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Abstract The Feed Support System (FSS) addressed
here is the receiver carrier of the Five-hundred-meter
Aperture Spherical radio Telescope (FAST) in China.
The FSS is a complex hybrid manipulator, which con-
sists of a cable-driven Stewart manipulator, an A–B ro-
tator and a rigid Stewart manipulator. The cable-driven
Stewart manipulator, which is a long-span flexible ca-
ble structure, is sensitive to the wind disturbance and
induces the FSS vibration. The rigid Stewart manip-
ulator is designed to suppress the vibration and im-
prove the terminal accuracy of the FSS. In the paper,
the elastic dynamic model of the cable-driven Stew-
art manipulator is deduced by simplifying the flexible
cable as the spring damping model, while the rigid-
body dynamic model of the A–B rotator and the rigid
Stewart manipulator is obtained in detail, using the
Newton–Euler method. The internal coupling forces of
the FSS are figured out. The wind disturbance model
is established according to the Davenport spectrum.
By adopting the kinematic and dynamic parameters of
the FAST prototype, the simulation model of the FSS
is completed. Kinematic and dynamic vibration con-
trol strategies are evaluated with simulations. Results
show that the dynamic vibration suppression strategy
well satisfies the FSS terminal accuracy requirement,
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keeps the rigid Stewart manipulator working with rea-
sonable driving forces, and should be adopted in the
control system of the FAST prototype.
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1 Introduction

The Large Telescope (LT), also known as the square
kilometer array, was first proposed at the General As-
sembly of the International Union of Radio Science
(URSI) in 1993. In 1994, Chinese astronomers car-
ried out the conceptual design of the Five-hundred-
meter Aperture Spherical radio Telescope (FAST),
which will be located in the Karst region of Guizhou
Province, southwestern China. With the joint efforts of
Chinese astronomers and engineers, the layout design
of the FAST has already been accomplished [1, 2].

A typical radio telescope is composed of a reflector
and a receiver. However, due to the large aperture, the
mechanical structure of the FAST, as shown in Fig. 1,
has two outstanding features:

(1) The active main reflector. The 520-m-diameter re-
flector, divided into 2000 small elements, can cor-
rect spherical aberration to achieve the full polar-
ization and a wide reflecting band.
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Fig. 1 The sketch map of the FAST: (a) Isometric view. (b) Top
view. 1: cable-driven Stewart manipulator (the base is defined by
six cable-tower connection points C1,C2,C3,C4, c5 and C6),

2: feed cabin, 3: active main reflector (520-m diameter), 4: tow-
ers (uniformly distributed in a 600-m-diameter circle)

(2) The Feed Support System (FSS). The complex
hybrid system consists of three parts: a cable-
driven Stewart manipulator, an A–B rotator and
a rigid Stewart manipulator. The A–B rotator and
the rigid Stewart manipulator are mounted in the
feed cabin, as shown in Fig. 2. The rigid Stew-
art manipulator is usually called the Secondary
Adjustable System (SAS), while the end effector
of the cable-driven Stewart manipulator is usually
called the cable platform, for short. The terminal
receivers of the FAST are attached to the SAS end
effector (FSS terminal).

These three parts are arranged in series. The A–B
rotator is the intermediary which connects the cable
platform and the SAS base at either end. In mechanical
structure, the A–B rotator can be considered as being
composed of the cable platform, the SAS base and the
framework, as shown in Fig. 2. As the range of obser-
vation angle for the FAST is from 40° to −40°, which
is far beyond the rotation capacity of the cable-driven
Stewart manipulator, the A–B rotator is designed to
release the rotation burden of the cable-driven Stewart
manipulator.

The FSS is a typical macro/micro manipulator sys-
tem, which is usually composed of a large (macro)
robot carrying a small (micro) high-precision robot
such as a parallel manipulator. The small high-perfor-
mance manipulator answers for local operation, while
the system retains the high speed and large work space
of the large robot [3]. In FAST, the cable-driven Stew-
art manipulator and the A–B rotator, which constitute
the hybrid macro robot, provide the FSS terminal with
a wide range of translation and rotation. However, the

Fig. 2 The sketch map of the feed cabin. 1: cables, 2: end ef-
fector of the cable-driven Stewart manipulator (cable platform),
3: rigid Stewart manipulator (SAS), 4: A-axis of the A–B rota-
tor, 5: B-axis of the A–B rotator, 6: receivers, 7: framework

cable-driven Stewart manipulator is a long-span flexi-
ble cable structure vulnerable to vibration. The SAS is
responsible for reducing the vibration of the FSS ter-
minal and improving the terminal trajectory accuracy
of the FSS, to achieve the terminal pointing accuracy
of 8′ and positioning accuracy of 10-mm in RMS (root
mean square). According to such function classifica-
tion, the cable-driven Stewart manipulator and A–B
rotator (macro robot) are controlled at low frequency
to track the astronomical observation trajectory. The
SAS is controlled at high frequency to restrict the sys-
tem vibration resulting from the wind disturbance and
reduce the FSS terminal error. Obviously, the SAS vi-
bration control strategy is the kernel of the FSS control
system.

As shown in Fig. 3, the SAS is a 6-degrees-of-
freedom (6-DOF) parallel manipulator [4], with two
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Fig. 3 The sketch map of the SAS. 1: base, 2: extensible limbs,
3: end effector, 4: receivers

bodies (the end effector and the base) connected to-
gether by six extensible limbs. Each limb, driven by a
servomotor and lead screw, is connected with the base
by a universal joint at one end and the end effector
by a spherical joint at the other. For the cable-driven
Stewart manipulator, the end effector is connected to
the base by six cables, as shown in Fig. 1. Each cable
is driven by a servo mechanism, which is composed of
a winch, a reducer, and a servomotor [5].

The vibration of the FSS will affect the overall ob-
serving performance of the FAST. The vibration anal-
ysis and control are inevitable to accomplish the FAST
project. In order to establish the simulation model, the
dynamic model of the FSS needs to be deduced at first.
However, due to the complex and coupled mechanical
structure, the dynamic model of the FSS is inherently
difficult. The dynamic model of the FSS can be sub-
divided into the elastic dynamic model of the cable-
driven Stewart manipulator, as well as the rigid body
dynamic model of the A–B rotator and the SAS. Based
on different mechanics principles, several methods can
be adopted to establish the dynamic model, such as the
Newton–Euler method [6–9], the Lagrangian formu-
lation [10–12], the principle of virtual work [13–16],
and the Kane method [17, 18]. However, the Newton–
Euler formulation, recognized as the approach with
clear physical meaning and good suitability for the
complex structure modeling, is adopted in this arti-
cle.

The remainder of this paper is organized as fol-
lows. In the next section, the structure of the FSS
studied here is described in detail. The wind distur-
bance model is established on the basis of the Dav-
enport spectrum [19] in Sect. 3. The elastic dynamic
model of the cable-driven Stewart manipulator and the
numerical solution are demonstrated in Sect. 4. The
dynamic model of the A–B rotator and the SAS is
obtained in algebraic form in Sect. 5. The vibration

frequency and stiffness of the FSS are analyzed in
Sect. 6. In Sect. 7, the wind vibration simulation of
the FSS is carried out. To improve the terminal accu-
racy, the vibration control simulations are carried out
in Sect. 8. Finally, conclusions of this paper are given
in Sect. 9.

2 System description

As shown in Fig. 1, the base of the cable-driven Stew-
art manipulator is defined by six cable-tower connec-
tion points (C1,C2,C3,C4,C5 and C6). The global
frame {G} is an inertia coordinate system O–XYZ, at-
tached to the bottom of the active main reflector with
X-axis pointing to the bottom of tower C1, and Y -
axis crossing the midpoint of C2 and C3 tower bot-
toms. The cable frame {C} is attached to the geomet-
ric center defined by the end-effector points of the
cable-driven Stewart manipulator, as shown in Figs. 1
and 4. Let {P } be the SAS end-effector frame o–xyz,
attached to the geometric center of the SAS end effec-
tor plane determined by SAS end-effector points with
the x-axis crossing the midpoint of P1P6, and the z-
axis perpendicular to the SAS end-effector plane. Let
{B} be the SAS base frame o′–x′y′x′, attached to the
geometric center of the SAS base plane defined by the
SAS base points, with the x′-axis crossing the mid-
point of B1B6, and the z′-axis perpendicular to the
SAS base plane. The middle frame {M} is a transla-
tional coordinate, attached to the intersection of the
two revolution axes in the A–B rotator, parallel to the
global frame.

At the initial state of the FSS, the cable platform is
at the center of its workspace and driving cables are
of uniform length. The FSS terminal is at the center
of the SAS workspace, and extensible limbs are of
uniform length. The initial distance of the SAS be-
tween the base and the end effector is 3.3 m, the ini-
tial height of the cable-driven Stewart manipulator is
150.3 m in global frame, and the initial distance be-
tween FSS terminal and the cable platform is 10.3 m.
Initial rotation angles of the A–B rotator are zero, with
X-axis and Y -axis in {M} along A-axis and B-axis
of the A–B rotator, respectively. At the initial state,
these five frames are parallel to each other with the
Z′-axis, the Z-axis, the Z-axis, the z-axis, and the z′-
axis collinear, along the opposite direction of the grav-
ity.
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Fig. 4 Kinematic model of
the FSS: (a) isometric
drawing of the FSS, (b) top
view of the SAS

Some important notations used in this paper are
shown in Table 1. Others have been described at the
place of first appearance. Generally, vectors and ma-
trices are described in bold. The SAS limb number
is denoted by the subscript i (i = 1,2, . . . ,6), while
the cable number is denoted by the subscript j (j =
1,2, . . . ,6). The right subscripts of notations hint at
their physical meanings, while the left superscripts

show the coordinate systems under which they are de-
scribed.

3 Wind disturbance model

In this section, the wind impact, the major external dis-
turbance for the FSS, is represented as uniformly dis-
tributed force acting on the feed cabin shield, which
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Table 1 Notation description

Symbol Physical meaning In frame

GRC Rotation matrix. Orientation of the cable platform Global
GtC Translation vector. Position of the cable platform Global

dj Translation vector. Position of the end-effector points of the cable-driven Stewart Cable

cj Translation vector. Position of the base points of the cable-driven Stewart Global
C tM Translation vector. Position of the intersection of revolution axes of the A–B rotator Cable
CRf Rotation matrix. Orientation of the framework Cable
CRB Rotation matrix. Orientation of the SAS base Cable

bi Translation vector. The SAS base points SAS base

pi Translation vector. The SAS end-effector points SAS end effector
BRP Rotation matrix. Orientation of the SAS end effector SAS base
B tP Translation vector. Position of the SAS end effector SAS base
BωP Angular velocity of the SAS end effector SAS base
BεP Angular acceleration of the SAS end effector SAS base

covers the feed cabin. The wind force is determined
by the wind velocity. According to the standard the-
ory of Davenport [18], the total wind velocity is the
combination of a steady-state (or mean) velocity and a
turbulence (or gust) velocity, which can be expressed
as a function of height z and time t :

ν(z, t) = νm(z) + νg(z, t), (1)

where νm(z) stands for the mean velocity, and νg(z, t)

stands for the gust velocity.

3.1 Steady-state wind velocity

In normal terrain, the wind velocity increases with
the height. The exponential function used to describe
the relation between the steady-state wind speed and
height can be expressed as

νm(z) = ν10 ·
(

z

10

)α

, (2)

where z is the height of the feed cabin center from the
ground (z = 145 m in our case), ν10 is the mean veloc-
ity measured at 10 m above the ground, and α is the
terrain factor reflecting the roughness of the ground
surface. According to the physical environment of the
FAST site, α = 0.16.

The FAST is designed to be operational until the
steady-state velocity measured at 10 m height exceeds

Fig. 5 Steady-state wind speed

4 ms−1, and to be survival until the steady-state ve-
locity exceeds 8 ms−1 [2]. According to the exponen-
tial function, the steady-state wind speeds of different
height are calculated. As shown in Fig. 5, the maxi-
mum operational mean speed is 6.136 ms−1 at feed-
cabin height (145 m) and the survival mean speed is
12.27 ms−1 at feed-cabin height.

3.2 Turbulence wind velocity

The gust component, which is a stationary Gaussian
random process with zero mean, is usually analyzed
with the random vibration theory. Davenport has made
a large number of wind tunnel tests and gave a widely
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used wind spectrum, which depends on the mean wind
velocity and the terrain roughness. The Davenport
spectrum [18] can be expressed as

Sν(f ) = 4κν2
mβ

f (1 + β2)4/3
, (3)

where β = Lνf/νm, Lν is the wind turbulence scale,
f is the gust frequency, and κ is the surface drag co-
efficient (0.005 ≤ κ ≤ 0.015). For the FAST project,
Lν = 1200 m and κ = 0.01.

The gust velocity can be obtained by inputting a
white-noise signal of unit standard deviation into the
approximation filter of the Davenport spectrum. The
filter transfer function adopted here is of the third or-
der, which is obtained by adjusting parameters until
the filter consistent with the Davenport spectrum is
well within the bandwidth of [10−4,10] Hz.

Finally, the approximation filter is selected, whose
transfer function can be described as

TF = 1.869s2 + 1.147s + 0.002927

s3 + 1.646s2 + 0.1057s + 0.0008963
. (4)

Fig. 6 Comparison between the Davenport spectrum and the
approximation filter

The comparison of the filter and the Davenport spec-
trum is shown in Fig. 6. As demonstrated in the figure,
the filter approximates the Davenport spectrum well.
Besides, the main wind effect occurs around 0.01 Hz,
which can be compensated by the feed support system
in FSS.

3.3 Wind force

On the basis of wind velocity, the time history of the
wind force is obtained in this section. Firstly, the wind
pressure exerted on the feed cabin shield is calculated.
According to the Bernoulli Equation, the wind pres-
sure can be expressed as

p(z, t) = 1

2
ρν(z, t)2 = 1

2
ρ
[
νm(z) + νg(z, t)

]2
, (5)

where ρ is the air density, and ρ = 1.225 kg m−3 in
the FAST site.

The wind force acting on the FSS is the product of
wind pressure and effective area. The effective area of
the feed cabin shield under wind pressure is 150 m2.
The simulation procedure of the wind force in FAST
is given in Fig. 7. Further, a sample of the FSS wind
force generated with the method is shown in Fig. 8,
which is used in the following simulations.

4 Elastic dynamic model of the cable-driven
Stewart manipulator

In order to simplify the dynamic model of the cable-
driven Stewart manipulator, each driving cable is
considered as the spring damping model. The elas-
tic model of the cable-driven Stewart manipulator is
shown in Fig. 9.

The j th cable vector GSCj (from point Cj to point
Dj ) can be derived under the global frame as

GSCj = GtC + GRC · dj − cj . (6)

Fig. 7 Wind force calculation flow chart
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Fig. 8 A sample of the
FSS wind force

Since the mass of the feed cabin is over 30 ton and the
cable mass is less than 1 ton, it is reasonable to neglect
the mass of each driving cable. Then the cable can be
considered as a straight line, and the length of the j th
cable can be given as

LCj = ∥∥GSCj

∥∥. (7)

The unit cable vector can be described as

GsCj = GSCj/LCj . (8)

The velocity of point Dj can be obtained by taking
the derivative of the cable vector equation, and is given
in terms of the cable platform velocities as

GṠCj = G ṫC + Gθ̇C × (
CRC · dj

)
. (9)

The velocity along the driving cable is given by the
component of the velocity along the cable vector:

L̇Cj = GsCj · GṠCj . (10)

The force acting on the cable platform by the j th
cable can be calculated in terms of the cable elastic
deformation and velocity as

Fj = Kj · (LCj − LCj0) + ζj · L̇Cj , (11)

where Kj is the elastic coefficient of the j th cable
(Kj = A · E/LCj0, the cable cross-sectional area A =
8.04 × 10−4 m2, the cable elastic modulus E = 1.6 ×
1011 Pa), the damping coefficient ζj = 200 N s/m, and
LCj0 is the theoretical length of the j th cable calcu-
lated without external disturbances. According to the
Newton–Euler equation, the dynamic equation of the
cable-driven Stewart manipulator can be written as
[ ∑6

j=1 Fj
GsCj∑6

j=1 Fj [(GRC · dj ) × GsCj ]

]

Fig. 9 Elastic model of the cable-driven Stewart manipulator

+
[

MG ẗC
Gθ̇C × IGθ̇C + IGθ̈C + MeC × G ẗC

]
=

[
Fe

Ne

]
,

where M and I are the mass and inertia matrices of
the feed cabin, Fe and Ne are the external force and
torque acting on the feed cabin, G ẗC and Gθ̈C are the
linear and angular accelerations of the cable platform
in global frame, eC is the position vector of the mass
center of the cable platform in {C}.

As the algebraic solution of the above dynamic
equation is difficult to obtain, fourth-order Runge–
Kutta method is adopted to get the numerical solu-
tion. Assuming X = [GtC;GθC], the elastic dynamic
equation of the cable-driven Stewart manipulator can
be rewritten as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ẋ = V,

V̇ = f (t,X,V),

X(t0) = X0,

V(t0) = Ẋ0.

(12)
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And the recurrence formulas of the Runge–Kutta
method can be deduced as
{

Xn+1 = Xn + hVn + h2

6 (η1 + η2 + η3),

Vn+1 = Vn + h
6 (η1 + 2η2 + 2η3 + η4),

where h is the time step, which determines the sam-
pling time of the calculation. Also,

η1 = f (tn,Xn,Vn),

η2 = f

(
tn + h

2
,Xn + h

2
Vn,Vn + h

2
η1

)
,

η3 = f

(
tn + h

2
,Xn + h

2
Vn + h2

4
η1,Vn + h

2
η2

)
,

η4 = f

(
tn + h,Xn + hVn + h2

2
η2,Vn + hη3

)
.

5 Dynamic model of the feed cabin

The feed cabin is composed of the A–B rotator and the
SAS. In order to obtain the dynamic model, the kine-
matic parameters are deduced firstly. Since the two
parts are arranged in series, the kinematic parameters
are deduced in the order from the A–B rotator to the
SAS.

5.1 Kinematics of the feed cabin

The framework is composed of the square frame and
four rotation modules. The local frame {Lf } of the
framework is established as shown in Fig. 10. Another
local frame {LS} is established at the geometric center
of the square frame, parallel to {Lf }. Symbol ef is the
centroid vector of the framework in {LS}, while sym-
bol tf is the translation vector of {LS} in {Lf }. Then,
the centroid vector can be described under the middle
frame as

Mκf = GRf (tf + ef ), (13)

where

GRf = GRC · CRf , CRf =
⎡
⎣ cθB 0 sθB

0 1 0
−sθB 0 cθB

⎤
⎦ ,

tf = [0,0, tf z]T,

Fig. 10 The sketch map of the framework

Fig. 11 The sketch map of the SAS base

and θB is the rotation angle of the B-axis. Symbol c

stands for cosine operation, while s stands for sine op-
eration.

The angular velocity and angular acceleration func-
tions of the framework can be described in the middle
frame as

Mωf = Gωf = GRC · ξ̇B, (14)

Mεf = Gεf = GRC · ξ̈B, (15)

where ξ̇B = [0, θ̇B,0]T, ξ̈B = [0, θ̈B,0]T, and θ̇B , θ̈B

are the rotation velocity and acceleration of the B-axis.
Therefore, the velocity and acceleration of the cen-

troid of the framework in middle frame can be ex-
pressed as

Mvf = Gωf × Mκf ,

Maf = Gεf × Mκf + Gωf × (
Gωf × Mκf

)
.

(16)

The moment of inertia If o of the framework is de-
fined in {LS}, relative to its centroid. The moment of
inertia of the framework can be described in {M} as

If = GRf If o
GRT

f . (17)

As shown in Fig. 11, the local frame {LB} of the
SAS base is attached to the intersection of revolution
axes of the A–B rotator, parallel to {B}. If tB is the
translation vector that describes the location position
of {B} in {LB}, it can be described under the middle
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frame by rotation matrices and translation vectors as

M tB = GRB · tB, (18)

where

GRB = GRC · CRB, CRB = R(Y,θB)R(X,θA)

=
⎡
⎣ cθB cθBsθA sθBcθA

0 cθA −sθA

−sθB cθBsθA cθBcθA

⎤
⎦ ,

and θA is the rotation angle of the A-axis.
As eB is the position vector of the mass center of

the SAS base in {B}, the position vector of the centroid
of the SAS base in {M} can be obtained as

MκB = GRB(tB + eB), (19)

where tB = [0,0, tBz]T.
The angular velocity and angular acceleration func-

tions of the SAS base can be found in the middle frame
as

MωB = GωB = GRC

(
ξ̇B + CRf · ξ̇A

)
, (20)

MεB = GεB

= GRC

[
ξ̈B + CRf · ξ̈A + ξ̇B × (

CRf · ξ̇A

)]
,

(21)

where ξ̇A = [θ̇A,0,0]T, ξ̈A = [θ̈A,0,0]T, and θ̇A, θ̈A

are the rotation velocity and acceleration of the A-axis;
ξ̇B× can be described by the skew-symmetric operator
as ξ̇B× = CṘf · CRT

f .
Similarly, the acceleration of the centroid of the

SAS base in the middle frame is

MvB = GωB × MκB,

MaB = GεB × MκB + GωB × (
GωB × MκB

)
.

(22)

The acceleration of the SAS base frame can be derived
in the global frame as

G ẗB = GẗM + M ẗB, (23)

where

M ẗB = GεB × M tB + GωB × (
GωB × M tB

)
. (24)

The moment of inertia IBo of the SAS base is de-
fined in {B}, relative to its centroid. The moment of
inertia can be obtained in {M} as

IB = GRBIBo
GRT

B. (25)

Fig. 12 Kinematic model of the ith SAS leg

The kinematic model of the ith SAS leg is shown
in Fig. 12. Two local frames denoted as {L} and {U}
are established in the leg. Frame L is attached to the
SAS base point Bi (the rotation center of the univer-
sal joint of the leg), with the x-axis along the leg. The
cross product of the x-axis of frame L and the loca-
tion vector of the SAS base point Bi is defined as the
y-axis of frame L. Then, the z-axis is easy to obtain
by the cross product of x-axis and y-axis. Frame U
is attached to the SAS end-effector point Pi (the rota-
tion center of the universal joint of the leg), parallel to
the local frame L. Translational frames {L′} and {P ′}
are introduced (not shown separately in Fig. 12), par-
allel to the global frame. {L′} is attached to the origin
point of {L}, while {P ′} is attached to the origin point
of {P }.

Since kinematic derivation of the SAS is similar to
that of the A–B rotator, the procedure is omitted here
and demonstrated in Appendix A. The derivation pro-
cedure of the feed cabin dynamics is carried out in the
order from the SAS to the A–B rotator.

5.2 Dynamics of the feed cabin

In {L′}, relative to the SAS base point Bi , the Euler’s
equation for the entire limb of the SAS is deduced as

GSi × FSi + MUi
Gsi

= mLrLi × aLi + mU rUi × aUi + (ILi + IUi)
GAi

+ GWi × (ILi + IUi)
GWi

+ (mLrLi + mU rUi) × aLri

− (mLrLi + mU rUi) × g
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where MUi is the mode of the constrained torque ex-
erted by the universal joint avoiding rotation along the
limb axis, and FSi is the constrained force of the spher-
ical joints acting on the limb.

By taking cross products of both sides with Gsi , the
above equation can be simplified as

GFSi = Ci + (FLeg)i
Gsj , (26)

where

Ci = Di × Gsi

Li

,

(FLeg)i = Gsi · GFSi ,

Di = mLrLi × aLi + mU rUi × aUi + (ILi + IUi)
GAi

+ GWi × (ILi + IUi)
GWi

+ (mLrLi + mU rUi) × aLri

− (mLrLi + mU rUi) × g.

As the reaction force of GFSi is exerted on the SAS
end effector, the Newton’s equation for the FSS termi-

nal can be written as

mP g −
6∑

i=1

GFSi − mP aPr = mP aP . (27)

Relative to the geometric center, the Euler’s equation
for the FSS terminal can be written as

mP
Ge × g −

6∑
i=1

(
GRC · CRB · BRP · pi

) × GFSi

− mP
Ge × aPr

= mP
Ge × aP + GεP IP + GωP × (

IP · GωP

)
.

(28)

Substituting (GFS)i into Eq. (26), (FLeg)i can be ob-
tained from the Newton and Euler equations listed
above. Organizing the equations in matrix form, we
obtain

H · FLeg = N, (29)

where

H =
[

Gs1
Gs2

Gs3
Gs4

Gs5
Gs6

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

]
,

ρi = (
GRC · CRB · BRP · pi

) × Gsi i = 1,2, . . . ,6,

FLeg = [
(FLeg)1, (FLeg)2, (FLeg)3, (FLeg)4, (FLeg)5, (FLeg)6

]T
,

N =
[

mP g − ∑6
i=1 Ci − mP aPr − mP aP

mP
Ge × (g − aP − aPr) − IP · GεP − ∑6

i=1
GRB · BRP · Pi × Ci − GωP × (IP · GωP )

]
.

The Newton’s equation of the upper part of the SAS
limb gives

GFSi = mU g − FPJ i = mU(aUi + aLri),

where FPJ i is the sum of the driving and constrained
forces of prismatic joint of the ith limb. Since the driv-
ing force is along the limb axis, taking the dot product
with the limb unit vector Gsi gives

Fi = (FLeg)i + Ui,

where

Fi = Gsi · FPJ i,

Ui = mU
Gsi · [g − (aUi + aLri)

]
, (30)

and Fi is the driving force of prismatic joint. The re-
quired input forces can be determined in matrix form
as

F = FLeg + U, (31)
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where

F = [F1,F2,F3,F4,F5,F6]T

and

U = [U1,U2,U3,U4,U5,U6]T.

In order to determine the force of the universal joint
acting on the limb, the Newton’s equation for the entire
SAS limb in global frame is written as

GFUi + GFSi + (mL + mU)g

= mL(aLi + aLri) + mU(aUi + aLri), (32)

where GFUi is the force exerted by the universal joint
to the limb.

On the basis of the SAS dynamics, the dynamics of
the A–B rotator are derived. The Newton’s equation
for the SAS base in global frame gives

FA −
6∑

i=1

GFUi + mBg = mB

(
G ẗM + MaB

)
, (33)

where FA is the force exerted by the framework to the
SAS base, and mB is the mass of the SAS base. Tak-
ing the moment acting on the SAS base in the middle
frame about the intersection point of revolution axes
in A–B rotator, the Euler’s equation gives

MA −
6∑

i=1

(
M tbi × GFUi

)

+ mB
MκB × (

g − G ẗM − Mab

)
= IB · MεB + MωB × (

IB · MωB

)
, (34)

where MA is the torque exerted by the framework to
the SAS base.

The Newton’s equation for the framework in global
frame can be written as

FB − FA + mF g = mF

(
GẗM + Maf

)
, (35)

where FB is the force exerted by the base of the cable-
driven Stewart manipulator to the framework, and mF

is the mass of the framework. The Euler’s equation for
the framework about the intersection point of revolu-
tion axes in A–B rotator in the middle frame gives

MB − MA + mF
Mκf × (

g −G ẗM − Maf

)
= If · Mεf + Mωf × (

If · Mωf

)
, (36)

where MB is the torque exerted by the base of the
cable-driven Stewart manipulator to the framework.

Now, the dynamic equations of the feed cabin are
accomplished, involving non-inertial coordinate sys-
tem and the Stewart manipulator with a moving base.
The internal forces and torques of the feed cabin are
deduced.

6 Frequency and stiffness analysis

In order to study the frequency and stiffness features
of the FSS, the external step forces and torques are
exerted on the cable platform along translation axes
and rotation axes of the global frame, respectively. Ac-
cording to Eq. (12) and the recurrence formulas of the
Runge–Kutta method, the position and orientation off-
set of the cable platform can be calculated. And, simu-
lation results are shown in Fig. 13. The simulation step
is 0.01 s.

According to the step response of the FSS, the
vibration frequency along Z-axis is about 0.55 Hz,
which is a little higher than frequencies along X-axis
(about 0.24 Hz) and Y -axis (about 0.3 Hz). The vibra-
tion frequency along C-axis is around 0.84 Hz, which
is higher than frequencies along A-axis (about 0.3 Hz)
and B-axis (about 0.24 Hz). So, the lowest vibration
frequency of the FSS is about 0.24 Hz. According to
the Davenport spectrum, the wind effect around this
frequency takes up only a small fraction of the overall
wind power.

The step force acting on the FSS is 500 N while the
step torque is 500 N m. The stiffness of three trans-
lation orientations is all greater than 105 N m−1. The
stiffness of the Z-axis is slightly higher than that of
X-axis and Y -axis. The same phenomenon is observed
in three rotation directions, whose stiffness is greater
than 106 N m rad−1. To sum up, the stiffness of the
FSS is quite low and destined to produce noticeable
position error under the wind disturbance (wind force
is beyond 103 N). In order to determine the practical
terminal error of the FSS, the wind vibration simula-
tion is carried out in the next section.

7 Wind vibration simulation of the FSS

In this section, the wind vibration simulation of the
FSS is carried out, adopting the dynamic model of the
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Fig. 13 Step responses of the FSS: (a) position offset along X-axis, (b) position offset along Y -axis, (c) position offset along Z-axis,
(d) angle offset along A-axis, (e) angle offset along B-axis, (f) angle offset along C-axis

cable-driven Stewart manipulator and the wind distur-
bance model, obtained in Sects. 3 and 4. The wind
force is exerted on the center of the cable platform
along the X-axis in the global frame. The dynamic
responses of the cable platform and the FSS terminal

(the SAS end effector) are shown in Figs. 14 and 15,
respectively.

The main direction of the vibration is along X-axis.
As there is a distance (7 m at initial state) between the
cable platform and the FSS terminal, the terminal er-
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ror will be amplified by the rotation of the cable plat-
form along the B-axis. The maximum position offset
of the center of the cable platform is about 31.16 mm
while the maximum terminal position offset reaches
up to 82.14 mm. The FSS terminal error is far beyond
the accuracy requirement. So, in the next section, the
vibration control strategies of the SAS are proposed
to improve the terminal accuracy, and simulations are
carried out.

8 Vibration control strategies

The accuracy requirement of the FSS is that the termi-
nal error is not more than 10 mm in RMS. The rigid
Stewart manipulator (SAS) is used to reduce the ter-
minal error resulted from the vibration induced by the
wind force, to improve the terminal positioning ac-

Fig. 14 Position offset of the cable platform under wind distur-
bance

curacy. The A–B rotator and the cable-driven Stew-
art are controlled according to the path plan to real-
ize the observation motion. The block diagram of the
FSS control system is shown in Fig. 16. In order to fo-
cus on the vibration control strategy, a target position
and posture are used instead of the target trajectory.
Then, the path plan can be omitted. The simulation
model is simplified as demonstrated in the dashed box
in Fig. 16. In the following simulation, the initial state
of the FSS is used as the target position and posture,
such as GtP = [0,0,140]T and GθP = [0,0,0]T. Two
different vibration control strategies, kinematic vibra-
tion compensation and dynamic vibration suppression,
are simulated and evaluated.

8.1 Kinematic vibration compensation

The SAS can be controlled to compensate the terminal
error resulting from the vibration of the cable-driven

Fig. 15 Terminal position offset of the FSS under wind distur-
bance

Fig. 16 Block diagram of the FSS control system
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Fig. 17 Terminal error along X-axis with kinematic vibration
compensation

Stewart manipulator. In this case, the real-time mea-
surement of position and posture is inevitable. Since
the FSS terminal is covered in the feed cabin shield,
the FSS terminal position and posture in the global
frame are hard to measure. The position and posture
of the feed cabin are measured instead, which can
be converted to the position and posture of the cable
platform easily. The kinematic vibration compensation
strategy can be subdivided into three steps. First, cal-
culate the practical terminal error on the basis of the
position and posture of the cable platform obtained by
measurement. Then, figure out the required movement
of each SAS limb to compensate the terminal error.
Finally, execute the required movement of each limb
in the next control cycle, and the constant accelera-
tion strategy is used. Considering the practical limits
of non-contact measurement equipments, the highest
measuring frequency is assumed as 10 Hz. The simu-
lation result of the FSS terminal error along X-axis is
shown in the Fig. 17.

As shown in the figure, the FSS terminal error is far
from being controlled. In order to analyze the reason
of the vibration divergence, the feedback force of the
SAS and the acceleration of the cable platform along
X-axis are calculated as shown in Fig. 18. The feed-
back force generated by the kinematic compensation
of the SAS is united in action with the cable-platform
acceleration. As the result, larger vibration is brought
in, which needs faster motion of the SAS to com-
pensate for the terminal error. However, faster motion
leads to larger feedback force. This vicious circle goes
on, and the feedback force soon surpasses the wind

Fig. 18 The SAS feedback force and the acceleration of the
cable platform in X-axis

Fig. 19 Driving force of the first SAS limb

disturbance, becoming the main excitation source for
the FSS vibration. At the same time, the limb driving
forces of the SAS increase sharply. Driving force of
the first limb is calculated and shown in Fig. 19.

After all, since the FSS terminal weighs more than
3 ton, the feedback force is considerable and has a sig-
nificant impact on the vibration of the FSS. In the next
section, the feedback force is used to suppress the sys-
tem vibration through controlling the SAS accelera-
tion.

8.2 Dynamic vibration suppression

In the dynamic vibration suppression strategy, the
SAS feedback force is used to counteract the external
wind disturbance. In practical application, the strategy
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is achieved though controlling the SAS acceleration
according to the acceleration of the cable platform,
which is the direct reflection of the external distur-
bance. The cable-platform acceleration can be mea-
sured by an accelerometer in real time. The measur-
ing frequency is assumed as 100 Hz. A simple propor-
tional control is used to determine the required SAS
acceleration, which can be expressed in the SAS base
frame as

B ẗP = λ
(
GRC · CRB

)T GẗC,

B θ̈P = λ
(
GRC · CRB

)T Gθ̈C,

where λ is the acceleration proportional gain. In or-
der to find the right acceleration ratio, the terminal er-
ror along X-axis with different ratio is figured out as

Fig. 20 Terminal error with different acceleration ratio

shown in Fig. 20. According to the figure, the mini-
mum terminal error in RMS is obtained when the pro-
portional gain is 2.6.

When λ = 2.6, the acceleration of the cable plat-
form and the SAS feedback force along X-axis are
shown in Fig. 21. Direction of the feedback force
maintains the opposite of the acceleration direction at
all times, which effectively suppresses the FSS vibra-
tion. As a result, the FSS terminal error is greatly re-
duced. The terminal error under the dynamic vibration
suppression is shown in Fig. 22. Since the wind force
is exerted onto the FSS along X-axis, the maximum
terminal error appears along the X-axis. The terminal
errors along Y -axis and Z-axis are relatively small.
The overall FSS terminal error is 4.3 mm in RMS,
which meets well the accuracy requirement (10 mm
in RMS).

The driving forces of the SAS are shown in Fig. 23.
The driving force of each limb changes around the ini-
tial value without large deviation, which means that
the SAS performs well.

The compensation motion of the SAS is shown in
Fig. 24. The maximum displacement is about 50 mm,
occurring along x′-axis in the SAS base frame. The
designed workspace of the SAS is a sphere with the
radius of 250 mm.

In brief, the dynamic vibration suppression strategy
proposed above can meet the required FSS terminal
accuracy. Besides, the driving forces of the SAS are
reasonable and the SAS motion is within the designed
workspace. Thus, the dynamic vibration suppression
can be adopted in the vibration control of the FAST
prototype.

Fig. 21 Acceleration of the
cable platform and the SAS
feedback force along
X-axis
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9 Conclusion

In this article, the rigid dynamic model of the feed
cabin in FAST is derived. The derived dynamic equa-
tion involves complex hybrid manipulator, which con-
sists of an A–B rotator and a rigid Stewart manipu-
lator (SAS). The elastic dynamic model of the cable-
driven Stewart manipulator is deduced by simplifying
the driving cable as the spring damping model. On the
basis of the Davenport filter, a sample of the FSS wind
force is deduced. Finally, the simulation model of the
FSS is established. The vibration and stiffness char-
acteristics of the FSS are analyzed. The lowest nature
frequency is 0.24 Hz, which misses the main fraction
of the total wind power. However, the terminal error of

Fig. 22 FSS terminal errors when λ = 2.6

FSS under the wind disturbance is noticeable, because
of low stiffness.

The kinematic vibration compensation and dy-
namic vibration suppression strategies are simulated
and evaluated though the deduced FSS dynamic
model. With the kinematic vibration compensation
strategy, the SAS feedback force becomes a vibration
excitation and enlarges the FSS terminal error. On the
contrary, the dynamic vibration suppression strategy
makes full use of the SAS feedback force to suppress
the FSS vibration, and reduces the terminal error to
4.3 mm in RMS, which meets the accuracy require-
ment well. Besides, the SAS driving forces are mild,
and the SAS motion is far from the workspace edge.
Thus, the dynamic vibration suppression strategy is
proved to be a satisfying way to improve the FSS ter-

Fig. 24 SAS motion in dynamic vibration suppression

Fig. 23 Driving forces of
the SAS
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minal accuracy, and should be adopted in the control
of the FAST prototype.
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Appendix A: Detailed derivation of the SAS
kinematics

The SAS base point Bi (i = 1,2, . . . ,6) can be de-
scribed under the middle frame by rotation matrices
and translation vectors as

M tbi = M tB + GRC · CRB · bi . (A.1)

The SAS end-effector point Pi (i = 1,2, . . . ,6) can be
also expressed in middle frame as

M tpi = M tP = GRC · BRP · pi , (A.2)

where

M tP = M tB + GRC · CRB · B tP , (A.3)

BRP

= R(z,φ) · R(y,ϕ) · R(x,ψ)

=
⎡
⎣cφcϕ cφsϕsψ − sφcψ cφsϕcψ + sφsψ

sφcϕ sφsϕsψ + cφsψ sφsϕcψ − cφsψ

−sϕ cϕsψ cϕcψ

⎤
⎦

and ψ , ϕ, and φ are rotation angles of the FSS terminal
(SAS end effector) relative to the SAS base.

Then, the leg vector Si (from the origin of the frame
L to the origin of the frame U) can be derived from the
difference of position vectors pi and bi . We can get Si

under the global fame as

GSi = M tpi − M tbi = GRB · BSi , (A.4)

where

BSi = B tP − bi + BRP · pi . (A.5)

Further, the leg length, which is also the inverse kine-
matics for the SAS, is obtained as

Li = ∥∥GSi

∥∥. (A.6)

The relation between the unit leg vector and the leg
vector can be described under the global frames as

GSi = Li
Gsi . (A.7)

The velocity mapping functions is found in the
global frame by taking the derivative of Eqs. (A.4) and
(A.7) with respect to time, i.e.,

GṠi = GωB × GSi + GRB · B Ṡi (A.8)

and

GṠi = L̇i
Gsi + Li

GWi × Gṡi , (A.9)

where

GωB× = GṘB · GRT
B,

B Ṡi = B ṫP + BωP × (
BRP · Pi

)
.

According to the physical meaning, L̇i is the sliding
velocity of the SAS leg, while GWi is the angular ve-
locity of the SAS leg under the global frame. Taking
the dot product of Eq. (34) with Gsi , we can obtain

L̇i = Gsi · GṠi = Bsi · B Ṡi . (A.10)

Cross-multiplying both sides of Eq. (A.9) with Gsi

gives the angular velocity of the leg as

GWi = Gsi × GṠi/Li. (A.11)

Similarly, GS̈i can be expressed in two ways. By
taking the derivative of Eq. (A.8) with respect to time,
we can obtain

GS̈i = GεB × GSi + GωB × GṠi

+ GωB × (
GRB · B Ṡi

)
+ GRB · B S̈i , (A.12)

where

B S̈i = B ẗP + BεP × (
BRP · pi

)
+ BωP × [B

ωP × (BRP · pi

)]
. (A.13)

Either by taking the derivative of Eq. (A.10) or accord-
ing to the physical meaning, GS̈ can also be described
as

GS̈i = L̈i
Gsi + GWi × (

GWi × GSi

)
+ 2GWi × L̇i

Gsi + GAi × GSi , (A.14)
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which may be simplified as

GS̈i = (
L̈i − Li

GWi · GWi

)
Gsi

+ 2L̇i
GWi × Gsi + GAi × GSi . (A.15)

By taking respectively dot product and cross product at
both sides of the above equation with Gsi , we obtain
the expression of the sliding acceleration L̈i and the
angular velocity GAi of the leg in the global frame as

L̈i = Li
GWi · GWi + Gsi · GS̈i (A.16)

and

GAi = (
Gsi × GS̈i − 2L̇i

GWi

)
/Li. (A.17)

The rotation matrix of the ith leg from {L} to {L′} can
be obtained by using the SAS base point vector bi as

T = [xi ,yi , zi], (A.18)

where

xi = Gsi ,

yi = Gsi × (
GRB · bi

)/∥∥Gsi × (
GRB · bi

)∥∥,

zi = xi × yi .

In the next section, the Euler’s equation for each leg
will be derived around the SAS base point Bi . There-
fore, linear accelerations of mass centers of the lower
and upper parts of the leg will be expressed related to
the base point Bi in {L′}.

As rLo and rUo denote position vectors of mass
centers of the lower and upper parts of the limb in {L}
and {U}, position vectors can be transformed to {L′}
as

rLi = Ti · rLo, (A.19)

rUi = GSi + Ti · rUo. (A.20)

The linear accelerations of mass centers in {L′} can be
written as

aLi = GAi × rLi + GWi × (
GWi × rLi

)
, (A.21)

aUi = GAi × rUi + GWi × (
GWi × rUi

)
+ L̈i

Gsi + 2L̇i
GWi × Gsi . (A.22)

The translational acceleration of the origin of {L′} in
{G} can be obtained as

aLri = G ẗB + GεB × (
GRB · bi

)

+ GωB × [
GωB × (

GRB · bi

)]
. (A.23)

The Euler’s equation for the FSS terminal will be
derived around the geometrical center o of the end ef-
fector. So, the linear acceleration of the mass center
of the end effector will be also expressed related to
the geometrical center. Similarly, another translational
frame {P ′} is introduced, attached to the geometrical
center o and parallel to {G}.

As epo is the position vector of the mass center of
the FSS terminal (including receivers) in {P }, the vec-
tor can be obtained in {P ′} as

GeP = GRB · BRP · ePo. (A.24)

According to the composite theory of rigid body mo-
tion, the angular velocity and acceleration of the end
effector in {P ′} can be derived as

GεP = GεB + GRB · BεP

+ GωB × (
GRB · BωP

)
, (A.25)

GωP = GωB + GRB · BωP . (A.26)

Then the linear acceleration of the mass center of the
end effector under {P ′} can be written as

aP = GωP × (
GωP × GeP

) + GεP × GeP . (A.27)

The linear acceleration of {P ′} relative to {G} can be
expressed as

aPr = GẗB + GRB · B ẗP + GεB × (
GRB · B tP

)
+ GωB × [G

ωB × (
GRB · B tP

)]
+ 2GωB × (

GRB · B ṫP
)
. (A.28)

The moment of inertia ILo of the upper part of the
leg is defined in {L}, relative to its centroid. The mo-
ment of inertia can be obtained in {L′} by rotation ma-
trices as

ILi = TiILoTT
i . (A.29)

Similarly, IUo denotes the moment of inertia of the
lower part of the leg in {U}, relative to its centroid.
According to the parallel-axis theorem, the moment of
inertia can be obtained in {L′} as

IUi = TiIUoTT
i . (A.30)
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The moment of inertia IPo of the end effector in
{P }, relative to its centroid, can be transformed to {P ′}
as

IP = (
GRC · CRB · BRP

)
IPo

(
GRC · CRB · BRP

)T
.

(A.31)

So far, all the kinematic parameters required in the dy-
namic equations of the feed cabin are determined ana-
lytically.

Appendix B: Parameters of the FSS

The kinematic and dynamic parameters of the FSS are
as follows (default in SI units):

α = 30◦, β = 15◦, r = 2.5, R = 5.

Base points of the cable-driven Stewart manipulator
are:

[c1 c2 c3 c4 c5 c6]

=
⎡
⎣300 150 −150 −300 −150 150

0 259.8076 259.8076 0 −259.8076 −259.8076
270 270 270 270 270 270

⎤
⎦ .

End-effector points of the cable-driven Stewart manipulator are:

[d1 d2 d3 d4 d5 d6]

=
⎡
⎣5.6292 0 0 −5.6292 −5.6292 5.6292

−3.25 6.5 6.5 −3.25 −3.25 −3.25
0 0 0 0 0 0

⎤
⎦ .

SAS base points in {B} are:

[b1 b2 b3 b4 b5 b6]

=
⎡
⎣2.8284 1.0353 −3.8637 −3.8637 1.0353 2.8284

2.8284 3.8637 1.0353 −1.0353 −3.8637 −2.8284
0 0 0 0 0 0

⎤
⎦ .

SAS end-effector points in {P } are:

[p1 p2 p3 p4 p5 p6]

=
⎡
⎣2.4786 −0.9567 −1.5219 −1.5219 −0.9567 2.4786

0.3263 2.3097 1.9834 −1.9834 −2.3097 −0.3263
0.5040 0.5040 0.5040 0.5040 0.5040 0.5040

⎤
⎦ .

Mass center of lower part of each leg in {U} is:

rUo = [1.9909 0 0]T.

Mass center of upper part of each leg in {L} is:

rLo = [−1 0 0]T.

Mass center of the SAS base in {B} is:

eB = [−0.04748 0.00033 0.082894]T.

Mass center of the framework in {LS} is:

ef = [0.19136 0 0.42644]T.

Position vector of the centroid of the SAS base in {M}
is:

tB = [0 0 1.25]T.
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Position of the origin of {LS} in {Lf } is:

tf = [0 0 −1.58457]T.

Position of the intersection of two revolution axes of
the A–B rotator in {C} is:

CtM = [0 0 −5.6]T.

Mass of lower and upper parts of each leg is:

mL = 461.16613 and mU = 44.10796.

Moment of inertia of lower part of each leg in {U} is:

IUo =
⎡
⎣1.83 × 103

0.67 × 103

0.67 × 103

⎤
⎦ .

Moment of inertia of upper part of each leg in {L} is:

ILo =
⎡
⎣44.20

58.86
58.86

⎤
⎦ .

Mass of the SAS end effector is:

mP = 3698.04273.

Mass of the SAS base is:

mB = 5929.84427.

Mass of the cable platform is:

mC = 15687.42379.

Mass of the framework is:

mF = 7901.29622.

Gravity vector is:

g = [0 0 −9.80664]T.

Mass center of the end effector in {P } is:

eo = [−0.04369 −0.02018 −0.25225]T,

Moment of inertia of the end effector in {P } is:

IPo =
⎡
⎢⎣

7.86 × 103 −1.21 × 102 −12.13

−1.21 × 102 7.76 × 103 −18.88

−12.13 −18.88 1.412 × 104

⎤
⎥⎦ .

Moment of inertia of the framework in {LS} is:

If o =
⎡
⎢⎣

1.1256 × 105 1.476 × 102 −2.419 × 103

1.476 × 102 1.2034 × 105 −2.6215 × 102

−2.419 × 103 −2.6215 × 102 2.0123 × 105

⎤
⎥⎦ .

Moment of inertia of the SAS base in {B} is:

IBo =
⎡
⎢⎣

3.9620 × 104 0 −4.2186 × 102

0 7.1376 × 104 0

−4.2186 × 102 0 8.6972 × 104

⎤
⎥⎦ .
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