = cji = 0 (i �= j),
and the diagonal elements of matrix C are defined
by cii = −∑N

j=1,j �=i cij . The matrix of the weighted
coupling configuration of the network denoted by
B = (bij )N×N is defined as follows: bij = ωij cij for
i �= j and bii = ωiicii = −∑N

j=1,j �=i ωij cij . Suppose
that the network is connected in the sense of having no
isolated clusters; then the matrix C is an irreducible
real symmetric matrix.

System (1) is supplemented with initial values
given by

xi(s) = φi(s), s ∈ [−τ,0], i ∈ I, (2)

where φi(s) = (φi1(s), . . . , φin(s))
T ∈ C([−τ,0],Rn),

which denotes the Banach space of all continuous
functions mapping [−τ,0] into Rn with 2-norm de-
fined by

‖ψ‖ =
[

sup
s∈[−τ,0]

n∑

i=1

∣∣ψi(s)
∣∣2

] 1
2

for ψ ∈ C([−τ,0],Rn).
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Evidently, according to system (1), the dynamic be-
havior of each isolated node of the network (1) can be
described by

ṡ(t) = f
(
s(t), s

(
t − τ(t)

))
. (3)

The main aim in this paper is to synchronize the
weighted network (1) onto a desired evolution satis-
fying (3) by adjusting the coupling weights ωij (t) and
imposing an adaptive pinning controller on system (1).

In order to obtain the main results, the following
assumptions and definitions are necessary.

Assumption 1 For the vector-valued function f (x, x̄),
there exist a constant θ and a positive constant γ such
that

(x − y)T
(
f (x, x̄) − f (y, ȳ)

)

≤ θ(x − y)T (x − y) + γ (x̄ − ȳ)T (x̄ − ȳ)

for any x, x̄, y, ȳ ∈ Rn.

Assumption 2 τ(t) is a differential function with 0 ≤
τ̇ (t) < ε < 1.

Assumption 3 The inner coupling matrix Γ is a pos-
itive definite matrix.

Definition 1 Suppose that A = (aij ) ∈ Rp×p . If aij =
aji ≥ 0 for i �= j and aii = −∑p

i=1,j �=i aij for i =
1,2, . . . , p, and A is irreducible, then we say that
A ∈ A1.

Lemma 1 (see [37]) If A ∈ A1, then all eigenval-
ues of the matrix A − Λ are negative, where Λ =
diag(ε1, ε2, . . . , εp), εi are nonnegative constants sat-
isfying ε1 + ε2 + · · · + εp > 0.

Remark 1 If f (x, x̄) is reduced to f (x), Assumption 1
is degenerated to the following condition:

For any x, y ∈ Rn, there exist a constant θ such that

(x − y)T
[
f (x) − f (y)

] ≤ θ(x − y)T (x − y).

It can be easily proven that the above condition is
equivalent to the so-called QUAD condition intro-
duced in Refs. [3, 23, 35]. Particularly, a vector field
f : Rn → Rn is QUAD iff, for any x, y ∈ Rn,

(x − y)T
[
f (x) − f (y) − Δ(x − y)

]

≤ −(x − y)T (x − y),

where Δ is an arbitrary diagonal matrix of order n,
and  is a nonnegative scalar. Hence, Assumption 1
can be seen as an extension of the QUAD condition to
some extent.

3 Main results

Our goal is to synchronize the weighted network (1)
onto a desired evolution, i.e.,

lim
t→+∞

∥∥xi(t) − s(t)
∥∥ = 0 (4)

for i ∈ I, where the norm ‖ · ‖ of a vector x is defined
as ‖x‖ = √

xT x, and s(t) is an arbitrary desired state
of system (3), which may be an equilibrium point, a
periodic orbit, or even a chaotic orbit.

In order to achieve the aim (4), we introduce a con-
trol strategy to nodes in the network (1). The con-
trolled network corresponding to system (1) can be de-
scribed as

ẋi (t) = f
(
xi(t), xi

(
t − τ(t)

))

+
N∑

j=1,j �=i

cijωij (t)Γ
[
xj (t) − xi(t)

] + ui, (5)

where ui is an adaptive pinning controller, which is
designed as

ui(t) = −δiβi(t)Γ
(
xi(t) − s(t)

)
, (6)

here, δi = 1 if node i is selected to control, otherwise
δi = 0, βi(t) is a feedback gain which is constructed
by

β̇i (t) = δiki

(
xi(t) − s(t)

)T
Γ

(
xi(t) − s(t)

)
, (7)

where βi(0) ≥ 0 and ki > 0 for i ∈ I.
Based on controllers (6) and (7), we have the fol-

lowing results.

Theorem 1 Under Assumptions 1–3, suppose that at
least one node is controlled satisfying (6) and (7). Sys-
tem (5) is asymptotically synchronized to system (3) if
the coupling weights ωij (t) (i �= j) satisfy the follow-
ing adaptive update laws:

ω̇ij (t) = cijμij

(
xi(t) − xj (t)

)T
Γ

(
xi(t) − xj (t)

)
, (8)

where ωij (0) ≥ 0 and μij > 0.
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Proof Let the synchronic error be ei(t) = xi(t) − s(t)

for i ∈ I. It follows from system (3) and (5) that

ėi (t) = f̃
(
ei(t), ei

(
t − τ(t)

))

+
N∑

j=1,j �=i

cijωij (t)Γ
[
xj (t) − xi(t)

] + ui, (9)

where f̃ (ei(t), ei(t −τ(t))) = f (xi(t), xi(t −τ(t)))−
f (s(t), s(t − τ(t))).

Define the following Lyapunov functional:

V (t) = 1

2

N∑

i=1

eT
i (t)ei(t)

+ 1

4

N∑

i=1

N∑

j=1,j �=i

(ωij (t) − h)2

μij

+ 1

2

N∑

i=1

(βi(t) − h)2

ki

+
N∑

i=1

∫ t

t−τ(t)

γ

1 − ε
eT
i (s)ei(s) ds,

where h is a positive constant to be determined later.
By virtue of Assumptions 1–3, the time derivative

of V (t) can be derived by

dV (t)

dt
≤

N∑

i=1

(
θ + γ

1 − ε

)
eT
i (t)ei(t)

+
N∑

i=1

N∑

j=1,j �=i

cijωij e
T
i (t)Γ

(
xj (t) − xi(t)

)

+ 1

2

N∑

i=1

N∑

j=1,j �=i

(ωij − h)cij

(
xi(t)

− xj (t)
)T

Γ
(
xi(t) − xj (t)

)

−
N∑

i=1

δiβie
T
i (t)Γ ei(t)

+
N∑

i=1

(βi − h)δie
T
i (t)Γ ei(t)

=
N∑

i=1

(
θ + γ

1 − ε

)
eT
i (t)ei(t)

−
N∑

i=1

hδie
T
i (t)Γ ei(t)

+
N∑

i=1

N∑

j=1,j �=i

cijωij e
T
i (t)Γ

(
xj (t) − xi(t)

)

+ 1

2

N∑

i=1

N∑

j=1,j �=i

(ωij − h)cij

(
xi(t)

− xj (t)
)T

Γ
(
xi(t) − xj (t)

)
. (10)

Applying ωij = ωji and cij = cji , we have

1

2

N∑

i=1

N∑

j=1,j �=i

(ωij − h)cij

(
xi(t) − xj (t)

)T

× Γ
(
xi(t) − xj (t)

)

= 1

2

N∑

i=1

N∑

j=1,j �=i

(ωij − h)cij

(
ei(t) − ej (t)

)T

× Γ
(
xi(t) − xj (t)

)

=
N∑

i=1

N∑

j=1,j �=i

(ωij − h)cij ei(t)
T Γ

(
xi(t) − xj (t)

)
.

(11)

Substituting (11) into (10), we have

dV (t)

dt
≤

N∑

i=1

(
θ + γ

1 − ε

)
eT
i (t)ei(t)

−
N∑

i=1

hδie
T
i (t)Γ ei(t)

+
N∑

i=1

N∑

j=1,j �=i

hcij ei(t)
T Γ

(
xj (t) − xi(t)

)

=
N∑

i=1

N∑

j=1

hcij ei(t)
T Γ ej (t)

−
N∑

i=1

hδie
T
i (t)Γ ei(t)

+
(

θ + γ

1 − ε

) N∑

i=1

eT
i (t)ei(t)

= heT (t)
[
(C − Δ) ⊗ Γ

]
e(t)

+
(

θ + γ

1 − ε

) N∑

i=1

eT
i (t)ei(t),

where Δ = diag(δ1, . . . , δN).
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It follows from Lemma 1 and Assumption 3 that
(C − Δ) ⊗ Γ is a negative matrix. Then a suitable h

can be chosen such that

dV (t)

dt
< −

N∑

i=1

eT
i (t)ei(t).

According to LaSalle’s invariance principle [38],
ei(t) → 0 as t → +∞, that is,

lim
t→+∞

∥∥xi(t) − s(t)
∥∥ = 0

for i ∈ I. Therefore, under the adaptive controllers
and updating laws (6)–(8), the controlled network (5)
is asymptotically synchronized to s(t). The proof of
Theorem 1 is completed. �

Assume that s∗ = (s∗
1 , . . . , s∗

n) is an equilibrium
point of the decoupled system (3), which may be un-
stable. Evidently,

S∗ = (s∗, s∗, . . . , s∗
︸ ︷︷ ︸

N

)

is also an equilibrium point of the network (1). From
Theorem 1 the following result is directly derived.

Corollary 1 Under Assumptions 1–3, suppose that at
least one node in system (1) is controlled. The equilib-
rium S∗ is asymptotically stable, i.e., the network (1)
is asymptotically synchronized to s∗ if the following
adaptive update laws are satisfied:

(1) ui(t) = −δiβi(t)Γ (xi(t) − s∗),
(2) β̇i (t) = δiki(xi(t) − s∗)T Γ (xi(t) − s∗),
(3) ω̇ij (t) = cijμij (xi(t) − xj (t))

T Γ (xi(t) − xj (t)),

where βi(0) ≥ 0, ωij (0) ≥ 0, ki > 0, and μij > 0 for
i, j ∈ I.

In the following, we consider a class of con-
trolled coupled neural networks with variable coupling
strengths described by

ẋi (t) = −Axi(t) + Bg
(
xi(t)

) + Dg
(
xi

(
t − τ(t)

))

+
N∑

j=1,j �=i

cijωij (t)Γ
[
xj (t) − xi(t)

] + ui,

(12)

where i ∈ I, Γ , cij , and ωij (t) are defined in sys-
tem (1), xi(t) = (xi1(t), . . . , xin(t))

T ∈ Rn denotes

the state variable associated with the ith node, A =
diag(a1, a2, . . . , an) is the decay constant matrix with
ai > 0 for i ∈ I, and B = (bij )n×n and D = (dij )n×n

are the connection matrix and delayed connection
matrix. g(xi(t)) = (g1(xi1(t)), . . . , gn(xin(t)))

T is the
activation function of the neurons and satisfies the fol-
lowing condition:

Assumption 4 For any x, y ∈ Rn, there exists a posi-
tive constant F such that
(
g(x) − g(y)

)T (
g(x) − g(y)

) ≤ F(x − y)T (x − y).

Correspondingly, the synchronization state s(t) as-
sociated with system (12) is represented by

ṡ(t) = −As(t) + Bg
(
s(t)

) + Dg
(
s
(
t − τ(t)

))
. (13)

The following statement is provided to ensure
the asymptotical synchronization of the coupled net-
work (12).

Corollary 2 Suppose that Assumptions 2–4 hold and
at least one node in system (12) is controlled. Under
controllers (6)–(8), the network (12) is asymptotically
synchronized to s(t) satisfying system (13).

Proof Evidently, only Assumption 1 should be veri-
fied. It is easy that

f
(
xi(t), xi

(
t − τ(t)

))

= −Axi(t) + Bg
(
xi(t)

) + Dg
(
xi

(
t − τ(t)

))
.

Then,

(x − y)T
(
f (x, x̄) − f (y, ȳ)

)

= (x − y)T
[−A(x − y) + B

(
g(x) − g(y)

)

+ D
(
g(x̄) − g(ȳ)

)]

≤ 1

2
(x − y)T

(−2A + BBT + DDT + FI
)
(x − y)

+ F

2
(x̄ − ȳ)T (x̄ − ȳ)

≤ μ

2
(x − y)T (x − y) + F

2
(x̄ − ȳ)T (x̄ − ȳ),

where μ is the largest eigenvalues of matrix −2A +
BBT + DDT + FI , which shows that Assumption 1
in Theorem 1 is satisfied and it is directly obtained that
the network (12) is asymptotically synchronized to the
decoupled state s(t). �
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Remark 2 It is easy to see that the adaptive feedback
gains βi(t) and the coupling weights ωij (t) respec-
tively tend to some positive constants when the net-
work (1) realizes asymptotical synchronization.

Remark 3 In Refs. [23, 34–36], the adaptive cou-
pling strengths were well proposed to realize syn-
chronization of complex network without time delays.
In this paper, a more general complex network with
time delays is investigated by automatically adjust-
ing coupling strengths and using local pinning control
scheme. Evidently, our proof techniques are simple,
and the results are novel and effective. Moreover, our
adaptive update law of coupling weight ωij (t) is only
related to the dynamical properties of directly con-
nected nodes i and j .

Remark 4 It follows from the control scheme (6) and
the proof of Theorem 1 that only a fraction of nodes
selected randomly need to control in order to realize
the synchronization and other nodes are pinned to the
synchronized state s(t). In fact, pinning control has
been extensively studied in Refs. [26–33], in which
the calculation of eigenvalues for the coupling weight
matrix of the network is needed; in other words, the
global information of the whole networks is required.
It is difficult for large-scree network to calculate the
eigenvalues for the coupling weight matrix. In order
to avoid this trouble, the adaptive coupling weights are
proposed in this paper, and their adaptive update laws
are only related to the effective information of partial
interacted nodes other than the global information of
the whole nodes.

4 Numerical simulations

In this section, based on the results obtained in the pre-
vious sections, two numerical examples are presented
to show the effectiveness and feasibility of our results.

Example 1 Consider a coupled network composed of
N = 5 nodes, where each node is a two-dimensional
dynamical oscillator. The controlled network can be
written as

ẋi (t) = A1xi(t) + B1g
(
xi

(
t − τ(t)

))

+
5∑

j=1,j �=i

cijωij (t)
[
xj (t) − xi(t)

] + ui, (14)

where xi = (xi1, xi2)
T , g(xi) = (tanh(xi1), tanh(xi2))

T ,
τ(t) = et

1+et , and

A1 =
[−1 0

0 −1

]
, B1 =

[
0 3
3 0

]
.

Assume that all nodes are connected as a ring, i.e.,
complex network (14) is a ring coupled network. The
configuration matrix C is

C =

⎡

⎢⎢⎢⎢
⎣

−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

⎤

⎥⎥⎥⎥
⎦

.

Obviously, the decoupled or isolated oscillator can be
described as
{

ṡ1(t) = −s1(t) + 3 tanh(s2(t − τ(t))),

ṡ2(t) = −s2(t) + 3 tanh(s1(t − τ(t))).
(15)

System (15) has three equilibria

S∗
1 = (−2.9847,−2.9847), S∗

2 = (0,0),

S∗
3 = (2.9847,2.9847).

It is easy to see by simulation shown in Figs. 1–2 that
all solutions of system (15) with different initial values
converge to either S∗

1 or S∗
3 , which illuminate that the

equilibria S∗
1 and S∗

3 are both locally stable and S∗
2 is

unstable.

In the following, we choose s(t) = S∗
2 as a desired

state, and the first three nodes are only controlled. Ob-
viously, Assumptions 1–3 are satisfied. Choose control
strengths ki = 0.5 for i = 1,2,3 and β1(0) = 0.16,
β2(0) = 0.12, β3(0) = 0.15. Select μij = 0.2 in the
adaptive law (8) and ω12(0) = 0.01, ω15(0) = 0.02,
ω23(0) = 0.03, ω34(0) = 0.02, ω45(0) = 0.05. Based
on those parameters and according to Corollary 1, the
solution xi(t) of system (14) tends to S∗

2 = (0,0), that
is to say, the unstable equilibrium S∗

2 is stabilized un-
der controllers (6)–(8), which is shown in Fig. 3. From
Figs. 4–5, the coupling weights ωij and the feedback
gains βi converge to some constants, respectively.

Example 2 Consider a star complex dynamic network
described by

ṡ(t) = −A2s(t) + B2h
(
s(t)

) + D2h
(
s
(
t − τ(t)

))
,

(16)
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Fig. 1 The phase portrait
of system (15) with
different initial values

Fig. 2 Time evolution of
system (15) with different
initial values

where s = (s1, s2)
T , h(s) = (0.5(|s1 + 1| −

|s1 − 1|),0.5(|s2 + 1| − |s2 − 1|))T , τ(t) = et

1+et ,
A2 = diag(1,1), and

B2 =
[

1 + π
4 20

0.1 1 + π
4

]
,

D2 =
[

− 1.3
√

2π
4 0.1

0.1 − 1.3
√

2π
4

]

.

The dynamic behavior of system (16) is represented in
Fig. 6, from which we can see that system (16) has a
chaotic attractor.

The star complex network composed of N = 5
identical nodes is described by

ẋi (t) = −A2xi(t) + B2h
(
xi(t)

) + D2h
(
xi

(
t − τ(t)

))

+
5∑

j=1,j �=i

cijωij (t)
[
xj (t) − xi(t)

]
, (17)
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Fig. 3 Time evolution of
controlled system (14) with
different initial values

Fig. 4 Time evolution of
coupling weights ωij of
system (14)

for i = 1,2, . . . ,5, where A2, B2, D2, h(xi), τ(t) are
defined in system (16), and the configuration matrix C

is given by

C =

⎡

⎢⎢⎢⎢
⎣

−4 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

⎤

⎥⎥⎥⎥
⎦

.

We choose chaotic attractor as the synchronized
aim and only control the first node. Evidently, As-

sumptions 1–3 are satisfied. Take the control strength

k1 = 0.5 and β1(0) = 0.16. Select μ12 = μ13 = 0.01

and μ14 = μ15 = 0.02 in the adaptive law (8) and

ω12(0) = ω13(0) = 0.05, ω14(0) = ω15(0) = 0.03. It

follows from Corollary 2 that system (17) is synchro-

nized to chaotic system (16), which is verified by

Fig. 7, and in this case, the coupling weights ωij and

the feedback gains βi respectively converge to some

constants that are shown in Figs. 8–9.
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Fig. 5 Time evolution of
feedback gains βi

Fig. 6 Chaotic behavior of
system (16) with initial
values (−0.4,0.3)

Remark 5 In Example 1, the unstable equilibrium

point S∗
2 of (15) is chosen as the desired orbit, and all

nodes in ring network (14) are synchronized to S∗
2 by

controlling the first three nodes and adjusting the adap-

tive coupling weights. In Example 2, the synchronized

orbit is a chaotic attractor, and all node states in star

network (17) tend to this chaotic trajectory by adap-

tively adjusting the coupling weights and only control-

ling the first node based on the adaptive feedback law.

5 Conclusion

In real application, it is tough to access all information
of the large-scale networks. However, for a given node,
the information of nodes directly connected with it can
be obtained. In light of this, our aim in this paper is to
deal with the globally asymptotical synchronization of
weighted complex networks with variable delays and
adaptive coupling weights by virtue of controlling par-
tial nodes and local adaptive feedback strategy without
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Fig. 7 Synchronization
errors of the star
network (17) with different
initial values

Fig. 8 Time evolution of
coupling weights ωij of
system (17)

requiring global information of the networks. The syn-
chronized state is chosen as a decoupled state, which
may be an equilibrium point, or even a chaotic orbit.
The information of the controlled node itself and the
synchronized state is only needed in our local feed-
back control. Moreover, our adaptive update law of
coupling weight ωij (t) is only related to the dynam-
ical behaviors of directly connected nodes i and j .
Evidently, our results are derived based on local effec-
tive information other than the global information of
the whole network, which is significantly predominant

in application in view of the access difficulty of the
global information. Finally, a ring complex network
and a star network are listed, which are respectively
synchronized to an unstable equilibrium point of the
decoupled system and a chaotic attractor.
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Fig. 9 Time evolution of
feedback gain β1 with
different initial values
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