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Abstract In this paper, we analyze the codimension-2
bifurcations of equilibria of a two-dimensional Hind-
marsh–Rose model. By using the bifurcation methods
and techniques, we give a rigorous mathematical anal-
ysis of Bautin bifurcation. The main result is that no
more than two limit cycles can be bifurcated from the
equilibrium via Hopf bifurcation; sufficient conditions
for the existence of one or two limit cycles are ob-
tained. This paper also shows that the model under-
goes a Bogdanov–Takens bifurcation which includes a
saddle-node bifurcation, an Andronov–Hopf bifurca-
tion, and a homoclinic bifurcation. In some case, the
globally asymptotical stability is discussed.

Keywords Hindmarsh–Rose model · Bifurcation ·
Limit cycle · Homoclinic orbit

1 Introduction

Bifurcation theory studies the qualitative change under
the variation of the parameters on which the system
depends. It is one of the main concerns in the study
of nonlinear dynamical systems. Beginning with the
fundamental work of Poincaré and Andronov, the lit-
erature on the bifurcation theory is enormous. In the

X. Liu (�) · S. Liu
School of Mathematical Sciences, South China University
of Technology, Guangzhou 510640, P.R. China
e-mail: liuliang@scut.edu.cn

recent decades, a number of new methods and tech-
niques have been developed. For example, bifurcations
in a generic one-parameter system on the plane near
an equilibrium with purely imaginary eigenvalues was
studied first by Andronov and Leontovich [1]; Hopf
[2] proved the appearance of a family of periodic so-
lutions of increasing amplitude for n-dimensional sys-
tems having an equilibrium with a pair of purely imag-
inary eigenvalues. One good approach is to use the so-
called Lyapunov coefficients: Bautin [3] obtained an
explicit expression for the first Lyapunov coefficient in
terms of Taylor coefficients of a general planar system.
He first studied generic two-parameter bifurcation dia-
grams near a point where the first Lyapunov coefficient
vanishes; therefore, we call this bifurcation the Bautin
bifurcation. The formulas for the first and the second
Lyapunov coefficients can be found in many books and
papers, such as [3–8]. For the research of the higher
degeneracies at the Hopf bifurcation, see [8–10]. The
classification and unfolding of the planar system hav-
ing an equilibrium with two zero eigenvalues was done
simultaneously (and independently) by Bogdanov [11]
and Takens [12, 13], i.e., the Bogdanov–Takens bi-
furcation. The degenerate codimension-3 Bogdanov–
Takens bifurcations have been studied in [14, 15].

Bautin bifurcation and Bogdanov–Takens bifurca-
tion are frequently occurring in applied mathemat-
ical models. We will consider these bifurcations in
a neuron model. As is known, one of the most im-
portant models in computational neuroscience is the
Hodgkin–Huxley model [16]. Hodgkin and Huxley
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gave an explanation of action potential generation
in the axon of the giant squid in terms of time-
and voltage-dependent sodium and potassium conduc-
tances, respectively. This model consists of four cou-
pled nonlinear differential equations, six functions and
seven constants. Because of the complexity of these
equations, FitzHugh [17] and Nagumo et al. [18] gave
a simplification of the Hodgkin–Huxley equations and
introduced a model of the following form:

{
ẋ = α(y − f (x) + z),

ẏ = β(g(x) − y),
(1.1)

where x represents the membrane potential and y is a
recovery variable. The function f is cubic, the func-
tion g is linear, α, β are time constants, and z is
stimulus intensity, a variable corresponding to mem-
brane current I in the Hodgkin–Huxley model. This
model does not provide a very realistic description of
the rapid firing of the neuron compared to the rela-
tively long interval between firings. In order to achieve
a more realistic description of firing, Hindmarsh and
Rose [19, 20] replaced the linear function g(x) in the
FitzHugh–Nagumo model (1.1) with a quadratic func-
tion. This two-dimensional Hindmarsh–Rose model
can have more than one equilibrium. In order to termi-
nate firing, to the model was added the third equation
with an adaptation variable z. These two-dimensional
and three-dimensional Hindmarsh–Rose models have
been studied by many papers, see e.g. [19–25] and ref-
erences therein. These papers discussed the bifurca-
tions of Hindmarsh–Rose models mostly by computer
simulations, but the upper bound of the maximal num-
ber of limit cycles bifurcated from the equilibrium via
Hopf bifurcation has not been obtained.

In this paper, we consider the two-dimensional
Hindmarsh–Rose type model

{
dx
dt

= y − ax3 + bx2,

dy
dt

= −c − dx2 − y,
(1.2)

where a, b, c, d are positive parameters. By using the
bifurcation theory and methods [7, 26–28], we give
the analytical study for codimension-2 bifurcations of
equilibria of system (1.2). The paper is organized as
follows: In Sect. 2, we discuss the existences of equi-
libria, and analyze the local or global stability of equi-
libria. In Sect. 3, we will show that the system under-
goes a Bogdanov–Takens bifurcation which includes

a saddle-node bifurcation, an Andronov–Hopf bifur-
cation, and a homoclinic bifurcation. In Sect. 4, we
study the Andronov–Hopf and Bautin bifurcation, and
obtain that the maximal number of limit cycles bifur-
cated from the equilibrium is two, and the sufficient
conditions for the existence of one or two limit cycles
near the equilibrium are given. Remarks and conclu-
sions are drawn in Sect. 5.

2 Equilibria and stability

If Mj(xj , yj ) is one of the equilibria of system (1.2),
then xj is a root of the equation

ax3 + (d − b)x2 + c = 0, (2.1)

and yj = −c−dx2
j . The Jacobian matrix of the system

(1.2) evaluated at equilibrium Mj is

J (xj , yj ) =
(−3ax2

j + 2bxj 1
−2dxj −1

)
.

By analyzing the sign of real parts of the eigenvalues
of J (xj , yj ) and using the Routh–Hurwitz theorem,
we have

Theorem 2.1 (1) If 27a2c − 4(b − d)3 > 0, then sys-
tem (1.2) has a unique equilibrium M1(x1, y1), where
x1 < min{0,

2(b−d)
3a

}. M1 is a stable focus or a node.
(2) If 27a2c − 4(b − d)3 = 0, then system (1.2)

has exactly two equilibria, M1(x1, y1) and M2(x2, y2),
where x1 < 0 < x2 = 2(b−d)

3a
. M1 is a stable focus or

node, M2 is a higher-order equilibrium.
(3) If 27a2c − 4(b − d)3 < 0, then system (1.2)

has exactly three equilibria, Mj(xj , yj ), j = 1,2,3,
where x1 < 0 < x2 < x3. M1 is a stable focus or node,
M2 is a saddle, M3 is a focus or a node.

Moreover, the following theorem holds.

Theorem 2.2 If 27a2c − 4(b − d)3 > 0, then M1 is
globally asymptotically stable.

Proof If 27a2c − 4(b −d)3 > 0, then system (1.2) has
a unique equilibrium M1(x1,−c − dx2

1), where M1

lies in the third quadrant. Denote Dk = {(x, y) : −k ≤
x ≤ k,−c − dk2 ≤ y ≤ k}, where k > 0 is to be de-
fined suitably. We can choose k big enough, such that

ẋ|(x=k,−c−dk2≤y≤k) ≤ k − ak3 + bk2 < 0,
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ẋ|(x=−k,−c−dk2≤y≤k)

≥ −c − dk2 + ak3 + bk2 > 0,

ẏ|y=k = −c − dx2 − k < 0,

ẏ|(−k≤x≤k,y=−c−dk2)

= d
(
k2 − x2)∣∣−k≤x≤k

≥ 0,

hence Dk is a positive invariant set of system (1.2),
and every solution of system (1.2) is bounded.

Since ẏ|y≥0 < 0, ẋ|(x=0,y<0) < 0, it follows that
if there exist closed orbits of system (1.2), then the
closed orbits must be located in the third quadrant,
but Px(x, y) + Qy(x, y) = −3ax2 + 2bx − 1 < 0 for
x < 0, and applying the Dulac theorem we see that
system (1.2) has no closed orbits in the third quad-
rant, therefore system (1.2) has no closed orbits in R2,
which means that M1 is a globally asymptotically sta-
ble equilibrium of system (1.2). �

3 Bogdanov–Takens bifurcation

In this section, by using the methods in [29], we
discuss the Bogdanov–Takens bifurcation of sys-
tem (1.2).

We rewrite system (1.2) as

dX

dt
= F(X,μ),

where X = (x, y)T , μ = (a, b, c, d)T and

F(X,μ) =
(

y − ax3 + bx2

−c − dx2 − y

)
.

If 27a2c = 4(b − d)3, then M2(x2, y2) is a higher-
order equilibrium of system (1.2). In order to discuss
the Bogdanov–Takens bifurcation near M2, we assume
further that the trace of the Jacobian matrix of sys-
tem (1.2) evaluated at M2 vanishes, i.e., trJ (x2, y2) =
−3ax2

2 + 2bx2 − 1 = 0; substituting x2 = 2(b−d)
3a

into
3ax2

2 − 2bx2 + 1 = 0 we get a = 4
3d(b − d), hence

c = 4(b−d)3

27a2 = b−d

12d2 .

Now, if a = 4
3d(b − d), c = b−d

12d2 , then system (1.2)
has the equilibrium M2(x2, y2) with two zero eigen-
values, where x2 = 1

2d
, y2 = − b+2d

12d2 . Hence

(X0,μ0)

≡
(

(x2, y2)
T ,

(
4

3
d(b − d), b,

b − d

12d2
, d

)T )

=
((

1

2d
,−b + 2d

12d2

)T

,

(
4

3
d(b − d), b,

b − d

12d2
, d

)T )

is a family of equilibrium points whose linearization
has a double-zero eigenvalue, and

p1 =
(

1
−1

)
, p2 =

(
1
0

)
,

q1 =
(

0
−1

)
, q2 =

(
1
1

)

are the right and left (generalized) eigenvectors, re-
spectively, associated with the eigenvalue zero.

Let b �= 2d and

ā ≡ 1

2
pT

1

(
q2 • D2F(X0,μ0)

)
p1 = d − b,

b̄ ≡ pT
1

(
q1 • D2F(X0,μ0)

)
p1

+ pT
1

(
q2 • D2F(X0,μ0)

)
p2 = 2(2d − b),

ST
1 ≡ qT

2 Fμ(X0,μ0)

=
(

− 1

8d3
,

1

4d2
,−1,− 1

4d2

)
,

S2 ≡
[

2ā

b̄

(
pT

1

(
q1 • D2F(X0,μ0)

)
p2

+ pT
2

(
q2 • D2F(X0,μ0)

)
p2

)

− pT
1

(
q2 • D2F(X0,μ0)

)
p2

]

× FT
μ (X0,μ0)q1

− 2ā

b̄

2∑
i=1

(qi • FμX(X0,μ0))pi

+ (
q2 • FμX(X0,μ0)

)
p1

=
(

3

4d(b − 2d)

1

2d − b
0 − 1

d

)T

,

β1 ≡ ST
1 (μ − μ0),

β2 ≡ ST
2 (μ − μ0).
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Using the theorem in [29], we have that system
(1.2) is locally topologically equivalent to
{

ż1 = z2,

ż2 = β1 + β2z1 + āz2
1 + b̄z1z2.

(3.1)

If we choose λ1 and λ2 as bifurcation parameters,
where

λ1 = a − 4

3
d(b − d), λ2 = c − b − d

12d2
,

then

β1 =
(

− 1

8d3
,

1

4d2
,−1,− 1

4d2

)
(λ1,0, λ2,0)T

= − 1

8d3
λ1 − λ2,

β2 =
(

3

4d(b − 2d)

1

2d − b
0 − 1

d

)
(λ1,0, λ2,0)T

= 3

4d(b − 2d)
λ1.

System (3.1) becomes
⎧⎪⎨
⎪⎩

ż1 = z2,

ż2 = − 1
8d3 λ1 − λ2 + 3

4d(b−2d)
λ1z1

+ (d − b)z2
1 + 2(2d − b)z1z2.

(3.2)

Making the change of variables by

t = 2(2d − b)

b − d
t1, z1 = d − b

4(2d − b)2
η1,

z2 = − (d − b)2

8(2d − b)3
η2,

we obtain⎧⎨
⎩

dη1
dt1

= η2,

dη2
dt1

= β̄1(λ1, λ2) + β̄2(λ1)η1 + η2
1 − η1η2,

(3.3)

where

β̄1(λ1, λ2) = 16(2d − b)4

(b − d)3

(
1

8d3
λ1 + λ2

)
,

β̄2(λ1) = 3(b − 2d)

d(d − b)2
λ1.

Since

4β̄1 − β̄2
2 = 0 ⇔ λ2 + 1

8d3
λ1

− 9

64(b − d)d2(2d − b)2
λ2

1 = 0,

β̄1 = 0 ⇔ λ2 + 1

8d3
λ1 = 0,

β̄1 + 6

25
β̄2

2

= o
(
β̄2

2

) ⇔ λ2 + 1

8d3
λ1

+ 27

200(b − d)d2(2d − b)2
λ2

1

= o
(
λ2

1

)
,

β̄2 < 0 ⇔ λ1(b − 2d) < 0.

By using the theorem in [7] and the analysis above, we
have

Theorem 3.1 Let a = 4
3d(b − d) + λ1, c = b−d

12d2 + λ2

and b �= 2d . Then system (1.2) is locally topologically
equivalent to the following system:

⎧⎪⎪⎨
⎪⎪⎩

dη1
dt1

= η2,

dη2
dt1

= 16(2d−b)4

(b−d)3

( 1
8d3 λ1 + λ2

)
+ 3(b−2d)

d(d−b)2 λ1η1 + η2
1 − η1η2,

(3.4)

which has the following local representations of the
bifurcation curves in a small neighborhood of the ori-
gin:
(i) there is a saddle-node bifurcation curve

SN =
{
(λ1, λ2) : λ2 = − 1

8d3
λ1

+ 9

64(b − d)d2(2d − b)2
λ2

1

}
;

(ii) there is an Andronov–Hopf bifurcation curve

H =
{
(λ1, λ2) : λ2 = − 1

8d3
λ1, (b − 2d)λ1 < 0

}
;

(iii) there is a homoclinic bifurcation curve

HL =
{
(λ1, λ2) : λ2 = − 1

8d3
λ1

− 27

200d2(2d − b)2(b − d)
λ2

1

+ o
(
λ2

1

)
, (b − 2d)λ1 < 0

}
.
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Fig. 1 The
Bogdanov–Takens
bifurcation diagram for
d < b < 2d

Fig. 2 The
Bogdanov–Takens
bifurcation diagram for
b > 2d

Denote SN in λ1(b − 2d) < 0 (resp., λ1(b − 2d) >

0) by SN−(resp., SN+). The bifurcation diagram of
system (1.2) near M2 is presented in Fig. 1 (resp.
Fig. 2) when d < b < 2d (resp. b > 2d).

For example, when (b, d,λ1, λ2) = (0.5,0.4,0.005,

−0.012), numerical simulation of system (1.2) is
depicted in Fig. 3: there is a stable limit cycle,
which corresponds to the case (3) in Fig. 1. When
(b, d,λ1, λ2) = (0.5,0.4,0.005,−0.01317749024),
numerical simulation of system (1.2) is depicted in
Fig. 4: a homoclinic orbit occurs, which corresponds
to the case HL in Fig. 1.

4 Andronov–Hopf bifurcation and Bautin
bifurcation

In this section, we discuss the Andronov–Hopf bifur-
cation and Bautin bifurcation near equilibrium M3 of
system (1.2) when 27a2c − 4(b − d)3 < 0.

Suppose that p ≡ trJ (x3, y3) = −3ax2
3 + 2bx3 −

1 = 0. Then M3 is a weak focus of system (1.2). It is
easy to obtain that equations

{−3ax2
3 + 2bx3 − 1 = 0,

ax3
3 + (d − b)x2

3 + c = 0
(4.1)
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Fig. 3 A stable limit cycle when b = 0.5, d = 0.4, λ1 = 0.005, λ2 = −0.012

Fig. 4 A homoclinic orbit when b = 0.5, d = 0.4, λ1 = 0.005, λ2 = −0.01317749024
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have solutions if and only if

27a2c2 − 18acd + 12b2cd + 3d2 − 4bd

− 4b3c + b2 + a = 0. (4.2)

Moreover, x3 = 3d−b−9ac

6bd−2b2−3a
is the unique solution of

(4.1).
Let w1 = x − x3, w2 = y − y3. Then (1.2) becomes

{
ẇ1 = w1 + w2 + (b − 3ax3)w

2
1 − aw3

1,

ẇ2 = −2dx3w1 − w2 − dw2
1.

(4.3)

Setting ω0 = √
2dx3 − 1, the transformation

ξ = 2dx3w1 + w2, η = −ω0w2

transforms (4.3) into

⎧⎨
⎩

ξ̇ = −ω0η − 2bx3−1
4dx2

3
(ξ + 1

ω0
η)2 − a

4d2x2
3
(ξ + 1

ω0
η)3,

η̇ = ω0ξ + ω0
4dx2

3
(ξ + 1

ω0
η)2.

(4.4)

It is convenient to rewrite (4.4) in complex form by
introducing z = ξ + iη:

ż = iω0z +
∑

2≤k+l≤5

1

k!l!gklz
kz̄l ,

where

g20 = (1 − 2bx3 + ω0i)(ω0 − i)2

8dω2
0x

2
3

,

g11 = (1 − 2bx3 + ω0i)(ω
2
0 + 1)

8dω2
0x

2
3

,

g02 = (1 − 2bx3 + ω0i)(ω0 + i)2

8dω2
0x

2
3

,

g30 = −3a(ω0 − i)3

16d2ω3
0x

2
3

,

g21 = −3a(ω0 − i)(ω2
0 + 1)

16d2ω3
0x

2
3

,

g12 = ḡ21, g03 = ḡ30.

and gkl = 0 for 4 ≤ k + l ≤ 5.

By using the formula of the first Lyapunov coeffi-
cient in [7], and ω2

0 = 2dx3 − 1 and (4.1), we get

l1(0) = 1

2ω2
0

Re (ig20g11 + w0g21) = 2b(b − d) − 3a

16ω5
0dx3

.

If a > 2
3b(b − d), then l1(0) < 0, the Andronov–Hopf

bifurcation is supercritical; if a < 2
3b(b − d), then

l1(0) > 0, the Andronov–Hopf bifurcation is subcrit-
ical; if a = 2

3b(b − d), then l1(0) = 0, a Bautin bi-
furcation occurs. Applying the formula of the second
Lyapunov coefficient in [7],

12l2(0) = 1

w0
Reg32 + 1

w2
0

Im

[
g20ḡ31 − g11(4g31

+ 3ḡ22) − 1

3
g02(g40 + ḡ13) − g30g12

]

+ 1

w3
0

{
Re

[
g20

(
ḡ11(3g12 − ḡ30)

+ g02

(
ḡ12 − 1

3
g30

)
+ 1

3
ḡ02g03

)

+ g11

(
ḡ02

(
5

3
ḡ30 + 3g12

)

+ 1

3
g02ḡ03 − 4g11g30

)]

+ 3 Im(g20g11) Img21

}

+ 1

w4
0

{
Im

[
g11ḡ02

(
ḡ2

20

− 3ḡ20g11 − 4g2
11

)]
+ Im(g20g11)

[
3 Re(g20g11) − 2|g02|2

]}
,

notice that ω2
0 = 2dx3 − 1, x3 = 3d−b−9ac

6bd−2b2−3a
and a =

2
3b(b − d). By a direct computation with MAPLE, we
have

l2(0) = 5

576ω11
0 x6

3bd2(d − b)2
f (c), (4.5)

where f (c) = 12bd(d2 +b(2d −b))c+4d3 −3bd2 −
2b2d + b3. Since a = 2

3b(b − d), we have

27a2c − 4(b − d)3 < 0 ⇔ c <
b − d

3b2
.
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Equation (4.2) becomes

12b2(b − d)2c2 − 4b(b2 − 3d2)c

+ 1

3
(b − d)(5b − 9d) = 0, (4.6)

and we can solve (4.6) in c:

c = cj = b2 − 3d2 + (−1)j 2
√

b(2d − b)3

6b(b − d)2
,

j = 1,2.

If b > 2d , then (4.6) in c has no solutions; if b = 2d ,
then c = c1 = c2 = 1

12d
, but it is contrary to c < b−d

3b2 =
1

12d
, hence the necessary condition for the Bautin bi-

furcation to occur is d < b < 2d .
If d < b < 2d , then c = c1 or c = c2. We have

f (c2) = 2d − b

(d − b)2

(
4d

(
b(2d − b) + d2)√b(2d − b)

− (
b(2d − b)

(
6d2 + b(2d − b)

) + d4)),
and by

(
4d

(
b(2d − b) + d2)√b(2d − b)

)2

− (
b(2d − b)

(
6d2 + b(2d − b)

) + d4)2

= −(b − d)8 < 0

we have f (c2) < 0, hence f (c1) < f (c2) < 0, which
yields l2(0) < 0.

Therefore, the following theorem holds.

Theorem 4.1 Suppose that 27a2c − 4(b − d)3 < 0.
For sufficiently small ε > 0, we have:

(1) If p = 0, then the equilibrium M3 is a weak focus
of order at most two.

(2) If a > 2
3b(b − d) and 0 < p < ε, then system (1.2)

has a stable limit cycle near M3.
(3) If a < 2

3b(b − d) and −ε < p < 0, then system
(1.2) has an unstable limit cycle near M3.

(4) If 0 < 2
3b(b − d) − a < ε and −ε < p < 0, then

system (1.2) has two limit cycles: 	1 and 	2 near
M3, where 	1 ⊂ 	2, 	1 is unstable and 	2 is sta-
ble.

Example 4.1 (i) Set a = 0.330127019, b = 1.01, c =
0.02445385326, d = 0.669872981, then the condition
(2) of Theorem 4.1 holds. Numerical simulation of

system (1.2) is depicted in Fig. 5, where a stable limit
cycle near M3 occurs.

(ii) Set a = 0.1993587371, b = 1.018,
c = 0.3987174743, d = 0.4019237886, then condi-
tion (3) of Theorem 4.1 holds. Numerical simulation
of system (1.2) is depicted in Fig. 6, where an unstable
limit cycle near M3 occurs.

5 Remarks and conclusions

For planar systems, the only codimension-2 bifur-
cations of equilibria that may occur are the cusp,
Bogdanov–Takens and Bautin bifurcations. But the
cusp bifurcation of equilibrium is not analyzed in this
document because it cannot occur. We give the reason
for this as follows:

If 27a2c = 4(b − d)3 and trJ (x2, y2) = −3ax2
2 +

2bx2 − 1 = 4d(b−d)−3a
3a

�= 0, then M2(x2, y2) may be a
saddle-node or a triple equilibrium of system (1.2). Let
u1 = x −x2, u2 = y −y2. Then system (1.2) becomes

{ du1
dt

= 4d(b−d)
3a

u1 + u2 − (b − 2d)u2
1 − au3

1,

du2
dt

= 4d(d−b)
3a

u1 − u2 − du2
1.

(5.1)

Making the transformation of variables by

u1 = 3av1 + v2, u2 = 4d(d − b)v1 − v2,

we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv1
dt

= − 1
3a+4d(d−b)

[(3av1 + v2)
2(b − d)

+ a(3av1 + v2)
3],

dv2
dt

= 4d(b−d)−3a
3a

v2

+ d(8d2+4b2−12bd+3a)
3a+4d(d−b)

(3av1 + v2)
2

+ 4ad(b−d)
3a+4d(d−b)

(3av1 + v2)
3.

(5.2)

The center manifold of (5.2) near the origin has the
representation v2 = O(v2

1), hence the restriction of
(5.2) to its center manifold is:

v̇1 = 9a2(d − b)

3a + 4d(d − b)
v2

1 + O
(
v3

1

)
.

Since 9a2(d−b)
3a+4d(d−b)

�= 0, it follows that M2 is a saddle-
node equilibrium, not a triple equilibrium of sys-
tem (1.2). Therefore the cusp bifurcation of equilib-
rium cannot occur.
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Fig. 5 When a = 0.330127019, b = 1.01, c = 0.02445385326, d = 0.669872981, there is a stable limit cycle

Fig. 6 When a = 0.1993587371, b = 1.018, c = 0.3987174743, d = 0.4019237886, there is an unstable limit cycle
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In papers [30, 31], the authors studied the existence
and number of limit cycles in the FitzHugh–Nagumo
system: the main result of [31] is that the FitzHugh–
Nagumo system has at most two limit cycles bifur-
cated from equilibrium via Hopf bifurcation. In this
paper, we consider the two-dimensional Hindmarsh–
Rose model, which is a modification of FitzHugh–
Nagumo system, and give a rigorous mathematical
analysis of codimension-2 bifurcations of this model.
We determine the sign of the second Lyapunov coef-
ficient at Bautin point, and obtain that the model has
a weak focus of order at most two, therefore no more
than two limit cycles can be bifurcated from the equi-
librium via Hopf bifurcation. The Bogdanov–Takens
bifurcations are also discussed, and we obtain the
saddle-node bifurcation curve, the Andronov–Hopf bi-
furcation curve and Homoclinic bifurcation curve near
the Bogdanov–Takens point. Some numerical simula-
tion results are given to support the theoretical predic-
tions.
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