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Abstract This paper proposes a controller design for
linear parameter-varying (LPV) systems with input
saturation and a matched disturbance. On the basis
of the feedback gain matrix K(θ(t)) and the Lya-
punov function V (x(t)), three types of controllers
are suggested under H2 performance conditions. To
this end, the conditions used for designing the H2

state-feedback controller are first formulated in terms
of parameterized linear matrix inequalities (PLMIs).
They are then converted into linear matrix inequal-
ities (LMIs) using a parameter relaxation technique.
The simulation results illustrate the effectiveness of
the proposed controllers.
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1 Introduction

Gain-scheduling approaches for a linear parameter-
varying (LPV) system have been widely studied over
the past several years [1–14]. For instance, gain-
scheduling approaches have been reviewed in [1]. The
authors of [2, 3] proposed a stabilization problem for
LPV systems. In [4], a gain-scheduled output feed-
back controller was designed to stabilize an LPV sys-
tem. Gain-scheduled H2 and H∞ controls were pro-
posed in [5–9]. In [12], the use of a gain-scheduling
method for handling actuator saturation was proposed.
The authors of [13] presented stability conditions and
guaranteed cost controllers via a parameter relaxation
technique. The authors of [14] introduced the gain-
scheduled H∞ control for LPV systems with input
saturation and disturbances.

However, in these former studies, H2 controllers
have not been designed for LPV systems with input
saturation and disturbances. The authors of [2, 3,
13] derived an H2 controller for LPV systems; how-
ever, they did not consider input saturation and distur-
bances. Further, although the authors of [4–11] han-
dled disturbances in their LPV systems, they did not
deal with input saturation. In [12], gain-scheduling H2
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controllers for an LPV system with input saturation
were designed using only vertices of the polytope to
solve parameterized linear matrix inequality (PLMI)
conditions, which resulted in a deterioration of perfor-
mance.

Therefore, in this paper, the design details for an
H2 state-feedback controller for LPV systems with
input saturation and a matched disturbance is pro-
vided. The proposed controllers consist of the main
control part and the secondary control part. The main
part is used for achieving proper H2 performance,
and the secondary part is used for rejecting a matched
disturbance. Further, the proposed controllers are di-
vided into three types according to the different forms
of feedback gain matrix K(θ(t)) and the Lyapunov
function V (x(t)). The first type is a quadratic con-
stant state-feedback controller that is developed using
a conservative and classical method, the second type is
a parameter-dependent state-feedback controller based
on a common quadratic Lyapunov function (CQLF),
and the third type is a parameter-dependent state-
feedback controller based on a parameter dependent
Lyapunov function (PDLF). The conditions used for
designing the H2 state-feedback controller are first
formulated in terms of the PLMI conditions. They
are then converted into linear matrix inequality (LMI)
conditions using a parameter relaxation technique
[13].

The paper is organized as follows. Section 2 ad-
dresses the problem statement and presents some pre-
liminary results. Section 3 provides the PLMI and LMI
conditions used in designing an H2 state-feedback
controller. Section 4 presents the simulation results ob-
tained for a two-mass-spring example [15, 16]. Finally,
Sect. 5 presents the conclusions of this study.

The notations used in this paper are fairly stan-
dard. For example, x ∈ Rn, xT indicates the trans-
pose of x, and [x]k denotes the kth element of x.
Furthermore, the notations X ≥ Y and X > Y , where
X and Y are symmetric matrices, denote that X − Y

is positive semi-definite and positive definite, respec-
tively. The notation ek indicates a unit vector with
a single nonzero entry at the kth position, i.e., ek �
[0 · · · 1

︸︷︷︸

kth

· · · 0]T.

2 Problem statement

2.1 System description

Consider the following LPV system with input satura-
tion and a matched disturbance:

ẋ(t) = A
(

θ(t)
)

x(t) + B
(

θ(t)
){

sat
(

u(t)
)+ d(t)

}

, (1)

y(t) = Cx(t), (2)

where

A
(

θ(t)
)= A0 +

r
∑

i=1

θi(t)Ai,

B
(

θ(t)
)= B0 +

r
∑

i=1

θi(t)Bi,

A0,Ai,B0,Bi , and C are known real constant ma-
trices with appropriate dimensions, x(t) ∈ Rn is the
state, θ(t) is the time-varying parameter, u(t) ∈ Rm

is the control input, d(t) ∈ Rm is the matched dis-
turbance, and y(t) ∈ Rq is the output. Assumed that
the time-varying parameter θ(t) satisfies the following
conditions:

θ̄min ≤
r
∑

i=1

θi(t) = θ̄ (t) ≤ θ̄max, (3)

0 ≤ αi ≤ θi(t) ≤ βi ∀i ∈ [1, r], (4)

ηi ≤ θ̇i (t) ≤ νi ∀i ∈ [1, r], (5)

and each component of d(t) is bounded by ε, i.e.,
∣

∣eT
k d(t)

∣

∣≤ ε. (6)

Further, sat (·) denotes a saturation operator, which is
defined as

[

sat (σ )
]

i
�

⎧

⎪
⎨

⎪
⎩

[σ ]i if |[σ ]i | < μ,

μ if [σ ]i ≥ μ,

−μ if [σ ]i ≤ −μ,

(7)

where μ(> ε) is the saturation level. To handle the
saturation nonlinearity, the following representation
method is employed.

Lemma 1 (Cao et al. [12] and Hu and Lin [17]) Let
u,v ∈ Rm,

u = [u1 u2 · · · um ]T, v = [v1 v2 · · · vm ]T.
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If |eT
k v| ≤ μ for all k ∈ [1,m] and μ is a positive real

number, then

sat (u) ∈ co
{

Eiu + E−
i v|i ∈ [1,2m

]}

, (8)

where co denotes the convex hull, Ei is a diagonal ma-
trix whose diagonal elements have all possible combi-
nations of 1 and 0, and E−

i � I − Ei . We can rewrite
sat (u) as

sat (u) ≡
2m
∑

j=1

ξj

{

Eju + E−
j v
}

, (9)

where
∑2m

j=1 ξj = 1, ξj ≥ 0.

2.2 Three types of controllers

Let us form a controller for system (1) as

u(t) = f
(

x(t), θ(t), t
)+ ū

(

x(t), θ(t), t
)

, (10)

where f (x(t), θ(t), t) is the main control part for
achieving H2 performance, and ū(x(t), θ(t), t) is the
secondary control part for rejecting a matched distur-
bance. In this paper, on the basis of the different forms
of f (x(t), θ(t), t) and the Lyapunov function V (x(t)),
the control methods can be divided into the following
three types [13]:

• Type 1: Quadratic constant controller design method

u(t) = Kx(t) + ū
(

x(t), θ(t), t
)

,
(11)

V
(

x(t)
)= xT(t)P −1x(t),

where K is a real constant matrix, and P is a con-
stant positive definite matrix.

• Type 2: Parameter-dependent controller design
method with a CQLF

u(t) = K
(

θ(t)
)

x(t) + ū
(

x(t), θ(t), t
)

,
(12)

V
(

x(t)
)= xT(t)P −1x(t),

where K(θ(t)) is a parameter-dependent matrix,
and P is a constant positive definite matrix.

• Type 3: Parameter-dependent controller design
method with a PDLF

u(t) = K
(

θ(t)
)

x(t) + ū
(

x(t), θ(t), t
)

,
(13)

V
(

x(t)
)= xT(t)P −1(θ(t)

)

x(t),

where K(θ(t)) is a parameter-dependent matrix,
and P(θ(t)) is a parameter-dependent positive defi-
nite matrix.

The Types 2 and 3 controllers correspond to gain-
scheduled controllers, and as noted in [13], the Type 3
controller is a less conservative approach than Types 1
and 2.

3 H2 state-feedback controllers

In this section, let us describe the design of the H2

state-feedback controller for system (1). On the basis
of the three control methods, the state-feedback H2

controller is designed via a variable structure control
(VSC) technique, where f (x(t), θ(t), t) in (10) is de-
signed to minimize the upper bound of the following
linear quadratic (LQ) cost:

min max
θi (t)∈Θ

{

J (t) =
∫ ∞

0
xT(t)CTQCx(t) dt

}

, (14)

where Q is a positive definite matrix, Θ is a set of all
possible parameters, and ū(x(t), θ(t), t) is designed to
eliminate a matched disturbance.

First, the PLMI conditions for representing the sat-
uration in Lemma 1 and achieving the H2 perfor-
mance is derived. Then let us convert these PLMI con-
ditions into LMI conditions using a parameter relax-
ation technique [13]. Since the design procedures for
a Type 3 controller is similar to the design procedures
for Types 1 and 2 controllers, we introduce the design
procedure only for the Type 3 controller.

3.1 PLMI condition

Determine the input u(t) and the auxiliary input v(t),
such that

u(t) = K
(

θ(t)
)

x(t) + ū
(

x(t), θ(t), t
)

, (15)

v(t) = H
(

θ(t)
)

x(t) + ū
(

x(t), θ(t), t
)

, (16)

where v(t) is used to handle the input saturation
in (9). Each element of the secondary control part,
ū(x(t), θ(t), t), is defined for all k ∈ [1,m] as

[

ū
(

x(t), θ(t), t
)]

k

= −ε sgn
(

eT
k BT(θ(t)

)

P −1(θ(t)
)

x(t)
)

, (17)
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where sgn(ψ) is the sign of ψ . To use the represen-
tation method in Lemma 1, the following condition
should be satisfied: μ ≥ |eT

k v(t)|, for all k ∈ [1,m],

μ ≥ ∣∣eT
k H
(

θ(t)
)

x(t) + eT
k ū
(

x(t), θ(t), t
)∣

∣. (18)

Using the secondary control part in (17), the right side
of (18) can be derived as follows:

∣

∣eT
k H
(

θ(t)
)

x(t) + eT
k ū
(

x(t), θ(t), t
)∣

∣

≤ ∣∣eT
k H
(

θ(t)
)

x(t)
∣

∣+ ∣∣eT
k ū
(

x(t), θ(t), t
)∣

∣

= ∣∣eT
k H
(

θ(t)
)

x(t)
∣

∣+ ε. (19)

The following condition is then a sufficient condition
of (18)

μ ≥ ∣∣eT
k H
(

θ(t)
)

x(t)
∣

∣+ ε. (20)

Therefore, the representation method in Lemma 1 can
be used if it holds that for k ∈ [1,m],

1 ≥ xT(t)HT(θ(t)
)

ek

1

(μ − ε)2
eT
k H
(

θ(t)
)

x(t). (21)

It is then ensured that a weighting factor ξs exists such
that

sat
(

u(t)
) =

2m
∑

s=1

ξs

{

EsK
(

θ(t)
)+ E−

s H
(

θ(t)
)}

x(t)

+ ū
(

x(t), θ(t), t
)

. (22)

If the upper bound of the PDLF in (13) is a positive
scalar γ , then

V
(

x(t)
)= xT(t)P −1(θ(t)

)

x(t) < γ. (23)

Let F ∈ Rn×n be a positive definite matrix. Then the
following ellipsoid is defined:

�(F ) �
{

x(t) ∈ Rn×n|xT(t)Fx(t) < 1
}

. (24)

To establish a set invariance condition [12], the ellip-
soid �(P̄ −1(θ(t))) is in the linear region of (21), i.e.,
for all k ∈ [1,m],

xT(t)P̄ −1(θ(t)
)

x(t)

> xT(t)HT(θ(t)
)

ek

1

(μ − ε)2
eT
k H
(

θ(t)
)

x(t),

(25)

or equivalently,
[

(μ − ε)2 eT
k H(θ(t))

HT(θ(t))ek P̄ −1(θ(t))

]

> 0, (26)

where P̄ (θ(t)) � P(θ(t))γ . Then multiplying both
sides of (26) by diag{I, P̄ (θ(t))} for all k ∈ [1,m]
yields
[

(μ − ε)2 eT
k H̄ (θ(t))

H̄T(θ(t))ek P̄ (θ(t))

]

> 0, (27)

where H̄ (θ(t)) � H(θ(t))P̄ (θ(t)).

Next, the H2 performance conditions is derived.
Using (22), the derivative of V (x(t)) is

V̇
(

x(t)
)

= 2xT(t)P −1(θ(t)
)

ẋ(t) + xT(t)Ṗ −1(θ(t)
)

x(t)

= 2xT(t)P −1(θ(t)
)

×
[

A
(

θ(t)
)+ B

(

θ(t)
)

2m
∑

s=1

ξs

{

EsK
(

θ(t)
)

+ E−
s H

(

θ(t)
)}

]

x(t)

+ 2xT(t)P −1B
(

θ(t)
){

ū
(

x(t), θ(t), t
)+ d(t)

}

+ xT(t)Ṗ −1(θ(t)
)

x(t). (28)

Substituting (17) into (28), the second term of (28) is

2xT(t)P −1(θ(t)
)

B
(

θ(t)
){

ū
(

x(t), θ(t), t
)+ d(t)

}

≤ 0. (29)

Then, (28) can be rewritten as

V̇
(

x(t)
)

≤ 2xT(t)P −1(θ(t)
)

[

A
(

θ(t)
)+ B

(

θ(t)
)

×
2m
∑

s=1

ξs

{

EsK
(

θ(t)
)+ E−

s H
(

θ(t)
)}

]

x(t)

+ xT(t)Ṗ −1(θ(t)
)

x(t). (30)

Here, if the upper bound of the LQ cost (14) is a PDLF,
then

J (t) =
∫ ∞

t

xT(t)CTQCx(t) dt < V
(

x(t)
)

. (31)
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Relation (31) is ensured if it holds that

V̇
(

x(t)
)

< J̇ (t), J (∞) = V (∞) = 0,

which leads to the following condition:

0 > P −1(θ(t)
){

A
(

θ(t)
)+ B

(

θ(t)
)

EsK
(

θ(t)
)

+ B
(

θ(t)
)

E−
s H

(

θ(t)
)}

+ {AT(θ(t)
)+ KT(θ(t)

)

ET
s BT(θ(t)

)

+ HT(θ(t)
)

E−T
s BT(θ(t)

)}

P −1(θ(t)
)

+ Ṗ −1(θ(t)
)+ CTQC. (32)

Multiplying both sides of (32) by P(θ(t)) and replac-
ing γP (θ(t)) with P̄ (θ(t)) yield

0 > A
(

θ(t)
)

P̄
(

θ(t)
)+ B

(

θ(t)
)

EsK̄
(

θ(t)
)

+ B
(

θ(t)
)

E−
s H̄

(

θ(t)
)+ P̄

(

θ(t)
)

AT(θ(t)
)

+ K̄T(θ(t)
)

ET
s BT(θ(t)

)

+ H̄T(θ(t)
)

E−T
s BT(θ(t)

)

+ P̄
(

θ(t)
) ˙̄P −1(θ(t)

)

P̄
(

θ(t)
)

+ P̄ (θ(t))CTQCP̄ (θ(t))

γ
, (33)

where

K̄
(

θ(t)
)

� K
(

θ(t)
)

P̄
(

θ(t)
)

.

Remark that

dP̄ −1(θ(t))

dt
= −P̄ −1(θ(t)

)dP̄ (θ(t))

dt
P̄ −1(θ(t)

)

.

Relation (33) then provides the following PLMI con-
dition:
[

(1,1) P̄ (θ(t))CT

CP̄ (θ(t)) −γQ−1

]

< 0, (34)

where

(1,1) � A
(

θ(t)
)

P̄
(

θ(t)
)+ B

(

θ(t)
)

EsK̄
(

θ(t)
)

+ B
(

θ(t)
)

E−
s H̄

(

θ(t)
)+ P̄

(

θ(t)
)

AT(θ(t)
)

+ K̄T(θ(t)
)

ET
s BT(θ(t)

)

+ H̄T(θ(t)
)

E−T
s BT(θ(t)

)

− ˙̄P (θ(t)
)

.

Furthermore, since the upper bound of V (x(t)) is a
positive scalar γ , the following condition is developed:

J (0) < V
(

x(0)
)= xT(0)P −1(θ(0)

)

x(0) < γ,

or equivalently,
[

1 xT(0)

x(0) P̄ (θ(0))

]

> 0. (35)

Consequently, three PLMI conditions are derived,
i.e., (27), (34), and (35), for a state-feedback Type 3
controller. Based on the above conditions, the follow-
ing theorems present the PLMI conditions for the three
types of controllers.

Theorem 1 (Type 3 controller: PLMI conditions) For
all the states x(t) in �(P̄ −1(θ(t))), k ∈ [1,m], and
s ∈ [1,2m], the H2 control problem with the LQ cost in
(14) can be solved using the following linear program-
ming (LP) problem: minimize γ over a positive defi-

nite matrix P̄ (θ(t)), matrices ˙̄P(θ(t)), K̄(θ(t)), and
H̄ (θ(t)) with appropriate dimensions subject to (27),
(34), and (35). In this case, the LQ cost in (14) is guar-
anteed by γ and the controller is constructed as (15),
where K(θ(t)) � K̄(θ(t))P̄ −1(θ(t)) and each compo-
nent of ū(x(t), θ(t), t) is given in (17).

Proof The proof has been previously provided. �

Theorem 2 (Type 2 controller: PLMI conditions) For
all the states x(t) in �(P̄ −1), k ∈ [1,m], and s ∈
[1,2m], the H2 control problem with the LQ cost in
(14) can be solved using the following linear program-
ming (LP) problem: minimize γ over a positive definite
matrix P̄ , matrices K̄(θ(t)) and H̄ (θ(t)) with appro-
priate dimensions subject to
[

(μ − ε)2 eT
k H̄ (θ(t))

H̄T(θ(t))ek P̄

]

> 0, (36)

[

(1,1) P̄CT

CP̄ −γQ−1

]

< 0, (37)

[

1 xT(0)

x(0) P̄

]

> 0, (38)

where

(1,1) � A
(

θ(t)
)

P̄ + B
(

θ(t)
)

EsK̄
(

θ(t)
)

+ B
(

θ(t)
)

E−
s H̄

(

θ(t)
)+ P̄AT(θ(t)

)
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+ K̄T(θ(t)
)

ET
s BT(θ(t)

)

+ H̄T(θ(t)
)

E−T
s BT(θ(t)

)

.

In this case, the LQ cost in (14) is guaranteed by γ and
the controller is constructed as u(t) = K(θ(t))x(t) +
ū(x(t), θ(t), t), where K(θ(t)) � K̄(θ(t))P̄ −1 and
each component of ū(x(t), θ(t), t) is defined as

[

ū
(

x(t), θ(t), t
)]

k
= −ε sgn

(

eT
k BT(θ(t)

)

P −1x(t)
)

.

(39)

Proof This proof is similar to that of Theorem 1, ex-
cept P is used instead of P(θ(t)). Thus, it is left for
the reader. �

Theorem 3 (Type 1 controller: PLMI conditions) For
all the states x(t) in �(P̄ −1), k ∈ [1,m], and s ∈
[1,2m], the H2 control problem with the LQ cost in
(14) can be solved using the following linear program-
ming (LP) problem: minimize γ over a positive definite
matrix P̄ , matrices K̄ and H̄ with appropriate dimen-
sions subject to (37), (38), and
[

(μ − ε)2 eT
k H̄

H̄Tek P̄

]

> 0, (40)

where

(1,1) � A
(

θ(t)
)

P̄ + B
(

θ(t)
)

EsK̄ + B
(

θ(t)
)

E−
s H̄

+ P̄AT(θ(t)
)+ K̄TET

s BT(θ(t)
)

+ H̄TE−T
s BT(θ(t)

)

.

In this case, the LQ cost in (14) is guaranteed by γ

and the controller is constructed as u(t) = Kx(t) +
ū(x(t), θ(t), t), where K � K̄P̄ −1 and each compo-
nent of ū(x(t), θ(t), t) is the same as that in (39).

Proof This proof is similar to that of Theorem 1,
except P , K , and H are used instead of P(θ(t)),
K(θ(t)), and H(θ(t)). Thus, it is left for the reader. �

3.2 LMI condition

The above PLMI conditions involve an infinite num-
ber of LMI conditions, and thus, the task of determin-
ing the controller is numerically intractable. To over-
come it, derived PLMI conditions in Sect. 3.1 are con-
verted into LMI conditions using the parameter re-
laxation technique [13] for a time-varying parameter

θ(t). Thus, to obtain a finite number of LMI conditions
from the derived PLMI conditions, we select the spe-

cial structure of matrices P̄ (θ(t)), ˙̄P(θ(t)), K̄(θ(t)),
and H̄ (θ(t)) as follows:

P̄
(

θ(t)
)

� P̄0 +
r
∑

i=1

θi(t)P̄i ,

˙̄P (θ(t)
)

�
r
∑

i=1

θ̇i (t)P̄i ,

K̄
(

θ(t)
)

� K̄0 +
r
∑

i=1

θi(t)K̄i ,

H̄
(

θ(t)
)

� H̄0 +
r
∑

i=1

θi(t)H̄i ,

where P̄0 and P̄i are positive matrices, and K̄0, K̄i ,
H̄0, and H̄i are real constant matrices with appropriate
dimensions. Thus, the convexity of PLMI conditions
is fully exploited.

The Schur complement technique is used to convert
the PLMI condition in (27) to

(μ − ε)2P̄
(

θ(t)
)− H̄T(θ(t)

)

eke
T
k H̄
(

θ(t)
)

> 0. (41)

Further, consider the two constraints in (3) and (4)
such that for all i ∈ [1, r],
(

r
∑

i=1

θi(t) − θ̄min

)(

r
∑

i=1

θi(t) − θ̄max

)

(

Λ̄ + Λ̄T)≤ 0,

(42)
(

θi(t) − αi

)(

θi(t) − βi

)(

Λ̄i + Λ̄T
i

)≤ 0, (43)

where matrices Λ̄ ∈ Rn×n and Λ̄i ∈ Rn×n satisfy

(

Λ̄ + Λ̄T)≥ 0,
(

Λ̄i + Λ̄T
i

)≥ 0. (44)

Combining (41), (42), and (43) using the S -procedure
provides the following PLMI condition:
[

(μ − ε)2P̄0 + θ̄minθ̄max
(

Λ̄ + Λ̄T)

+
r
∑

i=1

αiβi

(

Λ̄i + Λ̄T
i

)

]

+
r
∑

i=1

θi(t)
[

(μ − ε)2P̄i − (θ̄min + θ̄max
)(

Λ̄ + Λ̄T)

− (αi + βi)
(

Λ̄i + Λ̄T
i

)]
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+
r
∑

i=1

r
∑

j �=i

θi(t)θj (t)
(

Λ̄ + Λ̄T)

+
r
∑

i=1

θ2
i (t)

[(

Λ̄ + Λ̄T)+ (Λ̄i + Λ̄T
i

)]

−
(

H̄T
0 eke

T
k H̄0 +

r
∑

i=1

θi(t)H̄
T
i eke

T
k H̄0

+
r
∑

i=1

θi(t)H̄
T
0 eke

T
k H̄i

+
r
∑

i=1

r
∑

j=1

θi(t)θj (t)H̄
T
i eke

T
k H̄j

)

> 0. (45)

Condition (45) can be reduced to

ΘT
a (t)

{

Ua − RaIRT
a

}

Θa(t) > 0, (46)

where

Ua �

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M N1 N2 · · · Nr

NT
1 O1 L12 L1r

NT
2 LT

12
. . .

. . .
...

...
...

. . .
. . . L(r−1)r

NT
r LT

1r · · · LT
(r−1)r Or

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

M � (μ − ε)2P̄0 + θ̄minθ̄max
(

Λ̄ + Λ̄T)

+
r
∑

i=1

αiβi

(

Λ̄i + Λ̄T
i

)

,

Ni � 0.5(μ − ε)2P̄i − (θ̄min + θ̄max)Λ̄

− (αi + βi)Λ̄i,

Lij � Λ̄ + Λ̄T,

Oi � Λ̄ + Λ̄T + Λ̄i + Λ̄T
i ,

Θa(t) �
[

I θ1(t)I θ2(t)I · · · θr(t)I
]T

,

Ra �
[

eT
k H̄0 eT

k H̄1 · · · eT
k H̄r

]T
.

Condition (46) is ensured if the following LMI condi-
tion holds:
[

Ua Ra

RT
a I

]

> 0. (47)

Therefore, we have the LMI condition in (47) for the
PLMI condition in (27).

To derive the LMI-based H2 performance condi-
tions from (34), (33) can be written as follows:

T(0,0) + R +
r
∑

i=1

θi(t)
{

T(0,i) + T T
(0,i)

}

+
r−1
∑

i=1

r
∑

j=i+1

θi(t)θj (t)
{

T(i,j) + T T
(i,j)

}

+
r
∑

i=1

θ2
i (t){T(i,i)} +

r
∑

i=1

θ̇i (t)
{

T(1,i) + T T
(1,i)

}

< 0, (48)

where

T(0,0) � A0P̄0 + P̄0A
T
0 + B0EsK̄0 + B0E

−
s H̄0

+ K̄T
0 ET

s BT
0 + H̄T

0 E−T
s BT

0 ,

T(0,i) � A0P̄i + AiP̄0 + B0EsK̄i + BiEsK̄0

+ B0E
−
s H̄i + BiE

−
s H̄0,

T(i,j) � AiP̄j + P̄iA
T
j + BiEsK̄j + BiE

−
s H̄j

+ K̄T
i ET

s BT
j + H̄T

i E−T
s BT

j ,

T(1,i) � −0.5P̄i ,

R �
{

P̄0C
TQCP̄0 +

r
∑

i=1

θi(t)
(

P̄0C
TQCP̄i

+ P̄iC
TQCP̄0

)

+
r
∑

i=1

r
∑

j=1

θi(t)θj (t)P̄iC
TQCP̄j

}

/γ.

Moreover, using the parameter relaxation technique,
let us convert constraints (3)–(5) for all i ∈ [1, r], re-
spectively, into

−
(

r
∑

i=1

θi(t) − θ̄min

)(

r
∑

i=1

θi(t) − θ̄max

)

(

Λ + ΛT)

≥ 0, (49)

−(θi(t) − αi

)(

θi(t) − βi

)(

Λi + ΛT
i

)≥ 0, (50)

−(θ̇i (t) − ηi

)(

θ̇i (t) − νi

)(

Σi + ΣT
i

)≥ 0, (51)
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where matrices Λ ∈ Rn×n, Λi ∈ Rn×n, and Σi ∈
Rn×n satisfy

(

Λ + ΛT)> 0,
(

Λi + ΛT
i

)

> 0,
(52)

(

Σi + ΣT
i

)

> 0.

Then, combining conditions (49)–(51) gives

V(0,0) +
r
∑

i=1

θi(t)
{

V(0,i) + V T
(0,i)

}

+
r−1
∑

i=1

r
∑

j=i+1

θi(t)θj (t)
{

V(i,j) + V T
(i,j)

}

+
r
∑

i=1

θ2
i (t){V(1,i)}

+
r
∑

i=1

θ̇i (t)
{

V(2,i) + V T
(2,i)

}+
r
∑

i=1

θ̇2
i (t){V(3,i)}

≥ 0, (53)

where

V(0,0) � −θ̄minθ̄max
(

Λ + ΛT)−
r
∑

i=1

αiβi

(

Λi + ΛT
i

)

−
r
∑

i=1

ηiνi

(

Σi + ΣT
i

)

,

V(0,i) �
(

θ̄min + θ̄max
)

Λ + (αi + βi)Λi,

V(1,i) � −(Λ + ΛT)− (Λi + ΛT
i

)

,

V(2,i) � (ηi + νi)Σi,

V(3,i) � −(Σi + ΣT
i

)

, V(i,j) � −(Λ + ΛT).

Using the S -procedure, conditions (48) and (53) can
be formulated as

T(0,0) + V(0,0) + R

+
r
∑

i=1

θi(t)
{

T(0,i) + T T
(0,i) + V(0,i) + V T

(0,i)

}

+
r−1
∑

i=1

r
∑

j=i+1

θi(t)θj (t)
{

T(i,j) + T T
(i,j) + V(i,j)

+ V T
(i,j)

}+
r
∑

i=1

θ2
i (t)

{

T(i,i) + V(1,i)

}

+
r
∑

i=1

θ̇i (t)
{

T(1,i) + T T
(1,i) + V(2,i) + V T

(2,i)

}

+
r
∑

i=1

θ̇2
i (t){V(3,i)} < 0, (54)

which can be converted into

ΘT
b (t)

{

Ja + Pa

(

γ −1Q
)

P T
a

}

Θb(t) < 0, (55)

where

Ja �
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X Γ1 Γ2 · · · Γr Ω1 · · · Ωr

Γ T
1 D1 Δ12 · · · Δ1r 0 · · · 0

Γ T
2 ΔT

12 D2
. . .

...
...

...

...
...

. . .
. . . Δ(r−1)r

...
...

Γ T
r ΔT

1r
ΔT

(r−1)r
Dr 0 · · · 0

ΩT
1 0 · · · · · · 0 W1 0 0
...

...
... 0

. . . 0
ΩT

r 0 · · · · · · 0 0 0 Wr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

X � T(0,0) + V(0,0), Ωi � T(1,i) + V(2,i),

Γi � T(0,i) + V(0,i), Wi � V(3,i),

Δij � T(i,j) + V(i,j), Di � T(i,i) + V(1,i),

Θb(t) �
[

I θ1(t)I θ2(t)I · · · θr (t)I θ̇1(t)I · · · θ̇r (t)I
]T

,

Pa �
[

CP̄0 CP̄1 · · · CP̄r

]T
.

Then (55) is ensured if the following LMI condition
holds:
[

Ja Pa

P T
a −γQ−1

]

< 0. (56)

The PLMI condition in (35) can be written as
[

1 xT(0)

x(0) P̄0 +∑r
i=1 θi(0)P̄i

]

> 0. (57)

Consequently, the LMI conditions are derived in
(47), (56), and (57) for the design of the Type 3 state-
feedback controller. The following theorems provide
the LMI conditions for the three types of controllers.
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Theorem 4 (Type 3: LMI conditions) For all the
states x(t) in �(P̄ −1(θ(t))), k ∈ [1,m], i ∈ [1, r], and
s ∈ [1,2m], the H2 control problem with the LQ cost
in (14) can be solved using the following LP prob-
lem: minimize γ over positive definite matrices P̄0

and P̄i , matrices K̄0, K̄i , H̄0, H̄i , Λ, Λi , Λ̄, Λ̄i , and
Σi with appropriate dimensions subject to (44), (47),
(52), (56), and (57). In this case, the LQ cost in (14) is
guaranteed by γ and the H2 state-feedback controller
is constructed as

u(t) = K
(

θ(t)
)

x(t) + ū
(

x(t), θ(t), t
)

,

where K(θ(t)) � K̄(θ(t))P̄ −1(θ(t)) and each compo-
nent of ū(x(t), θ(t), t) is given by

[

ū
(

x(t), θ(t), t
)]

k

= −ε sgn
(

eT
k BT(θ(t)

)

P −1(θ(t)
)

x(t)
)

.

Proof The proof has been previously provided. �

Theorem 5 (Type 2: LMI conditions) For all the
states x(t) in �(P̄ −1), k ∈ [1,m], i ∈ [1, r], and s ∈
[1,2m], the H2 control problem with the LQ cost in
(14) can be solved using the following LP problem:
minimize γ over a positive definite matrix P̄ , matri-
ces K̄0, K̄i , H̄0, H̄i , Λ, Λi , Λ̄, and Λ̄i with appropri-
ate dimensions subject to (44), (47), and the following
equations:

(

Λ + ΛT)> 0,
(

Λi + ΛT
i

)

> 0, (58)

[

Jb Pb

P T
b −γQ−1

]

< 0, (59)

[

1 xT(0)

x(0) P̄

]

> 0, (60)

where

M � (μ − ε)2P̄ + θ̄minθ̄max
(

Λ̄ + Λ̄T)

+
r
∑

i=1

αiβi

(

Λ̄i + Λ̄T
i

)

,

Ni � −(θ̄min + θ̄max)Λ̄ − (αi + βi)Λ̄i,

Lij � Λ̄ + Λ̄T,

Oi � Λ̄ + Λ̄T + Λ̄i + Λ̄T
i ,

Jb �

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X Γ1 Γ2 · · · Γr

Γ T
1 D1 Δ12 · · · Δ1r

Γ T
2 ΔT

12 D2
. . .

...
...

...
. . .

. . . Δ(r−1)r

Γ T
r ΔT

1r · · · ΔT
(r−1)r Dr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

X � A0P̄ + P̄AT
0 + B0EsK̄0 + B0E

−
s H̄0 + K̄T

0 ET
s BT

0

+ H̄T
0 E−T

s BT
0 − θ̄minθ̄max

(

Λ + ΛT)

−
r
∑

i=1

αiβi

(

Λi + ΛT
i

)

,

Γi � AiP̄ + B0EsK̄i + BiEsK̄0 + B0E
−
s H̄i

+ BiE
−
s H̄0 + (θ̄min + θ̄max)Λ + (αi + βi)Λi,

Δij � BiEsK̄j + BiE
−
s H̄j + K̄T

i ET
s BT

j + H̄T
i E−T

s BT
j

− (Λ + ΛT),

Di � BiEsK̄i + BiE
−
s H̄i + K̄T

i ET
s BT

i + H̄T
i E−T

s BT
i

− (Λ + ΛT)− (Λi + ΛT
i

)

,

Pb �
[

CP̄ 0 · · · 0
]T

.

In this case, the LQ cost in (14) is guaranteed by γ

and the H2 state-feedback controller is constructed as

u(t) = K
(

θ(t)
)

x(t) + ū
(

x(t), θ(t), t
)

,

where K(θ(t)) � K̄(θ(t))P̄ −1 and each component of
ū(x(t), θ(t), t) is given by

[

ū
(

x(t), θ(t), t
)]

k
= −ε sgn

(

eT
k BT(θ(t)

)

P −1x(t)
)

.

Proof This proof is similar to that of Theorem 4, ex-
cept P is used instead of P(θ(t)), and only the param-
eter conditions (3) and (4) are used. Thus, it is left for
the reader. �

Theorem 6 (Type 1: LMI conditions) For all the
states x(t) in �(P̄ −1), k ∈ [1,m], i ∈ [1, r], and s ∈
[1,2m], the H2 control problem with cost (14) can be
solved using the following LP problem: minimize γ

over a positive definite matrix P̄ , matrices K̄ , H̄ , Λ,
and Λi with appropriate dimensions subject to (58),
(59), (60), and

[

(μ − ε)2 eT
k H̄

H̄Tek P̄

]

> 0, (61)
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where

X � A0P̄ + B0EsK̄ + B0E
−
s H̄ + P̄AT

0 + K̄TET
s B̄T

0

+ H̄TE−T
s B̄T

0 − θ̄minθ̄max
(

Λ + ΛT)

−
r
∑

i=1

αiβi

(

Λi + ΛT
i

)

,

Γi � AiP̄ + BiEsK̄ + BiE
−
s H̄ + (θ̄min + θ̄max)Λ

+ (αi + βi)Λi,

Δij � −(Λ + ΛT),

Di � −(Λ + ΛT)− (Λi + ΛT
i

)

.

In this case, the LQ cost in (14) is guaranteed by γ

and the H2 state-feedback controller is constructed as

u(t) = Kx(t) + ū
(

x(t), θ(t), t
)

,

where K � K̄P̄ −1 and each component of ū(x(t),

θ(t), t) is given by
[

ū
(

x(t), θ(t), t
)]

k
= −ε sgn

(

eT
k BT(θ(t)

)

P −1x(t)
)

.

Proof This proof is similar to that of Theorem 4, ex-
cept that P , K , and H are used instead of P(θ(t)),
K(θ(t)), and H(θ(t)), and only the parameter con-
ditions (3) and (4) are used. Thus, it is left for the
reader. �

4 Simulation results

In this section, let us demonstrate the performance of
the proposed three types of the controllers using ex-
amples of a two-mass-spring [15, 16] and a satellite
system [6, 18]. Since intensive studies have not yet
been carried out on an H2 controller design for LPV
systems with input saturation and a matched distur-
bance, we are unable to compare the performances of
the proposed controllers with those of the conventional
controllers. Therefore, the performances of the pro-
posed controllers will be compared with those of the
conventional controllers (Theorem 8 in [12]) under no
disturbance condition. Next, the performances of the
three types of proposed controllers for LPV systems
with input saturation and a matched disturbance will
be demonstrated. The simulations are performed us-
ing the Matlab 7.9.0.529 LMI toolbox on a PC with a

2.80-GHz AMD Athlon 7850 dual-core processor and
3.25GB of RAM.

4.1 Example 1: two-mass-spring system

Consider the two-mass-spring system shown in Fig. 1,
which is represented in terms of state-space equations
as follows:

⎡

⎢

⎢

⎣

ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1

− k
m1

k
m1

0 0
k

m2
− k

m2
0 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x1(t)

x2(t)

x3(t)

x4(t)

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0
0
1

m1

0

⎤

⎥

⎥

⎦

× (sat
(

u(t)
)+ d(t)

)

,

y(t) = x2(t),

where x1(t) and x2(t) are the positions of the two
masses; x3(t) and x4(t) are the velocities of the two
masses, respectively; u(t) is the control input of m1;
d(t) is the matched disturbance; and y(t) is the output.
We choose m1 = m2 = 1 for the nominal system. Also,
the spring constant k is uncertain in kmin = 0.5 ≤ k ≤
2 = kmax, and the matched disturbance d(t) is cho-
sen as d(t) = 0.1 sin t . If the two parameters θ1(t) and
θ2(t) is chosen as

θ1(t) = 0.5 + 0.5 sin (0.01πt),

θ2(t) = 0.5 − 0.5 sin (0.01πt),

then the LPV representation of the two-mass-spring
system is as follows:

A0 =

⎡

⎢

⎢

⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

,

Fig. 1 Two-mass-spring system with uncertain parameters
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A1 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0

− kmin
m1

kmin
m1

0 0
kmin
m2

− kmin
m2

0 0

⎤

⎥

⎥

⎥

⎦

,

A2 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0

− kmax
m1

kmax
m1

0 0
kmax
m2

− kmax
m2

0 0

⎤

⎥

⎥

⎥

⎦

,

B0 =
[

0 0 1
m1

0
]T

,

B1 = B2 = [0 0 0 0 ]T,

C = [0 1 0 0 ], θ̄min = θ̄max = 1,

α1 = α2 = 0,

β1 = β2 = 1, η1 = η2 = −0.005π,

ν1 = ν2 = 0.005π,

μ = 1, ε = 0.1.

For Theorems 4, 5, and 6, the following parameters are
additionally considered:

Q = I, x(0) = [0.2 −0.3 0 0 ].

4.1.1 Performance of the proposed state-feedback H2

controllers under a no disturbance condition

In this section, the performance of the proposed state-
feedback H2 controllers is compared with that of the
gain-scheduled controller of Theorem 8 in [12] under
no disturbance condition. Table 1 and Fig. 2 show the
minimum cost γ and the trajectories of the states, re-
spectively. Table 1 and Fig. 2 show that Type 1 con-
troller exhibits a lower performance than the controller
described in [12], but that Type 2 and Type 3 con-
trollers exhibit a better performance.

4.1.2 Performance of the proposed state-feedback H2

controllers

In this subsection, we demonstrate the performance of
the three types of controllers for an LPV system with
input saturation and a matched disturbance. Table 2
shows the minimum cost γ of each of the three con-
trollers, while Figs. 3 and 4 show their output y(t)

and sat (u(t)) trajectories. Table 2 and Fig. 3 show
that Type 3 controller outperforms the other two types

of controllers with respect to their minimum cost γ

and transient response. Further, to reduce the chatter-
ing phenomenon of sat (u(t)) shown in Fig. 4, each
component of secondary control part in (17) can be
used tanh(·) instead of sgn(·) [14].

4.2 Example 2: satellite system

Consider the problem of controlling the yaw angles
of a satellite system that consists of two rigid bodies
joined by a flexible link. It is represented in terms of
state-space equations as follows:

⎡

⎢

⎢

⎣

ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 0 1 0
0 0 0 1

−k k −f f

k −k f −f

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x1(t)

x2(t)

x3(t)

x4(t)

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0
0
1
0

⎤

⎥

⎥

⎦

× (sat (u(t)) + d(t)
)

,

y(t) = x1(t),

where x1(t) and x2(t) are the yaw angles for the
main body and the sensor module; x3(t) = ẋ1(t) and
x4(t) = ẋ2(t); u(t) is the controller torque; d(t) is

Table 1 The minimum cost γ under no disturbance

Theorem 8 in [12] Theorem 4 Theorem 5 Theorem 6

γ 14.4708 0.0769 11.4776 30.3071

Fig. 2 The trajectories of state y(t) when no disturbance
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Table 2 The minimum cost γ to be computed for the three
types

Theorem 4 Theorem 5 Theorem 6

γ 0.0785 21.4906 175.9121

Fig. 3 The trajectories of state y(t) with matched disturbance

Fig. 4 The trajectories of the saturated inputs with a function
sgn(·)

the matched disturbance; and y(t) is the output. The
torque constant k and viscous damping f are uncer-
tain in 0.09 ≤ k ≤ 0.4 and 0.0038 ≤ f ≤ 0.04, and the
matched disturbance d(t) is chosen as d(t) = 0.2 cos t .
If the parameters θ1(t), θ2(t), θ3(t), and θ4(t) are cho-
sen as

θ1(t) = 0.5 − 0.5 cos (0.05πt),

θ2(t) = 0.5 + 0.5 cos (0.05πt),

θ3(t) = 0.05 − 0.05 sin (0.05πt),

θ4(t) = 0.05 + 0.05 sin (0.05πt),

then the LPV representation of the satellite system is
as follows:

A0 =

⎡

⎢

⎢

⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

,

A1 =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0

−kmin kmin 0 0
kmin −kmin 0 0

⎤

⎥

⎥

⎦

,

A2 =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0

−kmax kmax 0 0
kmax −kmax 0 0

⎤

⎥

⎥

⎦

,

A3 =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 −fmin fmin

0 0 fmin −fmin

⎤

⎥

⎥

⎦

,

A4 =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 −fmax fmax

0 0 fmax −fmax

⎤

⎥

⎥

⎦

,

B0 = [0 0 1 0 ]T,

B1 = B2 = B3 = B4 = [0 0 0 0 ]T,

C = [1 0 0 0 ], θ̄min = θ̄max = 1.1,

α1 = α2 = α3 = α4 = 0, β1 = β2 = 1,

β3 = β4 = 0.1, η1 = η2 = −0.025π,

η3 = η4 = −0.0025π, ν1 = ν2 = 0.025π,

ν3 = ν4 = 0.0025π, μ = 1.5, ε = 0.2,

kmin = 0.09, kmax = 0.4, fmin = 0.038,

fmax = 0.4,

Q = I, x(0) = [2 −1 0 0 ].
Let us demonstrate the validity of the three types

of controllers for an LPV systems with input satura-
tion and a matched disturbance. Table 3 presents the
minimum cost γ of each of the three controllers. Fig-
ure 2 shows the trajectories of the yaw angle of the
main body. Type 3 controller shows the fastest decay
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Table 3 The minimum cost γ to be computed for the three
types

Theorem 4 Theorem 5 Theorem 6

γ 3.5137 625.2877 4.8535×103

Fig. 5 The trajectories of state y(t) with matched disturbance

rate and the smallest γ among the three types of con-
trollers as shown in Fig. 5 and Table 3.

5 Conclusion

This paper proposed three types of H2 state-feedback
controllers for LPV systems with input saturation and
a matched disturbance. The proposed controllers com-
prised two control parts: a main control part used for
achieving H2 performance, and secondary control part
used for rejecting a matched disturbance. The three
controller types were designed using a feedback gain
matrix K(θ(t)) and Lyapunov function V (x(t)). We
first derived PLMI conditions for the controller de-
signs. Then, using a parameter relaxation technique,
the PLMI conditions were converted into LMI condi-
tions. Simulation results under a no disturbance condi-
tion showed that the proposed controllers have a bet-
ter performance than a conventional controller. Fur-
ther, simulation results under a matched disturbance
showed that Type 3 controller had a better perfor-
mance than both Type 1 and Type 2 controllers.
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