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Abstract In this paper, a new simple 4D smooth au-
tonomous system is proposed, which illustrates two in-
teresting rare phenomena: first, this system can gener-
ate a four-wing hyperchaotic and a four-wing chaotic
attractor and second, this generation occurs under con-
dition that the system has only one equilibrium point
at the origin. The dynamic analysis approach in the
paper involves time series, phase portraits, Lyapunov
exponents, bifurcation diagram, and Poincaré maps, to
investigate some basic dynamical behaviors of the pro-
posed 4D system. The physical existence of the four-
wing hyperchaotic attractor is verified by an electronic
circuit. Finally, it is shown that the fractional-order
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form of the system can also generate a chaotic four-
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1 Introduction

Near half a century has passed since the first chaotic
system was reported by Lorenz [1]. In two last
decades, study of chaotic systems has gained many
interests and has found applications in different ar-
eas ranging from engineering to ecology [2–5], But,
still there is no unified theory of chaos from which
the existence of chaotic behaviors can be predicted,
and generally, the new chaotic systems are introduced
in the form of mathematical models and verified via
numerical simulations.

For years, almost all the reported chaotic sys-
tems are the systems with two-wing chaotic attractors
[6–10]. But, in the last decade, research for more com-
plex chaotic systems has led to the finding of the multi-
wing chaotic systems. The multi-wing chaotic systems
can be classified into two totally different groups. The
first class or the Lorenz-like chaotic systems [11–13]
are the systems with smooth nonlinearities in which
the number of wings is not equal to that of the equilib-
ria. The second class or the Chua-like chaotic systems
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[14–16] are the systems that have non-smooth nonlin-
ear parts. In these systems, the basic technique to gen-
erate different number of scrolls is increasing the num-
ber of equilibrium points and the number of scrolls
equals to that of the equilibria. Although it is more
difficult to obtain a chaotic attractor with more than
double wings from a smooth dynamical system, some
four-wing Lorenz-like chaotic systems have been in-
troduced in recent years [12, 13, 17–22]. All these
systems have five equilibrium points and each wing
wonders around a nonzero equilibria.

In 1979, Rössler reported a novel complex dynam-
ical system with a new criterion [23]. Unlike the other
known chaotic systems up to that time, his system has
two positive Lyapunov exponents. Having more than
one positive Lyapunov exponents causes the system to
show behavior with a high degree of disorder and ran-
domness. Nowadays, these systems are called hyper-
chaotic systems. In recent years, notable contribution
has been made to generation of hyperchaotic systems
with more complex dynamics, and this new concept
has become a very important research topic.

Nearly all the 4D hyperchaotic systems, reported
up to now, have double-wing hyperchaotic attractors
with three or five equilibrium points [24–39]. Gener-
ating a hyperchaotic attractor from a smooth dynam-
ical system with one equilibrium point is a very rare
phenomenon [31, 40, 41]. The attractors evolved from
these systems are butterfly-shaped with two wings.
Another very rare phenomenon about the hyperchaotic
systems is that they can generate four-wing attrac-
tor [42]. The Cang’s system is hyperchaotic and four-
winged, but it has five equilibrium points. Normally,
a four-wing hyperchaotic attractor can be generated
from a nonlinear system of more than four differen-
tial equations [43]. So far, in literature, there is no re-
ported 3D or 4D smooth autonomous system with only
one equilibrium that can generate a four-wing and hy-
perchaotic attractor.

Fractional calculus is more than three centuries
old topic, and recently the applications of fractional
calculus have been overgrowing [44–47]. The study
of the dynamic systems of fractional order has at-
tracted increasing interest from many researchers. It
has been demonstrated that some fractional-order dif-
ferential systems behave chaotically or hyperchaoti-
cally, such as the fractional-order Chen system [48],
the fractional-order Chua system [49], the fractional-
order Liu system [50], the fractional-order coupled

Lorenz system [51], and the fractional-order Rössler
system [52].

In this paper, we introduce a new four-dimensional
smooth autonomous hyperchaotic system. This sys-
tem has two important dynamics: first, it can gener-
ate a four-wing hyperchaotic attractor and a four-wing
chaotic attractor and second, it has only one equilib-
rium point which is located at the center of the whole
attractor. Besides, the fractional-order version of this
new system shows chaotic behavior and can generate
chaotic four-wing attractors. The paper is organized
as follows: In Sect. 2, the new system is briefly in-
troduced. In Sect. 3, varying one system parameter,
different dynamical behaviors of the system are dis-
cussed. Three different methods for analyzing chaotic
systems, Lyapunov exponent diagram, bifurcation dia-
gram and Poincaré mapping, are interpreted in Sects. 4
and 5. In Sect. 6, a physical FPGA circuit is built to
confirm the numerically simulated four-wing hyper-
chaotic attractor. Explanation about the existing meth-
ods of approximated solution of fractional differential
equations and simulation results of the fractional-order
form of the new chaotic system are included in Sects. 7
and 8, respectively. Finally, some concluding remarks
are given in Sect. 9.

2 The proposed 4D dynamical system

Consider the following simple 4D quadratic smooth
autonomous system:

⎧
⎪⎨

⎪⎩

ẋ = ax − yz + w,

ẏ = xz − by,

ż = xy − cz + xw,

ẇ = −y,

(1)

where [x, y, z,w]T ∈ R4 is the state vector, and a, b

and c are positive constant parameters of the system.
In the following, some basic properties of system (1)
are analyzed.

2.1 Dissipativity and existence of attractor

To ensure that system (1) is chaotic, the general con-
dition of dissipativity should be considered, i.e.

∇V = ∂ẋ

∂x
+ ∂ẏ

∂y
+ ∂ż

∂z
= a − b − c < 0. (2)
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Thus, for a < b + c, system (1) is dissipative. It means
that a volume element V0 is contracted by the flow
into a volume element V0e

∇V t in time t . That is, each
volume containing the system orbit shrinks to zero as
t → ∞ at an exponential rate ∇V , which is indepen-
dent of system states. Consequently, all system orbits
will ultimately be confined to a specific subset of zero
volume and the asymptotic motion settles onto an at-
tractor. Then, the existence of an attractor is proved.

2.2 Symmetry and invariance

The new chaotic system (1) is invariant under the coor-
dinate transform (x, y, z,w) → (−x,−y, z,−w), i.e.
the system (1) is symmetrical about the coordinate
axis z.

2.3 Equilibria and stability

The equilibria of system (1) can be found by solving
the following algebraic equations simultaneously:

⎧
⎪⎨

⎪⎩

ax − yz + w = 0,

xz − by = 0,

xy − cz + xw = 0,

−y = 0.

(3)

From the fourth equation of (3), one has

y = 0. (4)

Substituting this into the other three equations of (3)
yields

{
ax + w = 0,

xz = 0,

−cz + xw = 0.

(5)

So, it can be concluded that

x = −1

a
w and z = 1

c
xw = −1

ca
w2. (6)

Furthermore, from (6) and the second equation of (5),
it can be deduced that

w = 0. (7)

Hence, O(0,0,0,0) is the only equilibrium point of
the system (1).

Here, the stability of the zero equilibrium O is dis-
cussed. By linearizing the system (1) at O , one obtains

the Jacobian

J =
⎡

⎢
⎣

a −z −y 1
z −b x 0

y + w x −c x

0 −1 0 0

⎤

⎥
⎦

O(0,0,0,0)−→ JO =
⎡

⎢
⎣

a 0 0 1
0 −b 0 0
0 0 −c 0
0 −1 0 0

⎤

⎥
⎦ . (8)

So, the eigenvalues of the linearized system are ob-
tained as follows:

|λI − JO | = 0 ⇒ λ1 = 0, λ2 = a,

λ3 = −b, λ4 = −c. (9)

Since a, b, and c are all positive real numbers, one can
easily find λ3, λ4 < 0, λ2 > 0, implying that the equi-
librium O is unstable, i.e. origin is an unstable saddle
point for system (1).

3 Dynamical behavior of the new system

System (1) has been found to be hyperchaotic and
chaotic over a wide range of parameters. Remarkably,
this system can display four-wing hyperchaotic and
four-wing chaotic attractors while the system has only
one equilibrium point, which is unusual for a four-
dimensional smooth nonlinear system.

Remark 1 It is notable that all the 4D smooth systems
generating four-wing attractors, which were reported
up to now, have at least five equilibria. In these sys-
tems, the nonzero equilibrium points are located at the
centers of each wing of the attractor, and the origin is
the center of the whole four-wing chaotic attractor.

3.1 Four-wing hyperchaotic attractor

In this section, the numerical simulations are car-
ried out using MATLAB program. The fourth order
Runge–Kutta integration algorithm was performed to
solve the differential equations. The initial condition
is set to [10,1,10,1]T .

The new system can display a four-wing hyper-
chaotic attractor if the parameters are properly chosen.
Setting the parameters a = 8, b = 40 and c = 14.9, as
is seen in Fig. 1, the system has generated a four-wing
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Fig. 1 Phase portraits of
the four-wing hyperchaotic
attractor for
a = 8, b = 40, c = 14.9

Fig. 2 Phase portraits of
the four-wing chaotic
attractor for
a = 8, b = 40, c = 49

hyperchaotic attractor. System (1) has only one equi-
librium which is depicted as a red dot in Fig. 1. It is no-
table that there exist many orbits freely running in the
3D space and system trajectories can cross the bound-
ary lines to the other side. It can be clearly seen that the
origin is the center of the whole hyperchaotic attractor.

It is clearly observed that the four sub-attractors
look like the inner corns of four connected eddies.

Each two pairs of wings connected resemble the but-
terfly shape of the Lorenz chaotic attractor, which as a
whole forms a singular tornado-like shape with four
inner holes. It seems the four inner holes would be
the four equilibria beside the origin. However, they do
not exist at all, which is proved via (3)–(7). Moreover,
the Lyapunov exponents have been calculated as l1 =
1.844016, l2 = 0.500061, l3 = 0, l4 = −49.212797,



Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium 1165

Fig. 3 Lyapunov
exponents’ spectrum of the
system (1) versus
parameter c

(a)

(b)

indicating the system is hyperchaotic with the afore-
mentioned set of parameters.

3.2 Four-wing chaotic attractor

Setting the parameters as a = 8, b = 40 and c = 49,
the system (1) is chaotic and can generate a four-wing
chaotic attractor which is shown in Fig. 2. The Lya-
punov exponents of the system in this case are l1 =
1.508572, l2 = 0, l3 = −3.327860, l4 = −79.153856.
It ought to be stressed that the effect of initial condi-

tions on the four-wing chaotic attractor is not visible,
i.e. the system can generate a four-wing chaotic attrac-
tor with any desired initial condition and the four-wing
chaotic attractor is independent of initial values.

4 Lyapunov spectra and bifurcation diagram

When the parameters a = 8 and b = 40 are fixed while
parameter c is varied, the spectrum of Lyapunov ex-
ponents and the corresponding bifurcation diagram of
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state z with respect to c are obtained as shown in
Figs. 3 and 4, respectively.

When c < 2.5, the maximum Lyapunov exponent
equals zero, implying that the new system (1) ex-
hibits periodic behavior; while for c ∈ [2.5,3.2], the
maximum Lyapunov exponent is positive, implying

Fig. 4 Bifurcation diagram of the system (1) third state versus
parameter c

that the system is chaotic. In the region 3.2 < c < 4,
the system is hyperchaotic with two positive Lya-
punov exponents. Again, when 4 ≤ c ≤ 6, the maxi-
mum Lyapunov exponent is zero. The system displays
quasi-periodic motion for 6 < c < 6.6. In the region
c ∈ [6.6,22], the system (1) is hyperchaotic. The sys-
tem shows chaotic behavior for 22 < c < 26.4. For
26.4 ≤ c < 29.9, the system has two zero Lyapunov
exponents implying that the system is quasi-periodic.
In the region 29.9 < c < 39.6, the new system ex-
hibits a periodic behavior. The system is chaotic in
the area 39.6 ≤ c < 66. For 66 ≤ c < 81.2, the sys-
tem displays a quasi-periodic motion. In the afore-
mentioned interval, there are some tiny periodic and
chaotic subregions. Finally, when c ≥ 81.2, the max-
imum Lyapunov exponent almost equals zero and the
system eventually evolves into a periodic orbit. The
whole evolution process can be clearly seen from the
bifurcation diagram shown in Fig. 4, which illustrates
the dynamics of state variables. Figure 5, in which the
initial transients have been omitted for clarity, shows
two different periodic behaviors of the system (1) for
c = 69.4 and c = 35, respectively. The quasi-periodic
behavior of the system for c = 28 can be seen in Fig. 6.

Fig. 5 Phase portraits of
the periodic orbits for
a = 8, b = 40, (a, b)
c = 69.4, (c, d) c = 35
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Fig. 6 Phase portraits of
the quasi-periodic orbits for
a = 8, b = 40, c = 28

5 Poincaré mapping

As an important analysis technique, the Poincaré map
can reflect bifurcation and folding properties of chaos.
We have taken

�1 = {[x, y, z,w]T ∈ R4 | x = 0}
�2 = {[x, y, z,w]T ∈ R4 | y = 0}
�3 = {[x, y, z,w]T ∈ R4 | w = 0}
�4 = {[x, y, z,w]T ∈ R4 | w − 2y = −1}

(10)

as cross sections and the system parameters are set to
a = 8, b = 40 and c = 14.9. Figure 7(a)–(d), shows
projections of the Poincaré map on y − z, z − x and
x − z planes. From the figure one can see that the
Poincaré map here consists of several limbs with var-
ious bifurcations in different directions, which indi-
cates that the system has extremely rich dynamics.
Also, the Poincaré maps show that the branches are
jointed and united as a single attractor. This proves
the existence of the four-wing hyperchaotic attractor
in Fig. 1.

6 Verification via circuit experiment

An FPGA electronic circuit is designed to realize
the 4D hyperchaotic system (1) with parameters
a = 8, b = 40 and c = 14.9. The experimental ob-
servations from the analog oscilloscope are shown in
Fig. 8(a)–(f). It can be clearly seen that this experi-
ment shows that the system with the above-mentioned
parameters can generate a real four-wing hyperchaotic
attractor. Comparing the numerical simulation and the
circuit experimental results it can be declared that a
very good qualitative agreement between the two parts
has been confirmed.

7 Numerical algorithm for simulation of
fractional-order systems

The numerical calculation of a fractional differential
equation (FDE) is not as simple as that of an ordi-
nary differential equation. Two approximation meth-
ods have been developed for numerical solution of a
fractional differential equation in the literature. These
methods can be applied to both linear and nonlin-
ear fractional-order systems. One is the time-domain
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Fig. 7 Poincaré maps of
the four-wing hyperchaotic
attractor with parameters
a = 8, b = 40, c = 14.9, on
different crossing sections:
(a) x = 0, (b) y = 0,
(c) w = 0, (d) w − 2y = −1

method which is a generalization of the Adams–
Bashford–Moulton algorithm. This method is based
on a predictor–corrector scheme using the Caputo def-
inition [53, 54]. In the following, the brief introduc-
tion of this algorithm and its generalization for a four-
dimensional fractional-order system is given.

Consider the following differential equation:

Dα
t y(t) = dαy(t)

dtα
= f (t, y(t)), 0 ≤ t ≤ T ,

y(k)(0) = y
(k)
0 , k = 0,1, . . . ,m − 1(m = 	α
)

(11)

which is equivalent to the Volterra integral equation
[55]

y(t) =
m−1∑

k=0

y
(k)
0

tk

k! + 1

�(α)

∫ t

0

f (s, y(s))

(t − s)1−α
ds, (12)

where �(.) is the Gamma function, which is defined
as

�(α) =
∫ ∞

0
e−t tα−1 dt. (13)

Set h = T/N, tn = nh (n = 0,1,2, . . . ,N). Then (12)

can be discretized as

yh(tn+1) =
m−1∑

k=0

y
(k)
0

tkn+1

k! + hα

�(α + 2)
f

(
tn+1, y

p
h (tn+1)

)

+ hα

�(α + 2)

n∑

j=0

aj,n+1f (tj , yh(tj )), (14)

where a predicted value y
p
h (tn+1) is determined by

y
p
h (tn+1) =

m−1∑

k=0

y
(k)
0

tkn+1

k!

+ 1

�(α)

n∑

j=0

bj,n+1f
(
tj , yh(tj )

)
(15)

in which
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Fig. 8 Phase portraits of
the four-wing hyperchaotic
attractor for a = 8, b = 40,
c = 14.9 observed on the
oscilloscope: (a) projection
on x–y plane,
(b) projection on x–z plane,
(c) projection on x–w

plane, (d) projection on y–z

plane, (e) projection on
y–w plane, (f) projection on
z–w plane (a) (b)

(c) (d)

(e) (f)

aj,n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

nα+1 − (n − α)(n + 1)α, j = 0
(n − j + 2)α+1 + (n − j)α+1

−2(n − j + 1)α+1, 1 ≤ j ≤ n

1, j = n + 1,

bj,n+1 = hα

α

(
(n − j + 1)α − (n − j)α

)
.

(16)

The estimation error in this method is

e = max |y(tj ) − yh(tj )| = O(hp),

(j = 0,1, . . . ,N)
(17)

in which p = min(2,1 + α). Applying this method,
numerical solution of a fractional-order system can be
determined.

Now, consider the following fractional-order sys-

tem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dα1x
dtα1 = f1(x, y, z,w)

dα2y
dtα2 = f2(x, y, z,w)

dα3z
dtα3 = f3(x, y, z,w)

dα4w
dtα4 = f4(x, y, z,w)

(18)

for 0 < αi ≤ 1(i = 1,2,3,4) and initial condition

(x0, y0, z0,w0). Applying the above method (Adams–

Bashford–Moulton algorithm), system (18) can be dis-

cretized as follows:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+1 = x0 + hα1

�(α1+2)

[
f1(x

p

n+1, y
p

n+1, z
p

n+1,w
p

n+1) + ∑n
j=0 γ1,j,n+1f1(xj , yj , zj ,wj )

]

yn+1 = y0 + hα2

�(α2+2)

[
f2(x

p

n+1, y
p

n+1, z
p

n+1,w
p

n+1) + ∑n
j=0 γ2,j,n+1f2(xj , yj , zj ,wj )

]

zn+1 = z0 + hα3

�(α3+2)

[
f3(x

p

n+1, y
p

n+1, z
p

n+1,w
p

n+1) + ∑n
j=0 γ3,j,n+1f3(xj , yj , zj ,wj )

]

wn+1 = w0 + hα4

�(α4+2)

[
f4(x

p

n+1, y
p

n+1, z
p

n+1,w
p

n+1) + ∑n
j=0 γ4,j,n+1f4(xj , yj , zj ,wj )

]
,

(19)

where

x
p

n+1 = x0 + 1

�(α1)

n∑

j=0

ξ1,j,n+1f1(xj , yj , zj ,wj )

y
p

n+1 = y0 + 1

�(α2)

n∑

j=0

ξ2,j,n+1f2(xj , yj , zj ,wj )

z
p

n+1 = z0 + 1

�(α3)

n∑

j=0

ξ3,j,n+1f3(xj , yj , zj ,wj )

w
p

n+1 = w0 + 1

�(α4)

n∑

j=0

ξ4,j,n+1f4(xj , yj , zj ,wj )

(20)

and

γi,j,n+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nαi+1 − (n − αi)(n + 1)αi , j = 0
(n − j + 2)αi+1

+(n − j)αi+1

−2(n − j + 1)αi+1, 1 ≤ j ≤ n

1, j = n + 1,

(21)

ξi,j,n+1 = hαi

αi

(
(n − j + 1)αi − (n − j)αi

)
.

The other method for numerical simulation of the
fractional-order systems is the frequency-domain
method which is based on the Bode diagram [56].
Utilizing this method, a higher-order linear model is
obtained as an approximation for the fractional-order
system. The order of this linear approximation system
depends on the desired bandwidth and accuracy. How-
ever, in [57] it is declared that the first method (time-
domain method) results are more reliable for simulat-
ing the fractional-order systems than the frequency-
based method. So, in the simulations of this paper, we
use the predictor–corrector scheme based method to
solve the fractional-order differential equations.

8 Fractional-order form of the new chaotic system

In this section, we consider the fractional-order form
of the new system, where integer-order derivatives are
replaced by fractional-order ones. Mathematical de-
scription of the fractional-order chaotic system is ex-
pressed as

⎧
⎪⎨

⎪⎩

Dq1x = ax − yz + w,

Dq2y = xz − by,

Dq3z = xy − cz + xw,

Dq4w = −y,

(22)

where q1, q2, q3 and q4 are the derivative orders.
For numerical simulation of fractional-order sys-

tem (22), we have considered two cases: first, com-
mensurate order system and second, non-commensura-
te order system. In the first case, it is assumed that
the orders of the derivatives in state equations (22)
are the same, i.e. q1 = q2 = q3 = q4 = q . Figure 9
shows the four-wing chaotic attractor generated from
system (22) with the system parameters a = 8, b = 40
and c = 14.9, and the commensurate order q = 0.95
of the derivatives. When assuming the different or-
ders of derivatives in state equations (22), i.e. q1 �=
q2 �= q3 �= q4, it gets a general non-commensurate or-
der system. There is no exact condition for determin-
ing the orders to obtain chaotic behavior of the sys-
tem. Figure 10 illustrates that the system is chaotic
with q1 = 1, q2 = 0.95, q3 = 0.9, q4 = 0.85. It can be
seen that the non-commensurate fractional-order sys-
tem (22) can also generate a four-wing attractor.

9 Conclusion

In this letter, a new four-dimensional smooth sys-
tem with a rare phenomenon was introduced and con-
firmed analytically and numerically. This new system
has only one equilibrium point for any arbitrary set
of parameters. Nevertheless, the most important fact
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Fig. 9 Phase portraits of
the commensurate
fractional-order four-wing
chaotic attractor for
a = 8, b = 40, c = 14.9

Fig. 10 Phase portraits of
the non-commensurate
fractional-order four-wing
chaotic attractor for
a = 8, b = 40, c = 14.9

about this system is that it can display four-wing hy-
perchaotic and chaotic attractors. Some dynamic be-
haviors of the system have been investigated. Further-
more, by electronic circuit implementation of the pro-
posed system, it is shown that the four-wing hyper-

chaotic attractor does physically exist. Another inter-
esting finding about this system is that it can generate a
chaotic four-wing attractor when the total order is less
than 4. This new system needs to be further studied
and explored in both integer-order and fractional-order
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cases, and its topological structure deserves further de-
tailed investigation.
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