
Nonlinear Dyn (2012) 67:1053–1065
DOI 10.1007/s11071-011-0048-9

O R I G I NA L PA P E R

An enhanced multi-term harmonic balance solution
for nonlinear period-one dynamic motions in right-angle
gear pairs

Junyi Yang · Tao Peng · Teik C. Lim

Received: 15 November 2010 / Accepted: 7 April 2011 / Published online: 4 May 2011
© Springer Science+Business Media B.V. 2011

Abstract A nonlinear time-varying dynamic model
for right-angle gear pair systems, considering both
backlash and asymmetric mesh effects, is formulated.
The mesh parameters that are characteristically time-
varying and asymmetric include mesh stiffness, direc-
tional rotation radius and mesh damping. The period-
one dynamic motions are obtained by solving the di-
mensionless equation of gear motion using an en-
hanced multi-term harmonic balance method (HBM)
with a modified discrete Fourier Transform process
and the numerical continuation method. The accuracy
of the enhanced HBM solution is verified by compar-
ison of its results to the more computational inten-
sive, direct numerical integration calculations. Also,
the Floquet theory is applied to determine the stabil-
ity of the steady-state harmonic balance solutions. Fi-
nally, a set of parametric studies are performed to de-
termine quantitatively the effects of the variation and
asymmetry in mesh stiffness and directional rotation
radius on the gear dynamic responses.

Keywords Right-angle gear pairs · Asymmetric
mesh · Gear backlash · Nonlinear gear dynamics ·
Multi-term harmonic balance

J. Yang · T. Peng · T.C. Lim (�)
Vibro-Acoustics and Sound Quality Research Laboratory,
School of Dynamic Systems, Mechanical Engineering,
College of Engineering and Applied Science, University of
Cincinnati, 598 Rhodes Hall, P.O. Box 210072, Cincinnati,
OH 45221-0072, USA
e-mail: teik.lim@uc.edu

Nomenclatures
b gear backlash
c mesh damping coefficient
e static transmission error
f nonlinear displacement
F forcing function
h arc-length
Ip, Ig Pinion and gear inertias
⇀

j l unit vector along shaft axis
J Jacobian matrix
k mesh stiffness function
me equivalent mass function
⇀
nlm line of action unit vector
⇀
r lm mesh point
r mean value ratio
sl pinion/gear coordinate system
t time
Tp,Tg load on pinion and gear
x δ − e

�x perturbation of x

y perturbation state vector
δ dynamic transmission error
λ directional rotation radius
ω frequency
ς damping ratio
θ rotational displacement

Subscripts
c coast side
d drive side
da damping
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k label for stiffness
l pinion (l = p) and gear (l = g)

m drive (m = d) and coast (m = c) sides
n natural mode
1 mean value
2,3, . . . alternative value

Superscripts
• derivative w.r.t. time
′ derivative w.r.t. dimensionless time
→ vector quantities
∼ dimensionless quantities

1 Introduction

In the past two decades, the nonlinear frequency re-
sponse spectra of parallel axis gears have been ex-
tensively studied. In those studies [1–12], particular
attention was given to the formulation of the nonlin-
ear gear dynamic models and the development of an-
alytical, semi-analytical and numerical solution meth-
ods. Using different mesh stiffness models, including
piecewise linear time-invariant (PLTI) [1, 2], piece-
wise linear time-varying (PLTV) [3–6] and piecewise
nonlinear time-varying (PNTV) [7, 8] ones, various
nonlinear representations of the parallel axis gear pair
were constructed and the corresponding one degree-
of-freedom (DOF) dimensionless equation of motions
were formulated. The method was also extended to de-
velop the multiple DOFs nonlinear models of multi-
mesh gear trains [9, 10], geared rotor-bearing sys-
tems [11] and planetary gear sets [12]. Using various
solution techniques, including analog simulation [1],
digital simulation [1, 2], numerical integration [6–10],
harmonic balance method (HBM) [1, 2], multi-scale
method [3, 6] and multi-term HBM [4, 5, 7–12], the
dimensionless equations of motion were solved for
the gear dynamic response. Amongst the various solu-
tions analyzed, the multi-term HBM coupled with the
discrete Fourier Transform was shown to be capable
of studying a wide range of nonlinear dynamic mod-
els of parallel axis gears [7–12], and the effectiveness
was demonstrated by comparison to experimental re-
sults [4, 5] as well as direct numerical integration cal-
culations [7–12]. Also, the computational cost of the
multi-term HBM is much lower as compared to other
solution schemes, and it appears that all the harmonic
solutions, including stable and unstable dynamics, can

be predicted. Research studies on geared rotor dynam-
ics have also been performed extensively in Europe,
for example, by Velex and his colleagues [13, 14] in
France. The history of the mathematical models used
in gear dynamics up until 1987 are well documented
in the review paper [15] that presented five overlap-
ping categories used to classify the nature of models
proposed.

In spite of the vast number of studies directed at
parallel axis gears, relatively few open publications on
the topic of nonlinear dynamics of right-angle gears
such as hypoid and spiral bevel types can be found.
This is in part due to the complex mesh mechanism in
this class of gears. Unlike the spur gear, the lines of
action in these right-angle gears are not constant dur-
ing the meshing process. This complexity is mainly
due to the curvature feature of the hypoid gear tooth
geometry and kinematics. For the same reason, the
mesh coupling between the pinion and gear are not
symmetric unlike parallel axis gears. In earlier stud-
ies, dynamic studies of right angle gears are limited
to system level trial-and-error testing and relatively
simple mathematical models. A vibration model hav-
ing two degrees of freedom for a bevel gear pair was
adopted [16], in which the line-of-action vector was
simulated by a sine curve. In [17], it was shown exper-
imentally that axle gear noise can be reduced in some
cases by modifying the vibration mode with an iner-
tia disk mounted on the final drive. Most recently, in
a set of studies by Cheng and Lim [18–22], an ana-
lytical modeling framework for analyzing the vibra-
tion characteristics of hypoid and bevel geared rotor
systems was developed. Using that framework, a non-
linear model with PLTV mesh stiffness, time-varying
(TV) directional rotation radius and backlash nonlin-
earity was formulated and solved using the direct nu-
merical integration [22–25]. Also, a nonlinear model
considering PLTV mesh stiffness and backlash non-
linearity was proposed and analyzed using HBM by
Jiang [23]. Although the effect of tooth mesh stiffness
asymmetric nonlinearity on the dynamic response was
analyzed using direct numerical integration [26], there
is no known study that has addressed the directional
rotation radius asymmetric nonlinearity, which is one
of the motivations of the present analysis.

In this study, considering both backlash and asym-
metric mesh nonlinearity, a complete nonlinear dy-
namic model for right-angle gear pairs is proposed.
In the proposed formulation, the mesh stiffness, di-
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rectional rotation radius and mesh damping are as-
sumed to be time-varying and asymmetric. The multi-
term HBM coupled with a modified discrete Fourier
Transform (DFT) process and the numerical contin-
uation method [27, 28] are applied to solve the di-
mensionless equation of motion for the gear dynamic
displacement response. The symmetric or asymmet-
ric nonlinear restoring force, damping force and ex-
ternal excitation forces are first calculated at each time
point within one mesh period. Second, the DFT pro-
cess is performed to obtain the coefficients of the fun-
damental frequency and its harmonics. Third, the dy-
namic response is derived from the solution of the har-
monic balance equations. The results of the proposed
enhanced multi-term HBM is validated by comparison
to the more computationally intensive, direct numeri-
cal integration calculations. Finally, the effects of key
parameters including the variation and asymmetry in
the mesh stiffness and directional rotation radius on
the gear dynamic responses is studied systematically
through a series of parametric studies.

2 Mathematical model

The two degree-of-freedom torsional vibration model
and the coordinate systems of a right-angle gear pair
are shown in Fig. 1. The shaft and bearing are consid-
ered as rigid, and pinion and gear are modeled as rigid
bodies. The mesh coupling between the pinion and
gear is represented using a set of mesh stiffness and
damping elements acting along a line of action dic-
tated by the directional rotation radius. These mesh pa-
rameters are all considered as time-varying and asym-

metric. The equation of motion can be derived as

Ipθ̈p + λp(δ)c(δ)
(
δ̇ − ė

) + λp(δ)k(δ)f (δ − e)

= Tp, (1a)

Igθ̈g − λg(δ)c(δ)
(
δ̇ − ė

) − λg(δ)k(δ)f (δ − e)

= −Tg, (1b)

where Ip and Ig are the mass moments of inertial of
pinion and gear, Tp and Tg are the torque applied on
pinion and gear, and c(δ) and k(δ) are the asymmetric
time-varying mesh damping and stiffness coefficients
given by

c(δ) =
{
cd, δ ≥ 0,

cc, δ < 0,
(2)

k(δ) =
{
kd, δ ≥ 0,

kc, δ < 0,
(3)

kd = kd1 +
A∑

a=1

(
kd(2a) cos(aωt)

+ kd(2a+1) sin(aωt)
)
, (4)

kc = kc1 +
B∑

b=1

(
kc(2b) cos(bωt)

+ kc(2b+1) sin(bωt)
)
, (5)

cd = cd1 +
H∑

h=1

(
cd(2h) cos(hωt)

+ cd(2h+1) sin(hωt)
)
, (6)

Fig. 1 (a) Two degrees of
freedom torsional vibration
model of a hypoid gear pair.
(b) Pinion and gear
coordinate systems
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Fig. 2 Asymmetric nature
of hypoid gear mesh
stiffness: (a) drive side,
(b) coast side

cc = cc1 +
J∑

j=1

(
cc(2j) cos(jωt)

+ cc(2j+1) sin(jωt)
)
, (7)

where cm and km (m = d, c for drive and coast side,
respectively) are the mesh damping and stiffness for
different tooth sides in contact. Typical drive and coast
side mesh stiffness, obtained by synthesizing from the
loaded tooth contact analysis results [22], are shown
in Fig. 2. The plot clearly illustrates the asymmetric
nature of the mesh stiffness for the drive and coast
side cases. Similarly, other mesh parameters such as
mesh damping, mesh points and line-of-action are all
asymmetric. For brevity, they are not plotted here.
Also, in (1), λp(δ) and λg(δ) are the asymmetric time-
varying directional rotation radii of the pinion and
gear. They can be expressed as

λp(δ) =
{
λpd, δ ≥ 0,

λpc, δ < 0,
(8)

λg(δ) =
{
λgd, δ ≥ 0,

λgc, δ < 0,
(9)

λpd = λpd1 +
L∑

l=1

(
λpd(2l) cos(lωt)

+ λpd(2l+1) sin(lωt)
)
, (10)

λpc = λpc1 +
M∑

m=1

(
λpc(2m) cos(mωt)

+ λpc(2m+1) sin(mωt)
)
, (11)

λgd = λgd1 +
U∑

u=1

(
λgd(2u) cos(uωt)

+ λgd(2u+1) sin(uωt)
)
, (12)

λgc = λgc1 +
V∑

v=1

(
λgc(2v) cos(vωt)

+ λgc(2v+1) sin(vωt)
)
, (13)

where λpm and λgm are the pinion and gear directional
rotation radii for drive (m = d) and coast (m = c)

sides of the teeth in contact. The directional rotation
radii are explicitly defined as

λlm = ⇀
nlm · (⇀

j l × ⇀
r lm

)
, (14)

where ⇀
nlm and ⇀

r lm are the line of action and mesh
point, respectively, in the coordinate system sl for dif-
ferent tooth sides in contact (l = p,q for pinion and
gear, m = d, c for drive side and coast side), and

⇀

j l is
the unit vector along the pinion or gear rotating axis
in the coordinate system sl (l = p,q for pinion and
gear). Additionally, in (1), the nonlinear displacement
function f (δ − e) is given by

f (δ − e) =
⎧
⎨

⎩

δ − e − b, δ − e ≥ b,

0, −b < δ − e < b,

δ − e + b, δ − e ≤ −b,

(15)

where 2b is the total gear backlash.
The mesh stiffness, mesh damping, directional ro-

tation radii, and nonlinear displacement are all a func-
tion of the dynamic transmission error δ that is defined
as

δ = λp(δ)θp − λg(δ)θg. (16)

The kinematic transmission error e under no or very
light load is the source of internal excitation in the sys-
tem. Its harmonic expression can be shown to be

e =
Y∑

y=1

(
e(2y) cos(yωt) + e(2y+1) sin(yωt)

)
. (17)
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The mean value of the kinematic transmission error
is set to zero since it will not affect the dynamic re-
sponses. This can be seen clearly from (18a) in which
only the second order derivative of the kinematic trans-
mission error with respect to time is present as part of
the excitation term on the right hand side of the equa-
tion.

The above two degrees-of-freedom, semi-definite
vibration system expressed by (1) can be simplified
into a single degree-of-freedom, definite vibration
model since there is no constraint on the rotational
coordinates of both the pinion and gear. Let x = δ − e,
(1a)–(1b) can be combined into the following single
equation of motion:

me(δ)ẍ + c(δ)ẋ + k(δ)f (x)

= me(δ)

(
λp(δ)Tp

Ip

+ λg(δ)Tp

Ip

− ë

)
, (18a)

me(δ) =
{
med, δ ≥ 0,

mec, δ < 0,
(18b)

med = 1/
(
λ2

pd/Ip + λ2
gd/Ig

)
, (18c)

mec = 1/
(
λ2

pc/Ip + λ2
gc/Ig

)
, (18d)

f (x) =
⎧
⎨

⎩

x − b, x ≥ b,

0, −b < x < b,

x + b, x ≤ b.

(18e)

Also, during the simplification process, λ̇lm and λ̈lm

are assumed to be zero. It is a reasonable assumption
since the mesh point and line of action are typically
continuous without abrupt change even though they
are inherently time-varying.

For simplicity, consider med1 = 1/(λ2
pd1/Ip +

λ2
gd1/Ig), and ωn = √

kd1/med1. Then, to derive the
dimensionless equation of motion, the following trans-
formations are applied:

x̃ = x/b, (19)

t̃ = ωnt, (20)

ω̃ = ω/ωn, (21)

k̃d = kd/kd1 = 1 +
A∑

a=1

(
k̃d(2a) cos

(
aω̃t̃

)

+ k̃d(2a+1) sin
(
aω̃t̃

))
, (22)

k̃c = kc/kc1 = 1 +
B∑

b=1

(
k̃c(2b) cos

(
bω̃t̃

)

+ k̃c(2b+1) sin
(
bω̃t̃

))
, (23)

c̃d = cd/cd1 = 1 +
H∑

h=1

(
c̃d(2h) cos

(
hω̃t̃

)

+ c̃d(2h+1) sin
(
hω̃t̃

))
, (24)

c̃c = cc/cc1 = 1 +
J∑

j=1

(
c̃c(2j) cos

(
jω̃t̃

)

+ c̃c(2j+1) sin
(
jω̃t̃

))
, (25)

λ̃pd = λpd/λpd1 = 1 +
L∑

l=1

(
λ̃pd(2l) cos

(
lω̃t̃

)

+ λ̃pd(2l+1) sin
(
lω̃t̃

))
, (26)

λ̃pc = λpc/λpc1 = 1 +
M∑

m=1

(
λ̃pc(2m) cos

(
mω̃t̃

)

+ λ̃pc(2m+1) sin
(
mω̃t̃

))
, (27)

λ̃gd = λgd/λgd1 = 1 +
U∑

u=1

(
λ̃gd(2u) cos

(
uω̃t̃

)

+ λ̃gd(2u+1) sin(uω̃t̃)
)
, (28)

λ̃gc = λgc/λgc1 = 1 +
V∑

v=1

(
λ̃gc(2v) cos

(
vω̃t̃

)

+ λ̃gc(2v+1) sin(vω̃t̃)
)
, (29)

ẽ = e/b =
Y∑

y=1

(
ẽ(2y) cos

(
yω̃t̃

)

+ ẽ(2y+1)/b sin(yω̃t̃)
)
. (30)

Accordingly, the simplified dimensionless equation of
motion can be represented as

x̃′′ + 2ζc
(
x̃
)
g
(
x̃
)
x̃′ + g(x̃)

1 + σ
k
(
x̃
)
f

(
x̃
)

= T̃pλ̃p

(
x̃
) + T̃gλ̃g

(
x̃
) − ẽ′′, (31a)

where the symbols in the above equation are given by

ζ = λ2
pd1cd1

2Ipωn

, (31b)
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σ = λ2
gd1Ip

λ2
pd1Ig

, (31c)

T̃p = λpd1Tp

bωnIp

, (31d)

T̃g = σ T̃p, (31e)

c
(
x̃
) =

{
c̃d , x̃ ≥ 1,

rdac̃c, x̃ < 1,
(31f)

rda = cc1

cd1
, (31g)

k
(
x̃
) =

{
k̃d , x̃ ≥ 1,

rkk̃c, x̃ < 1,
(31h)

rk = kc1

kd1
, (31i)

f
(
x̃
) =

⎧
⎨

⎩

x̃ − 1, x̃ ≥ 1,

0, −1 < x̃ < 1,

x̃ + 1 x̃ ≤ −1,

(31j)

g
(
x̃
) =

{
λ̃2

pd + σ λ̃2
gd, x̃ ≥ 0,

r2
pλ̃2

pc + σr2
g λ̃2

gc, x̃ < 0,
(31k)

λ̃p

(
x̃
) =

{
λ̃pd , x̃ ≥ 1,

rpλ̃pc, x̃ < 1,
(31l)

λ̃g

(
x̃
) =

{
λ̃gd , x̃ ≥ 1,

rgλ̃gc, x̃ < 1,
(31m)

rp = λpc1

λpd1
, (31n)

rg = λgc1

λgd1
. (31o)

Next, the period-one solution of (31a) is discussed.

3 Period-one dynamics

The multi-term harmonic balance method coupled
with DFT, which has been successfully applied in [4,
5, 7–12] to analyze spur gear nonlinear dynamics, is
adopted in this study to solve the dimensionless equa-
tion of motion for x̃. In those previous studies, the
DFT was applied to calculate the Fourier coefficients
of the nonlinear displacement. Here in this analysis,
the DFT is extended to calculate the Fourier coeffi-
cients of the damping, nonlinear restoring and external
excitation forces.

To start the derivation, the steady-state solution is
assumed to be of the form

x̃(t) = x̃1 +
R∑

r=1

(
x̃2r cos

(
rω̃t̃

)+ x̃2r+1 sin
(
rω̃t̃

))
, (32)

which can be differentiated to yield

x̃′(t) =
R∑

r=1

(−rω̃x̃2r sin
(
rω̃t̃

)

+ rω̃x̃2r+1 cos
(
rω̃t̃

))
. (33)

Then, the time series of the damping, nonlinear restor-
ing and external excitation forces can be obtained by
sampling even number of n points within one funda-
mental mesh period. Here, n must be larger than 2R

where R is the highest harmonics of the solution of in-
terest. Using this process, the time series of the damp-
ing force can be shown to be:

Fda
(
t̃i
) = 2ζc

(
x̃
(
t̃i
))

g
(
x̃
(
t̃i
))

x̃′(t̃i
)
,

i = 0,1,2, . . . , n − 1. (34)

Similarly, the time series of the nonlinear restoring
force is

Fk

(
t̃i
) = g(x̃(t̃i ))

1 + σ
k
(
x̃
(
t̃i
))

f
(
x̃
(
t̃i
))

,

i = 0,1,2, . . . , n − 1; (35)

and the time series of the external excitation forces are

Fp

(
t̃i
) = T̃pλ̃p

(
x̃
(
t̃i
))

, i = 0,1,2, . . . , n − 1; (36)

Fg

(
t̃i
) = T̃gλ̃g

(
x̃
(
t̃i
))

, i = 0,1,2, . . . , n − 1. (37)

In order to use the multi-term HBM, all of these
force terms must be represented by Fourier series as
follows:

Fda = Fda1 +
R∑

r=1

Fda(2r) cos
(
rω̃t̃

)

+ Fda(2r+1) sin
(
rω̃t̃

)
, (38)

Fk = Fk1 +
R∑

r=1

Fk(2r) cos
(
rω̃t̃

)

+ Fk(2r+1) sin
(
rω̃t̃

)
, (39)
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Fp = Fp1 +
R∑

r=1

Fp(2r) cos
(
rω̃t̃

)

+ Fp(2r+1) sin
(
rω̃t̃

)
, (40)

Fq = Fq1 +
R∑

r=1

Fq(2r) cos
(
rω̃t̃

)

+ Fq(2r+1) sin
(
rω̃t̃

)
, (41)

where the coefficients of each series can be calculated
using the discrete Fourier Transform. They are explic-
itly given by

Fda1 = 1

n

n−1∑

i=0

Fda(ti), (42a)

Fda(2r) = 2

n

n−1∑

i=0

Fda(ti) cos(2πrti), (42b)

Fda(2r+1) = 2

n

n−1∑

i=0

Fda(ti) sin(2πrti),

r = 0,1,2, . . . ,R, (42c)

Fk1 = 1

n

n−1∑

i=0

Fk(ti), (43a)

Fk(2r) = 2

n

n−1∑

i=0

Fk(ti) cos(2πrti), (43b)

Fk(2r+1) = 2

n

n−1∑

i=0

Fk(ti) sin(2πrti),

r = 0,1,2, . . . ,R, (43c)

Fp1 = 1

n

n−1∑

i=0

Fp(ti), (44a)

Fp(2r) = 2

n

n−1∑

i=0

Fp(ti) cos(2πrti), (44b)

Fp(2r+1) = 2

n

n−1∑

i=0

Fp(ti) sin(2πrti),

r = 0,1,2, . . . ,R, (44c)

Fg1 = 1

n

n−1∑

i=0

Fg(ti), (45a)

Fg(2r) = 2

n

n−1∑

i=0

Fg(ti) cos(2πrti), (45b)

Fg(2r+1) = 2

n

n−1∑

i=0

Fg(ti) sin(2πrti),

r = 0,1,2, . . . ,R. (45c)

Next, the algebraic sums of the coefficients of the
terms of the like frequencies are forced to be equal.
Doing so will yield

S1 = Fda1 + Fk1 − Fp1 + Fq1, (46a)

S2r = −(
rω̃

)2
x̃2r + Fda(2r) + Fk(2r) − Fp(2r) − Fq(2r)

+ (
rω̃

)2
ẽ2r , (46b)

S2r+1 = −(
rω̃

)2
x̃2r+1 + Fda(2r+1) + Fk(2r+1)

− Fp(2r+1) − Fq(2r+1) + (
rω̃

)2
ẽ2r+1. (46c)

Finally, the Newton–Raphson method is applied to
solve the vector equations S = 0 for the solution vector
x̃ = [x̃1 x̃2 · · · x̃2R+1]T . The problem statement can be
expressed as follows:

x̃(m+1) = x̃(m) − [
J−1](m)

S(m), (47)

where the (m+1)th iteration of solution vector x̃(m+1)

is calculated using the previous iteration values of
x̃(m), S(m) and the Jacobian matrix J (m). The pro-
cess is repeated until the steady-state solution x̃ =
[x̃1 x̃2 · · · x̃2R+1]T converges to within a predefined
error limit for that excitation frequency. If the response
at the next frequency point is needed, a control param-
eter is then set to the next value to restart the iteration
process again. Also, it may be noted that correspond-
ing to one excitation frequency, multiple solutions may
exist for the nonlinear gear dynamic system. If the fre-
quency is chosen as the control parameter, which is
normally done, the calculations may only yield parts
of the whole solution set unless one properly switches
the frequency sweep directions as also seen in the ear-
lier spur gear dynamic analysis [4, 5, 7, 8]. Fortunately,
there are other choices for control parameter such as
the components of the solution vector [9, 10] and the
arc-length [27]. In this study, the arc-length is used as
the control parameter since it is believed to be more ef-
fective and easy to formulate. The arc-length and tan-
gential vector of the solution curve are used to predict
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the initial value of the next solution point given by

x̃n+1 = x̃n − Tnh, (48)

where x̃n+1 represents initial value for the (n + 1)th
point iteration, x̃n represents the solution of the nth
point, Tn is the tangential vector corresponding to the
solution at the nth point, and h is the arc-length incre-
ment.

The Floquet theory [29] is applied to perform the
stability analysis of the steady-state solution obtained
above. Consider the perturbation equation,

�x̃′′ + 2ζc
(
x̃
(
t̃
))

g
(
x̃
(
t̃
))

�x̃′

+ g(x̃(t̃))

1 + σ
k̃
(
x̃
(
t̃
))

f
(
x̃
(
t̃
))

�x̃ = 0, (49)

where �x̃ is the small perturbation of the periodic so-
lution x̃(t) = x̃(t + T ). By defining y = [�x̃ �x̃′]T ,
the perturbation equation can be rewritten as

y′(t̃
) = H

(
t̃
)
y
(
t̃
)
, (50a)

H
(
t̃
) =

[
0 1

− g(x̃(t̃))
1+σ

k̃(x̃(t̃))f (x̃(t̃)) −2ζc(x̃(t̃))g(x̃(t̃))

]

.

(50b)

The above differential equation is then solved for
y′(T ) assuming the initial condition y(0) = I2 where
I2 is the square identity matrix of dimension two.
Then, the local stability of the steady-state solu-
tions can be determined by analyzing the eigenvalues
of y′(T ). The solution is considered stable when the
modulus of the eigenvalues is less than unity; other-
wise the solution is unstable.

4 Parametric studies

The light load case studied in [25] is taken as the base-
line set, and only the period-one motions are of in-
terest. The dimensionless right-angle hypoid gear pa-
rameters for the numerical calculations are listed in
Table 1. To simplify the parametric analysis, only the
first harmonic of the mesh stiffness, directional rota-
tion radii and transmission error are considered. Also,
the torque transmitted through the hypoid gear pair
and the mesh damping coefficients are taken as con-
stants.

Table 1 Dimensionless dynamic parameters for a typical auto-
motive hypoid gear pair

Parameter symbols Numerical value

T̃p 0.1

ς 0.03

σ 0.75

c̃d , c̃c 1

k̃d2, k̃c2 −0.0405

k̃d3, k̃c3 0.0294

rp, rq , rk, rda 1

λ̃pd2, λ̃pc2, λ̃gd2, λ̃gc2 0.01

λ̃pd3, λ̃pc3, λ̃gd3, λ̃gc3 0

ẽ2 0

ẽ3 −0.5

First, the predictions of the multi-term HBM meth-
od are compared to the results of the less efficient,
direct numerical integration. Then, the results of the
parametric studies are examined to understand the ef-
fects of key parameters on the gear dynamic response.

4.1 Numerical validation

For verification purpose, the nonlinear dynamic re-
sponse of the baseline right-angle hypoid gear case
is obtained using both the multi-term HBM and
the Runge–Kutta integration routine with variable
step [25]. Their predicted dynamic responses are com-
pared in Fig. 3, and can be seen to match with each
other very well. Here, Fig. 3(a) shows the comparison
of the root mean square (RMS) values of the displace-
ment response, while the corresponding mean values
are plotted in Fig. 3(b). The dimensionless results can
be easily transformed back to the physical coordinate.
For example, for a practical application, whose physi-
cal parameters are listed on Table 2, the dimension-
less parameters are calculated as Ip = 0.03 kg m2,
Ig = 0.08 kg m2, λpd1 = 0.026 m, λgd1 = 0.1119 m,
as well as kd1 = 1.2 × 108 N/m, and the backlash is
assumed to be b = 20 μm, then the natural angular fre-
quency can be obtained as ωn ≈ 4893 rad/s. Thus, in
Fig. 3(a), the physical frequency range is from about
154 to 1947 Hz, and the displacement range is from
0.2 to 200 μm.

The right-angle gear example selected for the nu-
merical analysis is a hypoid type, as noted earlier.
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Fig. 3 Comparison of multi-term HBM and numerical integra-
tion: (a) RMS of the dynamic displacement, (b) mean value of
the dynamic displacement. Stable steady-state solution
by multi-term HBM; Unstable steady-state solution by
multi-term HBM; ◦ Solutions by numerical integration

Table 2 Physical parameters of a real application hypoid gear
pair

Parameter symbols Numerical value

Pinion/gear tooth number 10/43
Pinion/gear pitch radius 0.048/0.1681 (m)
Offset 0.03175 (m)
Input torque 0.5 (N m)

From past studies [23, 25, 26], it is known that hy-
poid gears can manifest both single-sided and double-
sided tooth impacts. This behavior is also seen here

in the simulation results of both multi-term HBM
and numerical integration. A closer examination of
Fig. 3(a) reveals that, in the low frequency range, the
hypoid gear pair behaves quite linearly with no evi-
dence of tooth impact response. As the dimensionless
frequency increases to ω̃ = 0.8064, the single-sided
tooth impact begins to emerge. At that point, the dy-
namic displacement response curve veers left towards
the lower frequency range unlike a typical linear sys-
tem that would continue to climb in both response
and frequency. This type of characteristic indicates the
effect of backlash nonlinearity causing single-sided
tooth impact, which is similar to a softening spring
case. The response curve continues along that same
trajectory as the dimensionless frequency decreases to
ω̃ = 0.7116 from ω̃ = 0.8064 until double-sided tooth
impact begins to show up. At this point, the effect
of backlash nonlinearity manifests itself as a harden-
ing spring case because of the additional impact with
the preceding tooth. When this happens, the trajec-
tory of the response takes a sharp turn towards the
right with increasing frequency again. The dynamic
displacement response reaches the peak amplitude at
ω̃ = 0.8439. After that point, the hypoid gear pair re-
sponse changes back to only single-sided tooth impact
and subsequently becoming linear again as the fre-
quency increases further.

4.2 Numerical analysis

In this section, a series of numerical simulations are
performed. The purpose is to examine the effects of
the magnitude variation and asymmetric nonlinearity
of the mesh stiffness and directional rotation radii on
the dynamic displacement response.

4.2.1 Effect of directional rotation radii variation

In this analysis, only the effect of the directional ro-
tation radii variation is analyzed. No asymmetry is in-
cluded by setting rp = rq = 1. The variation is repre-
sented by five different values of the second Fourier
coefficient given by λ̃pd2 = λ̃pc2 = λ̃gd2 = λ̃gc2 =
0.01,0.1,0.15,0.18,0.25, which are related to the co-
efficients of the first order harmonic of the directional
rotation radii.

The numerical results presented in Fig. 4(a) show
that the increase in second Fourier coefficient or
first order harmonic of the directional rotation radii
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Fig. 4 Effect of the directional rotation radii variation on
the dynamic response: (a) RMS of the dynamic displace-
ment, (b) primary resonance of the dynamic displacement.

Stable steady-state solution by multi-term HBM;
Unstable steady-state solution by multi-term HBM

seems to amplify the peak values of the second and
third super-harmonic responses. When λ̃pd2 = λ̃pc2 =
λ̃gd2 = λ̃gc2 = 0.01, no obvious peak around ω̃ = 0.5
and ω̃ = 0.33 can be found. As the second Fourier co-
efficient increases to 0.1, the second and third super-
harmonic peaks begin to appear. The peak values of
the second and third super-harmonics continue to am-
plify as the second Fourier coefficient are further in-
creased.

Similar effect of the directional rotation radii vari-
ation on the primary resonance can be observed as

shown in the enlarged plot around the primary reso-
nance in Fig. 4(b). As the second Fourier coefficient of
the directional rotation radii for both pinion and gear
are increased, the peak value and the corresponding
resonance frequency of the primary resonance seems
to rise appreciably.

4.2.2 Effect of directional rotation radii asymmetric
nonlinearity

To examine the effect of asymmetry in the directional
rotation radii on the dynamic displacement responses,
five different coast to drive sides mean value ratios
given by rp = rq = 0.85,0.95,1.00,1.05,1.15 are as-
sumed. The second Fourier coefficient is set to the
fixed value of λ̃pd2 = λ̃pc2 = λ̃gd2 = λ̃gc2 = 0.01.

The analysis results shown in Fig. 5 indicate that
the asymmetric nonlinearity of directional rotation
radii only affects the dynamic displacement response
in the double-sided tooth impact range. The peak fre-
quency of the primary resonance increases as the ratio
of the directional rotation radius mean value of coast
side over the drive side one increases as shown in the
enlarged plot Fig. 5(b).

4.2.3 Effect of mesh stiffness variation

In this analysis, similar to the directional rotation
radii study discussed above, the mesh stiffness is as-
sumed symmetric with rk = 1, in order to examine
the effect of mesh stiffness variation. Five differ-
ent groups of second and third Fourier coefficients
of the mesh stiffness values given by (k̃d2 = k̃c2,

k̃d3 = k̃c3) = (−0.0405,0.0294), (−0.081,0.0588),
(−0.162,0.1176), (−0.243,0.1764), (−0.324,
0.2352) are specified.

As shown in Fig. 6, when the second and third
Fourier coefficients of the mesh stiffness increase, the
peak values of the super-harmonic resonances are am-
plified and both the resonance frequency and peak val-
ues of the primary resonance are amplified as well.
This trend is similar to the directional rotation radius
results.

4.2.4 Effect of mesh stiffness asymmetric nonlinearity

Five different ratio values given by rk = 0.25, 0.50,
1.00, 2.00, 4.00 of mesh stiffness mean value of coast
side over the drive side one are selected to check their
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Fig. 5 Effect of directional rotation radii asymmetric nonlin-
earity on the dynamic response: (a) RMS of the dynamic dis-
placement, (b) primary resonance of the dynamic displace-
ment. Stable steady-state solution by multi-term HBM;

Unstable steady-state solution by multi-term HBM

effects on the dynamic displacement responses. The
second and third Fourier coefficients of the mesh stiff-
ness are set to the fixed set of (k̃d2 = k̃c2, k̃d3 = k̃c3) =
(−0.0405,0.0294).

In Fig. 7, the mesh stiffness asymmetry nonlinear-
ity can be seen to only affect the dynamic displace-
ment response in the double side impact range. This
is again similar to the directional rotation radius study.
The frequency of the primary resonance increases as
the ratio of the mesh stiffness mean value of coast side
over the drive side one increases. The effect appears
like a hardening spring, as seen in the enlarged plot

Fig. 6 Effect of the mesh stiffness variation on the dynamic re-
sponse: (a) RMS of the dynamic displacement, (b) primary res-
onance of the dynamic displacement. Stable steady-s-
tate solution by multi-term HBM; Unstable steady-state
solution by multi-term HBM

Fig. 7(b). When rk = 0.25 and rk = 0.5, all the double-
sided tooth impact steady-state solutions remain sta-
ble, which means that the mesh stiffness asymmetric
nonlinearity seems to affect the stability of the steady-
state solution of the double-sided tooth impact. This is
because that double-sided impact behaves similarly to
a hardening spring, as seen from earlier results. As the
ratio of mean value of coast side over the drive side
one decreases, the effect of hardening spring becomes
weaker, and the solution trajectory veers lesser to the
right. As a result, for the case rk = 0.25 and rk = 0.5,
when gear pair undergoes the transition from single-
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Fig. 7 Effect of the mesh stiffness asymmetry nonlinear-
ity on the dynamic response: (a) RMS of the dynamic dis-
placement, (b) primary resonance of the dynamic displace-
ment. Stable steady-state solution by multi-term HBM;

Unstable steady-state solution by multi-term HBM

sided tooth impact to double-sided tooth impact with
the frequency sweeping down, there is no jump phe-
nomenon seen in these cases at all. For the limiting
case when the ratio of mean value of coast side and
the drive side one equals zero, there is no double-sided
tooth impact, and the solution trajectory does not veer
to the right.

5 Conclusion

A nonlinear time-varying dynamic model for right-
angle gear pair, considering both the backlash and

mesh coupling asymmetric nonlinearity, is formulated.
The resultant equation of motion is solved for the
period-one dynamics using the multi-term harmonic
balance method (HBM) coupled with a modified dis-
crete Fourier Transform procedure and numerical con-
tinuation method. The accuracy of the HBM solution
is demonstrated by comparison to the computationally
more intensive direct numerical integration solutions.
The Floquet theory is applied to determine the stability
of the steady-state harmonic balance solutions.

A light load case using the example of a right-angle
hypoid gear set is chosen for the parametric studies.
The effects of the variation of mesh stiffness and di-
rectional rotation radii and their asymmetric nonlin-
earity on the dynamic displacement are analyzed. The
increase in the variation of directional rotation radii
and mesh stiffness can be seen to amplify the magni-
tude of the super-harmonic responses, and also raise
both the magnitude and resonance frequency of the
primary resonances. On the other hand, the directional
rotation radius and mesh stiffness asymmetric nonlin-
earity seems to only affect the double-sided tooth im-
pact response. The increase of the ratio of directional
rotation radius mean value of coast side over drive
side one seems to amplify both the magnitude and res-
onance frequency of the primary resonance. The in-
crease of the ratio of mesh stiffness mean value of
coast side over drive side more substantially ampli-
fies both the magnitude and peak frequency of the pri-
mary resonance. Furthermore, the existence of mesh
stiffness asymmetry nonlinearity influence the stabil-
ity of the double-sided tooth impact steady-state so-
lution and the transition between single and double-
sided tooth impacts, and thus affect the existence of
the jump phenomenon.
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