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Abstract Recursive matrix relations for kinematics
and dynamics analysis of a three-prismatic-revolute-
cylindrical (3-PRC) parallel kinematic machine (PKM)
are performed in this paper. Knowing the translational
motion of the platform, we develop first the inverse
kinematical problem and determine the positions, ve-
locities and accelerations of the robot’s elements. Fur-
ther, the inverse dynamic problem is solved using an
approach based on the principle of virtual work and
the results in the framework of the Lagrange equa-
tions with their multipliers can be verified. Finally,
compact matrix equations and graphs of simulation
for input force and power of each of three actuators
are obtained. The investigation of the dynamics of this
parallel mechanism is made mainly to solve success-
fully the control of the motion of such robotic sys-
tem.
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Nomenclature
ak,k−1, bk,k−1, ck,k−1 orthogonal transformation

matrices
θ1, θ2 two constant orthogonal matrices
�u1, �u2, �u3 three right-handed orthogonal unit

vectors
l = 2r

√
3 length of the side of moving platform

l2 length of the limb of each leg
θ angle of inclination of three sliders
λA

10, λ
B
10, λ

C
10 displacements of three prismatic

actuators
ϕk,k−1 relative rotation angle of Tk rigid body
�wk,k−1 relative angular velocity of Tk

�wk0 absolute angular velocity of Tk

w̃k,k−1 skew-symmetric matrix associated to
the angular velocity �wk,k−1

�εk,k−1 relative angular acceleration of Tk

�εk0 absolute angular acceleration of Tk

ε̃k,k−1 skew-symmetric matrix associated to
the angular acceleration �εk,k−1

�rA
k,k−1 relative position vector of the centre Ak

of joint
�vA
k,k−1 relative velocity of the centre Ak

�γ A
k,k−1 relative acceleration of the centre Ak

�rC
k position vector of the mass centre of Tk

rigid body
mk, Ĵk mass and symmetric matrix of tensor of

inertia of Tk about the link-frame
xkykzk

f A
10, f

B
10, f

C
10 input forces of prismatic actuators
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1 Introduction

Recently, the research activities on parallel mech-
anisms have gained greater attention for engineers
within the robotic community as their advantages have
become better known. Parallel kinematic machines
(PKM) are closed-loop structures presenting a very
good potential in terms of accuracy, rigidity and abil-
ity to manipulate large loads. In general, these mecha-
nisms consist of two main bodies coupled via numer-
ous legs acting in parallel. One body is designated as
fixed and is called base, while the other is regarded
as movable and hence is called a moving platform of
the manipulator. The number of actuators is typically
equal to the number of degrees of freedom such that
each leg is controlled at or near the fixed base [1].

Compared with traditional serial manipulators, the
followings are the potential advantages of parallel
architectures: higher kinematical accuracy, lighter
weight and better structural rigidity, stable capacity
and suitable position of arrangement of actuators, low
manufacturing cost and better payload carrying abil-
ity. But, from an application point of view, a lim-
ited workspace and complicated singularities are two
major drawbacks of parallel manipulators. Thus, it is
more suitable for situations where high precision, stiff-
ness, velocity and heavy load-carrying are required
within a restricted workspace [2].

Most 3-DOF mechanisms exist in one of three
following classes: spherical, translational or spatial.
A translational device is capable of moving in Carte-
sian coordinates and is suitable for pick-and-place ap-
plications. Spherical mechanisms are often used for
configuring applications such as orienting a camera.
The class of spatial mechanisms includes a combi-
nation of both rotational and translational degrees of
freedom.

Over the past two decades, parallel manipulators
have received more attentions from academics and
industries. Important companies such as Giddings &
Lewis, Ingersoll, Hexel and others have developed
them as high precision machine tools. Accuracy and
precision in the direction of the tasks are essential
since the positioning errors of the tool could end in
costly damage.

Considerable efforts have been devoted to the
kinematic and dynamic investigations of fully paral-
lel manipulators. Among these, the class of manip-
ulators known as Stewart–Gough platform attracted

great attention (Stewart [3], Di Gregorio and Parenti
Castelli [4]). They are used in flight simulators and
more recently for PKMs.

The prototype of Delta parallel robot (Clavel [5],
Tsai and Stamper [6], Staicu [7]) developed by Clavel
at the Federal Polytechnic Institute of Lausanne and
by Tsai and Stamper at the University of Maryland as
well as the Star parallel manipulator (Hervé and Spara-
cino [8]) are equipped with three motors, which train
on the mobile platform in a three-degrees-of-freedom
general translation motion. Angeles [9], Wang and
Gosselin [10], Staicu [11] analysed the kinematics, dy-
namics and singularity loci of Agile Wrist spherical
robot with three actuators.

Ordinarily, there are two problems in PKM dynam-
ics, namely the forward and inverse dynamics, where
the latter solves the input forces of actuators once
the motions of the moving platform are planned and
can be immediately used for the design of a dynam-
ics controller. As far as the approaches to generate a
PKM inverse dynamic model are concerned, most tra-
ditional methods are used such as Newton–Euler for-
mulation [12–14], Lagrange formalism [10, 15–17],
the principle of virtual work [18–21] and commonly
known Kane’s method [22]. With respect to the real
time control of the PKM, the goal of the dynamic mod-
elling is to establish an inverse dynamic model which
is simple yet accurate enough to represent the PKM
system. Once the PKM is designed and developed, its
manipulation accuracy can be guaranteed by design-
ing a proper controller. The inverse dynamic control
(IDC) can produce a nice control performance, pro-
vided that a full dynamic model of the PKM is used
with all dynamic parameters known exactly [23, 24].

In the present paper, a recursive matrix method, al-
ready implemented in the inverse dynamics of parallel
robots, is applied to the analysis of the spatial three-
degrees-of-freedom mechanism. It has been proved to
reduce the number of equations and computation oper-
ations significantly by using a set of matrices for kine-
matic and dynamic models. Therefore, we employ an
exact dynamic model in conjunction with a robust con-
troller to seek for an effective approach to deal with the
control issues for a PKM in this research.

2 Kinematic analysis

In the previous works of Li and Xu [25–27], the 3-PRS
parallel manipulator and the 3-PRC PKM with rela-
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Fig. 1 A virtual prototype of the 3-PRC PKM

tive simple structure were presented with their kine-
matic problems solved in details. The potential appli-
cation as a positioning device of the tool in a new par-
allel kinematic machine for high precision blasting at-
tracted a scientific and practical interest to this manip-
ulator type.

Having a closed-loop structure, the spatial 3-PRC
parallel kinematic machine is a special symmetrical
mechanism composed of three kinematical chains with
identical topology, all connecting the fixed base to
the moving platform (Fig. 1). Each limb connects the
moving platform to the base by a prismatic joint, axe
of which is being inclined from the base platform,
a revolute joint and a passive cylindrical joint in se-
quence, where the prismatic joints are driven by three
linear actuators assembled at the fixed base.

Since the kinematics and mobility problems have
already been resolved, we only review some matrix
useful results below which provide a base for the dy-
namic modelling. The manipulator consists of the up-
per fixed base and the moving platform A3B3C3 that
are two equilateral triangles with L and l = 2r

√
3 the

lengths of the sides, respectively. Overall, there are
seven moving links, three prismatic joints, three rev-
olute joints and three cylindrical joints. Grübler mo-
bility equation predicts that the device has certainly
three degrees of freedom. Practically, the degree-of-
freedom value F = 3 of the mechanism is equal to
the degrees of freedom associated with all the mov-
ing links ν = 12, minus the total number of inde-

Fig. 2 Kinematical scheme of the first leg A of upside-down
mechanism

pendent constraint relations l = 9 imposed by the
joints.

In the configuration (PRC) with all actuators in-
stalled on the fixed base, we consider the moving plat-
form as the output link and the sliders A1,B1,C1 as
the input links (Fig. 2). Having a common point of in-
tersection O , the lines of action of each of three pris-
matic joints may be inclined from the fixed base by
a constant angle θ as architectural parameter. These
rails and the revolute joint axes are mutually perpen-
dicular. Finally, the passive revolute joint of each leg
is separated from the cylindrical joint connecting the
platform’s edge by a fixed-length limb. In this configu-
ration, any translation along the vertical axis is limited
by the constraints and therefore only finite displace-
ments along this axis are obtained.

For the purpose of analysis, a Cartesian frame
Ox0y0z0(T0) is attached to the fixed base with its ori-
gin located just at the common point O of three rails,
the z0 axis perpendicular to the base. Another mobile
reference frame GxGyGzG is attached to the moving
platform. The origin of this coordinate central system
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is fixed at the centre G of the moving triangle. The
kinematical constraints of each leg limit the absolute
motion of cylindrical joint of each limb to a plane per-
pendicular to the axis of the revolute joint and con-
taining the rail. In the symmetrical version of the ma-
nipulator, the first leg A is typically contained within
the Ox0z0 vertical plane, whereas the remaining two
legs B,C make angles αB = 120◦, αC = −120◦, re-
spectively, with the first leg. It is noted that the relative
rotation with ϕk,k−1 angle or relative translation of Tk

body with λk,k−1 displacement must be always point-
ing about or along the direction of zk axis.

In what follows we consider that the moving plat-
form is initially located at a central configuration,
where the platform is not translated with respect to the
fixed base and the origin O of fixed frame is located at
an elevation OG = h above the mass centre G. A com-
plete description of the absolute position of the trans-
lational moving platform with respect to the reference
frame requires generally three variables: the coordi-
nates xG

0 , yG
0 , zG

0 of the mass centre G.
One of three active legs (for example, leg A) con-

sists of a prismatic joint of mass m1 linked at the
A1x

A
1 yA

1 zA
1 moving frame, having a translation with

the displacement λA
10, the velocity vA

10 = λ̇A
10 and the

acceleration γ A
10 = λ̈A

10. An intermediate link of length

A2A3 = l2, mass m2 and tensor of inertia Ĵ2 has a rel-
ative rotation about zA

2 axis with the angle ϕA
21, the

angular velocity ωA
21 = ϕ̇A

21 and the angular acceler-
ation εA

21 = ϕ̈A
21. Finally, a cylindrical joint is intro-

duced at the edge of a planar moving platform, which
is schematised as an equilateral triangle of mass mp

and tensor of inertia Ĵp .
At the central configuration, we also consider that

the three sliders are initially starting from the same po-
sition OA1 = l1 = r cos θ −h sin θ + l2 sin(θ +β) and
that the angles of orientation of the legs are given by

θ = π

6
, αA = 0, αB = 2π

3
, αC = −2π

3
,

l2 cos(θ + β) = r sin θ + h cos θ.

(1)

In the following, we apply the method of successive
displacements to geometric analysis of closed-loop
chains. So, starting from the reference origin O and
pursuing the independent legs OA1A2A3, OB1B2B3

and OC1C2C3, we obtain the following transforma-
tion matrices:

p10 = aθθ1a
i
α, p21 = p

ϕ
21aβθ θ1θ

T
2 , p20 = p21p10

(p = a, b, c, i = A,B,C), (2)

where we denote [28]:

ai
α =

⎡
⎢⎣

cosαi sinαi 0
− sinαi cosαi 0

0 0 1

⎤
⎥⎦ ,

aβθ =
⎡
⎢⎣

cos(θ + β) sin(θ + β) 0
− sin(θ + β) cos(θ + β) 0

0 0 1

⎤
⎥⎦ ,

aθ =
⎡
⎢⎣

cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎥⎦ ,

p
ϕ
21 =

⎡
⎢⎣

cosϕi
21 sinϕi

21 0

− sinϕi
21 cosϕi

21 0
0 0 1

⎤
⎥⎦ ,

θ1 =
⎡
⎢⎣

0 0 −1
0 1 0
1 0 0

⎤
⎥⎦ , θ2 =

⎡
⎢⎣

0 1 0
−1 0 0
0 0 1

⎤
⎥⎦ .

(3)

Three independent displacements λA
10, λ

B
10, λ

C
10 of

the active links are the joint variables that give the in-
put vector �λ10 = [λA

10 λB
10 λC

10]T of the instantaneous
pose of the mechanism. But, in the inverse geomet-
ric problem, it can be considered that the position of
the mechanism is completely given through the coor-
dinate xG

0 , yG
0 , zG

0 of the mass centre G. Further, we
suppose that the following three analytical functions
can describe a helical translation of the moving plat-
form [29]:

xG
0 = d sin(ω1t) cos(ω2t),

yG
0 = d sin(ω1t) sin(ω2t),

zG
0 = h + de[1 − cos(ω1t)],

(4)

where d = 0.5, e = 0.5, ω1 = π
2 , ω2 = 3ω1, t is the

time variable in seconds and xG
0 , yG

0 , zG
0 are the coor-

dinates of the centre G in metres.
Nine independent variables λA

10, ϕ
A
21, λ

A
32, λ

B
10, ϕ

B
21,

λB
32, λ

C
10, ϕ

C
21, λ

C
32 will be determined by several vector-

loop equations as follows:
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�rA
10 +

2∑
k=1

aT
k0�rA

k+1,k − �rA3
G

= �rB
10 +

2∑
k=1

bT
k0�rB

k+1,k − �rB3
G

= �rC
10 +

2∑
k=1

cT
k0�rC

k+1,k − �rC3
G = �rG

0 , (5)

where

�u1 =
⎡
⎣

1
0
0

⎤
⎦ , �u2 =

⎡
⎣

0
1
0

⎤
⎦ , �u3 =

⎡
⎣

0
0
1

⎤
⎦ ,

ũ3 =
⎡
⎣

0 −1 0
1 0 0
0 0 0

⎤
⎦ ,

�ri
10 = (

l1 + λi
10

)
pT

10 �u3, �ri
21 = �0,

�ri
32 = −l2�u2,

�ri3
G = [

r cosαi − λi
32 sinαi r sinαi − λi

32 cosαi 0
]T

(i = A,B,C).

(6)

Actually, these vector equations mean that there is
only one inverse geometric solution for the spatial ma-
nipulator:

l2 cos
(
ϕi

21 + θ + β
)

= (
r + xG

0 cosαi + yG
0 sinαi

)
sin θ + zG

0 cos θ,

λi
10 = l2 sin

(
ϕi

21 + θ + β
)

+ (
r + xG

0 cosαi + yG
0 sinαi

)
cos θ − zG

0 sin θ − l1,

λi
32 = xG

0 sinαi − yG
0 cosαi.

(7)

Now, we develop the inverse kinematic problem
and determine the velocities and accelerations of the
robot, supposing that the motion of the moving plat-
form is known. The motions of the compounding ele-
ments of the leg A, for example, are characterised by
the velocities of joints

�vA
10 = λ̇A

10 �u3, �vA
21 = �0, �vA

20 = a21�vA
10 (8)

and by the following angular velocities:

�ωA
10 = �0, �ωA

20 = �ωA
21 = ϕ̇A

21 �u3, (9)

which are associated to skew-symmetric matrices

ω̃A
10 = 0̃, ω̃A

20 = ω̃A
21 = ϕ̇A

21ũ3. (10)

Vector equations of geometrical constraints (5) can
be differentiated with respect to time to obtain the
following significant matrix conditions of connectiv-
ity [30]:

vA
10 �uT

j aT
10 �u3 + ωA

21 �uT
j aT

20ũ3�rA
32 − vA

32 �uT
j aAT

α �u2 = �uT
j �̇rG

0

(j = 1,2,3). (11)

If the other two kinematical chains of the robot are
pursued, analogous relations can be easily obtained.

From these equations we obtain the complete Jaco-
bian matrix of the manipulator. This matrix is a funda-
mental element for the analysis of the robot workspace
and the particular configurations of singularities where
the spatial manipulator becomes uncontrollable [31].

Rearranging, the above constraint equations (7) can
immediately be written as

[(
r + xG

0 cosαi + yG
0 sinαi

)
sin θ + zG

0 cos θ
]2

+ [
λi

10 + l1 − (
r + xG

0 cosαi + yG
0 sinαi

)
cos θ

+ zG
0 sin θ

]2 = l2
2 (i = A,B,C). (12)

The derivative with respect to time of conditions (12)
leads to the matrix equation

J1 �̇λ10 = J2
[
ẋG

0 ẏG
0 żG

0

]T
, (13)

where the matrices J1 and J2 are, respectively, the in-
verse and forward Jacobian of the manipulator

J1 = diag{δA δB δC},

J2 =
⎡
⎣

βA
1 βA

2 βA
3

βB
1 βB

2 βB
3

βC
1 βC

2 βC
3

⎤
⎦ ,

(14)

with the notations

δi = sin
(
ϕi

21 + θ + β
)

(i = A,B,C),

βi
1 = sin

(
ϕi

21 + β
)

cosαi,

βi
2 = sin

(
ϕi

21 + β
)

sinαi,

βi
3 = − cos

(
ϕi

21 + β
)
.

(15)

The three kinds of singularities of the three closed-
loop kinematical chains can be determined through the
analysis of two Jacobian matrices J1 and J2 [32–34].

The matrix kinematical relations (8)–(11) will be
further required in the computation of virtual velocity
distribution of the elements of the manipulator. Let us
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assume that the manipulator has a first virtual motion
determined by the linear velocities vAv

10a = 1, vBv
10a = 0,

vCv
10a = 0. The characteristic virtual velocities are ex-

pressed as functions of the position of the mechanism
by the general kinematical constraint equations (11).
These virtual velocities are required for the compu-
tation of the virtual work of all forces applied to the
component elements of the mechanism.

As for the linear accelerations γ A
10, γ

A
32 and the an-

gular acceleration εA
21 of the first leg A, the derivatives

with respect to time of (11) give other conditions of
connectivity:

γ A
10 �uT

j aT
10 �u3 + εA

21 �uT
j aT

20ũ3�rA
32 − γ A

32 �uT
j aAT

α �u2

= �uT
j �̇rG

0 − ωA
21ω

A
21�uT

j aT
20ũ3ũ3�rA

32 (j = 1,2,3).

(16)

The following relations give the angular accelera-
tions �εA

k0 and the accelerations �γ A
k0 of joints Ak :

�εA
10 = �0, �εA

20 = �εA
21 = ϕ̈A

21 �u3,

�γ A
10 = λ̈A

10 �u3, �γ A
21 = �0, �γ A

20 = a21 �γ A
10.

(17)

The matrix relations (16) and (17) will be further
used for the computation of the wrench of the inertia
forces for every rigid component of the robot. The dy-
namic model of the mechanism would only be estab-
lished with regard to the complete geometrical analy-
sis and kinematics of the mechanical system

3 Dynamic modelling

When a good dynamic performance and a higher accu-
racy in positioning of the moving platform under large
load are required, the dynamic model of the robot is
important for the automatic control. Inverse dynamic
model is of great significance in the optimisation of
sectional parameters of components and estimation of
servomotor parameters.

The dynamics of parallel manipulators is compli-
cated by existence of multiple closed-loop chains. Dif-
ficulties commonly encountered in dynamics mod-
elling of parallel robots include problematic issues
such as: complicated spatial kinematical structure with
large number of passive degrees of freedom, domi-
nance of inertial forces over the frictional and gravi-
tational components and the problem linked to the so-
lution of the inverse dynamics.

In the context of the real time control, neglecting
the friction forces and considering the gravitational ef-
fects, the relevant objective of the dynamics is to deter-
mine the input torques or forces which must be exerted
by the actuators in order to produce a given trajectory
of the end-effector.

A lot of works have focused on the dynamics of
Stewart platform. Dasgupta and Mruthyunjaya [13]
used the Newton–Euler approach to develop closed-
form dynamic equations of Stewart platform, consid-
ering all dynamic and gravity effects as well as vis-
cous friction at joints. Tsai [1] presented an algorithm
to solve the inverse dynamics for a Stewart platform
type using Newton–Euler equations. This commonly
known approach requires computation of all constraint
forces and moments between the links. Geng et al. [16]
developed Lagrange equations of motion under some
simplifying assumptions regarding the geometry and
inertia distribution of the manipulator. An interest-
ing dynamic modelling is validated by Bi, Lang and
Verner for the specific case of a tripod-based machine
tool [35].

3.1 Principle of virtual work

Knowing the position and kinematic state of each link
as well as the external forces acting on the robot, in the
present paper we apply the principle of virtual work
for the inverse dynamic problem in order to establish
some definitive recursive matrix relations. The three
input forces and powers required in a given transla-
tion motion of the platform will be computed using a
recursive procedure.

Three independent mechanical systems, acting with
the forces �f A

10 = f A
10 �u3, �f B

10 = f B
10 �u3, �f C

10 = f C
10 �u3

along the directions zA
1 , zB

1 , zC
1 of three rails, control

the motion of the moving platform. The parallel robot
can artificially be transformed into a set of three open
chains Ci (i = A,B,C) subject to the constraints.
This is possible by cutting each joint for the moving
platform, and takes its effect by introducing the corre-
sponding constraint conditions.

The force of inertia and the resulting moment of
the forces of inertia of an arbitrary rigid body T A

k , for
example,

�f inA
k0 = −mA

k

[ �γ A
k0 + (

ω̃A
k0ω̃

A
k0 + ε̃A

k0

)�rCA
k

]
,

�minA
k0 = −[

mA
k r̃CA

k �γ A
k0 + Ĵ A

k �εA
k0 + ω̃A

k0Ĵ
A
k �ωA

k0

] (18)
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are determined with respect to the centre of joint Ak .
On the other hand, the wrench of two vectors �f ∗A

k and
�m∗A

k evaluates the influence of the action of the weight
mA

k �g and of other external and internal forces applied
to the same element T A

k of the manipulator:

�f ∗A
k = mA

k gak0 �u2, �m∗A
k = mA

k gr̃CA
k ak0�u2

(k = 1,2). (19)

The fundamental principle of the virtual work states
that a mechanism is under dynamic equilibrium if and
only if the virtual work developed by all external,
internal and inertia forces vanishes during any gen-
eral virtual displacement, which is compatible with the
constraints imposed on the mechanism. Assuming that
the frictional forces at the joints are negligible, the vir-
tual work produced by all forces of constraint at the
joints is zero.

Applying the definitive form of fundamental equa-
tions of parallel robots dynamics [36, 37], the follow-
ing compact matrix relations for the input force of first
active prismatic joint are:

f A
10 = �uT

3

{ �FA
1 + ωAv

21a
�MA

2 + ωBv
21a

�MB
2 + ωCv

21a
�MC

2

+ vGv
10a

�FG
1 + vGv

21a
�FG

2 + vGv
32a

�FG
3

}
. (20)

Two recursive relations generate the vectors

�FA
k = �FA

k0 + aT
k+1,k

�FA
k+1,

�MA
k = �MA

k0 + aT
k+1,k

�MA
k+1 + r̃A

k+1,ka
T
k+1,k

�FA
k+1

(21)

where we denote

�FA
k0 = − �f inA

k0 − �f ∗A
k , �MA

k0 = − �minA
k0 − �m∗A

k .

(22)

The relations (19)–(22) represent the inverse dy-
namics model of the 3-PRC parallel kinematic ma-
chine. These explicit equations are definitively written
in a recursive compact form, only based on the rela-
tive virtual velocities of intensities vv

k,k−1 and ωv
k.k−1.

The various dynamical effects, including the Coriolis
and centrifugal forces coupling and the gravitational
actions, are considered. This dynamics model is suc-
cessfully expected to be deployed for robotic control.

The above compact relations (20) and (21) can be
also applied to calculate any internal joint force or
joint torque by considering several fictitious displace-
ments or rotations in each joint of the manipulator.

In what follows we can apply the Newton–Euler
procedure to establish the set of analytical equations

for each compounding rigid body of a prototype ma-
nipulator in a real application. These equations give all
connecting forces in the external and internal joints.
Several relations from the general system of equations
could eventually constitute verification for the input
forces or active torques obtained by the method based
on the principle of virtual work. Now, we can calcu-
late the friction forces and the friction torques in the
joints, based on the friction coefficients and the max-
imum of the connecting forces in the joints. We ap-
ply again the explicit equations (20) and (21), where
the contribution of the virtual work of friction forces
in joints is added. The new active torques and input
forces are compared to the values obtained in the first
calculus. The present approach can easily be extended
to the mechanics analysis of other types of parallel ma-
nipulators.

The friction of joints could be also analysed by
the approach of Lu, Hu and Yu proposed in their pa-
pers on dynamics of limited-DOF parallel manipula-
tors [38, 39].

3.2 Lagrange equations

A solution of the dynamics problem of the 3-PRC
PKM can be developed based on the Lagrange equa-
tions of second kind for a mechanical system with con-
straints. The generalised coordinates of the robot are
represented by nine parameters:

q1 = xG
0 , q2 = yG

0 , q3 = zG
0 ,

q4 = λA
10, q5 = ϕA

21, q6 = λB
10,

q7 = ϕB
21, q8 = λC

10, q9 = ϕC
21.

(23)

The Lagrange equations with their six multipliers
λ1, λ2, . . . , λ6 will be expressed by nine differential
relations

d

dt

{
∂L

∂q̇k

}
− ∂L

∂qk

= Qk +
6∑

s=1

λscsk

(k = 1,2, . . . ,9) (24)

which contain the following nine generalised forces:
Q1 = 0, Q2 = 0, Q3 = 0, Q4 = f A

10, Q5 = 0, Q6 =
f B

10, Q7 = 0, Q8 = f C
10, Q9 = 0.

A number of six kinematical constraint conditions
are given by the relations (11):

9∑
k=1

cskq̇k = 0 (s = 1,2, . . . ,6). (25)
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The components of the general expression of the
Lagrange function L = Lp + ∑2

ν=1(L
A
ν + LB

ν + LC
ν )

are expressed as analytical functions of the generalised
coordinates and their first derivatives with respect to
time:

Lp = 1

2
mp

(
ẋG2

0 + ẏG2
0 + żG2

0

) − mpgzG
0 ,

Li
1 = 1

2
mi

1�viT
10 �vi

10 − mi
1g�uT

3 �ri
10,

Li
2 = 1

2
mi

2�viT
20 �vi

20 + 1

2
�ωiT

20 Ĵ i
2 �ωi

20 + mi
2�viT

20 ω̃i
20�rCi

2

− mi
2g�uT

3

{�ri
10 + pT

20�rCi
2

}

(i = A,B,C, p = a, b, c).

(26)

The first derivatives of orthogonal matrices pk,k−1

are expressed as follows:

ṗk,k−1 = ϕ̇i
k,k−1ũ

T
3 pk,k−1, ṗ

T
k,k−1 = ϕ̇i

k,k−1p
T
k,k−1ũ3,

∂pk,k−1

∂ϕi
k,k−1

= ũT
3 pk,k−1,

∂pT
k,k−1

∂ϕi
k,k−1

= pT
k,k−1ũ3.

(27)

Now, we can calculate the partial derivatives of the
Lagrange functions

∂Lp

∂xG
0

= 0,
∂Lp

∂yG
0

= 0,
∂Lp

∂zG
0

= −mpg,

∂Lp

∂ẋG
0

= mpẋG
0 ,

∂Lp

∂ẏG
0

= mpẏG
0 ,

∂Lp

∂żG
0

= mpżG
0 ,

∂Li
1

∂λi
10

= −mi
1g�uT

3 pT
10 �u3,

∂Li
1

∂λ̇i
10

= mi
1λ̇

i
10,

∂Li
2

∂λi
10

= −mi
2g�uT

3 pT
10 �u3,

∂Li
2

∂λ̇i
10

= mi
2λ̇

i
10 + mi

2ϕ̇
i
21 �uT

3 pT
21ũ3�rCi

2 ,

∂Li
2

∂ϕi
21

= mi
2λ̇

i
10ϕ̇

i
21 �uT

3 pT
21ũ3ũ3�rCi

2 − mi
2g�uT

3 pT
20ũ3�rCi

2 ,

∂Li
2

∂ϕ̇i
21

= ϕ̇i
21 �uT

3 Ĵ i
2 �u3 + mi

2λ̇
i
10 �uT

3 pT
21ũ3�rCi

2 .

(28)

An extensive calculus of the derivatives with re-
spect to time d

dt
{ ∂L
∂q̇k

} (k = 1,2, . . . ,9) of the above

functions leads to an algebraic system of nine rela-
tions. In the direct or inverse dynamics problem, af-
ter elimination of six multipliers, finally we obtain the
same expressions (20) for the input forces f A

10, f
B
10, f

C
10

required by the prismatic actuators.
As an application, let us consider a 3-PRC PKM

which has the following characteristics:

r = 0.152 m, l2 = 0.400 m, h = 0.1612 m,

θ = π

6
, l = 2r

√
3, �t = 2 s,

l2 cos(θ + β) = r sin θ + h cos θ,

l1 = r cos θ − h sin θ + l2 sin(θ + β),

m1 = 1.297 kg, m2 = 0.906 kg,

mp = 3.982 kg, g = 9.807 ms−2.

(29)

Using the MATLAB software, a computer program
was developed to solve the inverse dynamics of the
3-PRC parallel manipulator, supposing that there are
no external forces and moments acting on the mov-
ing platform. To develop the algorithm, it is assumed
that the platform starts at rest from a central config-
uration and moves pursuing a helical translation. The
time-history for displacements λi

10 (Fig. 3), angles of
rotation ϕi

21 (Fig. 4), input forces f i
10 (Fig. 5) and pow-

ers P i
10 (Fig. 6) of three actuators are illustrated for a

period of �t = 2 seconds in terms of given analytical
equations (4).

Since the intermediate limbs connecting the mov-
ing platform can be manufactured with light materi-

Fig. 3 Displacements λi
10 of three sliders
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Fig. 4 Rotation angles ϕi
21 of three legs

Fig. 5 Input forces f i
10 of three actuators

als, we can simplify the dynamics analysis by defin-
ing a mass distribution factor w (0 < w < 1) for the
legs. That is, the mass of each limb is divided into
two portions and placed at its two extremities (Fig. 2),
i.e., one part with the proportion of w at its upper ex-
tremity (cylindrical joint) and the other part 1 − w at
its lower extremity (slider). Hence, the rotational iner-
tias of these rods are neglected assuming that the mass
of each connecting rod is divided evenly and concen-
trated at its two extremities.

Pursuing this simplifying hypothesis, a compara-
tive study of two sets of actuation forces, f A

10, f
B
10, f

C
10

and f A∗
10 , f B∗

10 , f C∗
10 , obtained using the principle of

virtual work, is plotted graphically through the rela-
tive error-coefficient �f i

10 for the actuation force de-
viation:

Fig. 6 Powers P i
10 of three actuators

Fig. 7 Error-coefficients �f i
10 of three actuators

�f i
10 = f i

10 − f i∗
10

f i
10

× 100 (i = A,B,C). (30)

From the simulation results for w = 0.5 (Fig. 7),
we can see that a deviation exists between the exact
modelling and the simplifying procedure. The sim-
plified analysis is the consequence of expressing the
geometrical constraint conditions in a reduced form,
which are obtained from the remark that the distance
between A2 and A3, for example, is always equal to
the length l2.

For a second example of simulation with e = −0.5,
we suppose that the evolution of moving platform is in
an opposite sense, when the sliders are moving from
the common point to fixed base. In this study case, the
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Fig. 8 Input forces f i
10 of three actuators

Fig. 9 Powers P i
10 of three actuators

forces f i
10 (Fig. 8), the powers P i

10 (Fig. 9) and the
error-coefficients �f i

10 (Fig. 10) are again calculated
by the program and plotted versus time.

The simulation through the program certifies that
one of the major advantages of the current matrix re-
cursive formulation is accuracy and a reduced num-
ber of additions or multiplications and consequently a
smaller processing time of numerical computation.

4 Conclusions

Most of dynamical models based on the Lagrange for-
malism neglect the weight of intermediate bodies and
take into consideration of the active forces or moments

Fig. 10 Error-coefficients �f i
10 of three actuators

only and the wrench of applied forces on the moving
platform. Also, the analytical calculations involved in
these equations present a risk of errors. The commonly
known Newton–Euler method, which takes into ac-
count the free-body-diagrams of the mechanism, leads
to a large number of equations with unknowns includ-
ing also the connecting forces in the joints.

With the inverse kinematic analysis, some exact re-
lations that give in real time the position, velocity and
acceleration of each element of the parallel robot have
been established in the present paper. The dynamics
model takes into consideration the mass, the tensor of
inertia and the action of weight and inertia force in-
troduced by all compounding elements of the parallel
mechanism.

Based on the principle of virtual work, this ap-
proach can eliminate all forces of internal joints and
establishes a direct determination of the time-history
evolution of forces required by the actuators. Choos-
ing appropriate serial kinematical circuits connecting
many moving platforms, the present method can easily
be applied in forward and inverse mechanics of vari-
ous types of parallel mechanisms, complex manipu-
lators of higher degrees of freedom and particularly
hybrid structures, when the number of components of
the mechanisms is increased.
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