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Abstract This paper is a contribution to the analysis
of the pth moment exponential synchronization prob-
lem for a class of stochastic delayed Cohen–Grossberg
neural networks with Markovian switching. The jump-
ing parameters are determined by a continuous-time,
discrete-state Markov chain, and the delays are time-
varying delays.

By using the Lyapunov–Krasovskii functional,
stochastic analysis theory, a generalized Halanay-type
inequality as well as output coupling with delay feed-
back control technique, some novel sufficient condi-
tions are derived to achieve complete pth moment
exponential synchronization of the addressed neural
networks. In particular, the traditional assumptions on
the differentiability of the time varying delay and the
boundedness of its derivative are removed in this pa-
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per. The results obtained in this paper generalize and
improve many known results. Moreover, a numeri-
cal example and its simulation are also provided to
demonstrate the effectiveness and applicability of the
theoretical results.
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1 Introduction

As is well known, control and synchronization of
chaos systems have been an important research topic
since Pecora and Carrol in [2, 16] originally intro-
duced their works about the issue of chaos synchro-
nization. The goal of chaos synchronization is that two
or more chaotic systems can share a common dynami-
cal behavior. Consequently, chaos synchronization has
been widely applied to create secure communication
systems, chemical and biological systems, image pro-
cessing, information science, human heartbeat regula-
tion, and harmonic oscillation generation, etc. In par-
ticular, chaos synchronization has been used to study
neural networks in recent years since neural networks
can exhibit chaotic behaviors when the neural net-
works’ parameters and time delays are appropriately
chosen. Therefore, it is interesting and important to
study the synchronization of chaos neural networks.
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Recently, a large number of interesting results on
the synchronization of chaotic neural networks with
or without noise disturbances have appeared in the lit-
erature; see e.g., [4, 7–12, 17, 19–21, 23, 24, 26, 29,
30, 32, 34, 37] and the references therein. By using the
drive-response concept and a nonlinear feedback con-
trol law, Cui and Lou [4] investigated the state syn-
chronization of the two identical chaotic neural net-
works. In [9], Li and Fu studied the exponential syn-
chronization problem for a class of chaotic delayed
neural networks with impulsive and stochastic pertur-
bations by using the method of impulsive delay dif-
ferential inequalities. With the help of complex sys-
tems theory, Posadas-Castillo et al. [17] studied the
synchronization of chaotic neural networks with de-
lays in coupled irregularly arrays in two cases: without
and with chaotic master node. By using a Lyapunov–
Krasovskii functional and a combination of the free-
weighting matrix method, Newton–Leibniz formula-
tion and inequality technique, Song [21] designed the
controllers to achieve the asymptotical and exponen-
tial synchronization for neural networks with mixed
delays. Based on the adaptive feedback control tech-
nique, Wang et al. [26] obtained some sufficient con-
ditions to achieve adaptive synchronization for a class
of recurrent neural networks. In [29], Yang and Cao
proposed a unidirectional linear coupling scheme for
exponential lag synchronization of a class of chaotic
delayed neural networks with impulsive effects. By
employing the adaptive control and linear feedback
with the updated law, Zhou et al. [32] derived sev-
eral sufficient conditions to guarantee adaptive syn-
chronization for two coupled delayed neural networks.
Based on the invariant principle of function differen-
tial equations and Lyapunov–Krasovskii functional as
well as the adaptive control and linear feedback with
update law, Zhu and Cao [34] derived some novel
sufficient conditions achieving synchronization of the
two coupled networks with mixed delays, which syn-
chronously consist of constant delays, time-varying
delays, and distributed delays. By using the LaSalle in-
variant principle of stochastic differential delay equa-
tions and the stochastic analysis theory as well as the
adaptive feedback control technique, Zhu and Cao [37]
studied the adaptive synchronization under almost ev-
ery initial data for a class of unidirectionally coupled
stochastic delayed neural networks. It is worth point-
ing out that all of the mentioned works do not consider
the pth moment exponential synchronization. But on

the other hand, the pth moment exponential stability
on neural networks has been widely studied by many
authors, for instance, see [5, 6, 20, 22, 25] and the ref-
erences therein. Thus, it is also interesting to the pth
moment exponential synchronization on neural net-
works.

On the other hand, a class of neural networks with
Markovian switching called as Markovian jump neu-
ral networks has received a great deal of research at-
tention since it can model the phenomenon of infor-
mation latching, and the abrupt phenomena such as
random failures or repairs of the components, sud-
den environmental changes, changing subsystem inter-
connections, and so on. When noise disturbances are
considered in Markovian jump neural networks, this
class of neural networks is usually called Markovian
jump stochastic neural networks or stochastic neural
networks with Markovian switching. It is known that
a Markovian jump stochastic neural network is more
complicated and comprises a general stochastic neu-
ral network as its special case. Owing to the practi-
cal importance, many journal papers have recently de-
voted to study the stability analysis issue for Marko-
vian jump neural networks [1, 13, 18, 27, 28, 31, 33,
35, 36, 38–40]. However, up to now, the synchroniza-
tion problem for Markovian jump neural networks has
received little research attention, despite its practical
importance. This situation motivates our present inves-
tigation.

Inspired by the above discussions, in this paper,
we study the pth moment exponential synchroniza-
tion problem for a class of stochastic delayed Cohen–
Grossberg neural networks with Markovian switch-
ing. The jumping parameters are determined by a
continuous-time, discrete-state Markov chain, and the
delays are time-varying delays. To the best of the au-
thors’ knowledge, until now, the pth moment expo-
nential synchronization problem for this class of gen-
eralized neural networks has not yet been solved. The
main goal of this paper is to fill this gap. By using the
Lyapunov–Krasovskii functional, stochastic analysis
theory, a generalized Halanay-type inequality as well
as output coupling with delay feedback control tech-
nique, some novel sufficient conditions are derived to
achieve complete pth moment exponential synchro-
nization of the addressed neural networks. In partic-
ular, the traditional assumptions on the differentiabil-
ity of the time varying delays and the boundedness of
its derivative are removed in this paper. The results



pth moment exponential synchronization for stochastic delayed Cohen–Grossberg neural networks 831

obtained in this paper generalize and improve many
known results. Finally, a numerical example and its
simulation are also provided to demonstrate the effec-
tiveness and applicability of the theoretical results.

The remainder of this paper is organized as follows.
In Sect. 2, we introduce the model and some nota-
tions as well as several necessary assumptions. By em-
ploying the Lyapunov–Krasovskii functional, a gener-
alized Halanay-type inequality, and stochastic analy-
sis theory as well as output coupling with delay feed-
back control technique, we prove that the two coupled
delayed neural networks are pth moment exponential
synchronization in Sect. 3. In Sect. 4, a numerical ex-
ample and its simulation are given to illustrate the ef-
fectiveness of the obtained results. Finally, a general
conclusion is drawn in Sect. 5.

2 Model description, notations and assumptions

Notation Throughout this paper, the following no-
tations will be used. R

n and R
n×m denote the n-

dimensional Euclidean space and the set of all n × m

real matrices, respectively. R
+ = [0,∞) and Trace

(·) denotes the trace of the corresponding matrix.
Let τ > 0 and C([−τ,0];R

n) denote the family of
continuous function φ from [−τ,0] to R

n with the
uniform norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|. Denote by
C

p

F0
([−τ,0];R

n) the family of all F0 measurable,
C([−τ,0];R

n)-valued stochastic variables ξ = {ξ(θ) :
−τ ≤ θ ≤ 0} such that

∫ 0
−τ

E|ξ(s)|p ds < ∞, where
E[·] stands for the correspondent expectation operator
with respect to the given probability measure P .

Let {r(t), t ≥ 0} be a right-continuous Markov
chain on a complete probability space (Ω, F ,P ) tak-
ing values in a finite state space S = {1,2, . . . ,N} with
generator Q = (qij )N×N given by

P
{
r(t + �t) = j |r(t) = i

}

=
{

qij�t + o(�t) if i �= j,

1 + qii�t + o(�t) if i = j

where �t > 0 and lim�t→0
o(�t)
�t

= 0. Here, qij ≥ 0
is the transition rate from i to j if i �= j while qii =
−∑

j �=i qij .

In this paper, we consider the following Markov
jump neural networks with time-varying delays:

dx(t) = {−α̃
(
x(t), r(t)

)[
β̃
(
x(t), r(t)

)

− C
(
r(t)

)
f̃

(
x(t)

)

− D
(
r(t)

)
g̃
(
x
(
t − τ(t)

))] + J
}
dt, (1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T is the state
vector associated with the n neurons, α̃(x(t), r(t)) =
diag(̃α1(x1(t), r(t)), α̃2(x2(t), r(t)), . . . , α̃n(xn(t),

r(t))) represents an amplification function, and β̃(x(t),

r(t)) = [β̃1(x1(t), r(t)), β̃2(x2(t), r(t)), . . . , β̃n(xn(t),

r(t))]T is the behaved function. The matricesC(r(t)) =
(cij (r(t)))n×n and D(r(t)) = (dij (r(t)))n×n are the
connection weight matrix and the time-varying de-
lay connection weight matrix, respectively. f̃ (x(t)) =
[f̃1(x1(t)), f̃2(x2(t)), . . . , f̃n(xn(t))]T and g̃(x(t)) =
[̃g1(x1(t)), g̃2(x2(t)), . . . , g̃n(xn(t))]T are the neuron
activation functions, and J = [J1, J2, . . . , Jn]T de-
notes a constant external input vector. The time-
varying delay τ(t) satisfies 0 ≤ τ(t) ≤ τ , where τ is a
positive constant.

We consider the model (1) as the drive system. The
response system is

dy(t) = {−α̃
(
y(t), r(t)

)[
β̃
(
y(t), r(t)

)

− C
(
r(t)

)
f̃

(
y(t)

) − D
(
r(t)

)
g̃
(
y
(
t − τ(t)

))]

+ J + u
(
t, r(t)

)}
dt

+ σ
(
t, r(t), y(t) − x(t), y

(
t − τ(t)

)

− x
(
t − τ(t)

))
dw(t), (2)

where u(t, r(t)) = [u1(t, r(t)), u2(t, r(t)), . . . , un(t,

r(t))]T is the controller, w(t) = (w1, . . . ,wm)T is an
m-dimensional Brownian motion defined on a com-
plete probability space (Ω, F ,P ) with a natural filtra-
tion {Ft }t≥0, and σ : R

+ × S × R
n × R

n → R
n×m is

the noise intensity matrix. It is known that the occur-
rence of external random fluctuation and other prob-
abilistic causes often lead to this type of stochastic
perturbations. We assume that the Markov chain r(·)
is independent of the Brownian motion w(·).

Let e(t) = y(t)− x(t) be the synchronization error,
the state feedback controller in the response system (2)
is designed as follows:

u
(
t, r(t)

) = K1
(
r(t)

)[
f̃

(
y(t)

) − f̃
(
x(t)

)]

+ K2
(
r(t)

)[
g̃
(
y
(
t − τ(t)

))

− g̃
(
x
(
t − τ(t)

))]
, (3)
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where K1(r(t)),K2(r(t)) are the gain matrices to be
scheduled. With the above control law, the dynamical
system of synchronization error between system (1)
and (2) can be expressed by

de(t) = {−α
(
e(t), r(t)

)[
β
(
e(t), r(t)

) − (
C

(
r(t)

)

+ K1
(
r(t)

))
f

(
e(t)

)

− (
D

(
r(t)

) + K2
(
r(t)

))
g
(
e
(
t − τ(t)

))]}
dt

+ σ
(
t, r(t), e(t), e

(
t − τ(t)

))
dw(t), (4)

where α(e(t), r(t)) = α̃(x(t) + e(t), r(t)) − α̃(x(t),

r(t)), β(e(t), r(t)) = β̃(x(t) + e(t), r(t)) − β̃(x(t),

r(t)), f (e(t)) = f̃ (x(t) + e(t)) − f̃ (x(t)), g(e(t)) =
g̃(x(t) + e(t)) − g̃(x(t)).

Remark 1 In lots of applications, it is often to de-
sign the state-feedback controller or time-delay feed-
back controller as u(t) = K1e(t) or u(t) = K1e(t) +
K2e(t − τ(t)). However, in some real networks, only
output signals can be measured. Thus, it is necessary
to consider the controller (3) in the response system.
Usually, we refer to this as output coupling with delay
feedback.

If taking A(r(t)) = C(r(t)) + K1(r(t)) =
(aij (r(t)))n×n, B(r(t)) = D(r(t)) + K2(r(t)) =
(bij (r(t)))n×n, then system (4) can be rewritten as

de(t) = {−α
(
e(t), r(t)

)[
β
(
e(t), r(t)

)

− A
(
r(t)

)
f

(
e(t)

)

− B
(
r(t)

)
g
(
e
(
t − τ(t)

))]}
dt

+ σ
(
t, r(t), e(t), e

(
t − τ(t)

))
dw(t), (5)

or equivalently,

dej (t) =
{

−αj

(
ej (t), i

)
[

βj

(
ej (t), i

)

−
n∑

k=1

aijkfk

(
ek(t)

)

−
n∑

k=1

bijkgk

(
ek

(
t − τ(t)

))
]}

dt

+
n∑

k=1

σjk

(
t, i, ek(t), ek

(
t − τ(t)

))
dwk(t),

where j = 1,2, . . . , n, r(t) = i ∈ S.

Throughout this paper, we always assume that f̃ , g̃

and σ satisfy the usually local Lipschitz condition and
linear growth condition. It follows from [15] that for
any given initial data e(θ) = ξ(θ) on −τ ≤ θ ≤ 0 in
C

p

F0
([−τ,0];R

n), the error dynamics system (3) has
a unique global solution on t ≥ 0 and we denote the
solution by e(t; ξ). For simplicity, we write e(t; ξ) =
e(t). Let C2

1(R+ × S × R
n;R

+) denote the family of
all nonnegative functions V (t, i, e) on R

+ × S × R
n

which are continuously twice differentiable in e and
differentiable in t . If V ∈ C2

1(R+ × S × R
n;R

+), then
along the trajectory of the system (5) we define an op-
erator LV from R

+ × S × R
n to R by

LV
(
t, i, e(t)

)

= Vt

(
t, i, e(t)

) + Ve

(
t, i, e(t)

)

× {−α
(
e(t), i

)[
β
(
e(t), i

)

− A(i)f
(
e(t)

) − B(i)g
(
e
(
t − τ(t)

))] + u(t)
}

+ 1

2
trace

[
σ T(

t, i, e(t), e
(
t − τ(t)

))

× Vee

(
t, i, e(t)

)
σ
(
t, i, e(t), e

(
t − τ(t)

))]

+
N∑

j=1

qijV
(
t, j, e(t)

)
, (6)

where

Vt

(
t, i, e(t)

) = ∂V (t, i, e(t))

∂t
,

Ve

(
t, i, e(t)

) =
(

∂V (t, i, e(t))

∂e1
, . . . ,

∂V (t, i, e(t))

∂en

)

and

Vee

(
t, i, e(t)

) =
(

∂2V (t, i, e(t))

∂ej ∂ek

)

n×n

.

To prove our results, the following assumptions are
necessary in this paper.

Assumption 1 There exist positive constants α0
ij , α

1
ij

(i = 1,2, . . . ,N, j = 1,2, . . . , n) such that

0 < α0
ij ≤ α̃j

(
xj (t), i

) ≤ α1
ij

for all xj (t) ∈ R, r(t) = i, i ∈ S and j = 1,2, . . . , n.
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Assumption 2 There exist positive constants δij (i =
1,2, . . . ,N, j = 1,2, . . . , n) such that

xj (t)β̃j

(
xj (t), i

) ≥ δij x
2
j (t)

for all xj (t) ∈ R, r(t) = i, i ∈ S and j = 1,2, . . . , n.

Remark 2 The function β̃j (xj (t), i) in the earlier lit-
erature is required to be differentiable and its deriva-
tive is required to be over zero. However, the function
β̃j (xj (t), i) in Assumption 2 is not necessarily differ-
entiable. For example, if taking β̃j (xj (t), i) = 2|xj (t)|
(i = 1,2, . . . , n), then Assumption 2 is satisfied, but
the conditions in the earlier literature do not hold.
Hence, Assumption 2 of this paper is weaker than
those given the earlier literature.

Assumption 3 There exist diagonal matrices U−
l =

diag(u−
l1, u

−
l2, . . . , u

−
ln), U+

l = diag(u+
l1, u

+
l2, . . . , u

+
ln),

l = 1,2 satisfying

u−
1j ≤ f̃j (x1) − f̃j (x2)

x1 − x2
≤ u+

1j ,

u−
2j ≤ g̃j (x1) − g̃j (x2)

x1 − x2
≤ u+

2j ,

for all x1, x2 ∈ R, x2 �= x2, j = 1,2, . . . , n.

Remark 3 In Assumption 3, we do not require the
boundedness of activation functions and they may
be neither monotonically increasing nor continuously
differentiable. Moreover, the constants u−

lj , u
+
lj (l =

1,2, j = 1,2, . . . , n) are allowed to be positive, neg-
ative or zero. Hence, Assumption 3 of this paper is
weaker than those given in the previous literature (see,
e.g., [4, 7, 20, 23, 26, 30]).

Assumption 4 There exist positive constants μij , νij ,
i ∈ S, j = 1,2, . . . , n such that

trace
[
σT(t, i, x, y)σ (t, i, x, y)

] ≤
n∑

j=1

(
μijx

2
j + νij y

2
j

)

for all x, y ∈ R
n, i ∈ S and t ∈ R

+.

Assumption 5 σ(t, r(t),0,0,0) ≡ 0.

Under Assumption 5 and noting the facts that
α(0, r(t)) = β(0, r(t)) = f (0) = g(0) = 0, the system

(3) admits a trivial solution e(t;0) ≡ 0 correspond-
ing to the initial data ξ = 0. Hence, to prove that the
systems (1) and (2) achieve pth moment exponential
synchronization, it suffices to prove that the trivial so-
lution of the system (3) is pth moment exponentially
stable. On the other hand, by Assumption 3, we have

u−
1j ≤ fj (x1) − fj (x2)

x1 − x2
≤ u+

1j ,

(7)

u−
2j ≤ gj (x1) − gj (x2)

x1 − x2
≤ u+

2j ,

for all x1, x2 ∈ R, x2 �= x2, j = 1,2, . . . , n.
Next, we first introduce the definition of pth mo-

ment exponential synchronization for the two coupled
neural networks (1) and (2), and then state the nota-
tion of the upper right Dini-derivative and some pre-
liminary lemmas, which are needed to prove our main
results.

Definition 1 The two coupled neural networks (1) and
(2) are said to be pth (p ≥ 2) moment exponentially
synchronized if for every ξ ∈ C

p

F0
([−τ,0];R

n), there
exist positive constants α,β such that

E
∥
∥e(t)

∥
∥p ≤ αe−βt sup

−τ≤s≤0
E

∥
∥e(s)

∥
∥p

, t ≥ 0,

where the norm ‖e(t)‖ satisfies ‖e(t)‖ = (|e(t)|p)
1
p =

(
∑n

i=1 |ei(t)|p)
1
p .

Definition 2 Assume that h is a continuous function.
Then we can define the upper right Dini-derivative of
h as follows:

D+(
h(t)

) := lim sup
δ→0+

h(t + δ) − h(t)

δ
.

Lemma 1 [14, Lemma 4.2] Let p ≥ 2 and ε, a, b > 0.
Then

ap−1b ≤ (p − 1)εap

p
+ bp

pε(p−1)

and

ap−2b2 ≤ (p − 2)εap

p
+ 2bp

pε
(p−2)

2

.

Obviously, Letting ε = 1 in Lemma 1, we get the
following result.
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Lemma 2 Let p ≥ 2 and a, b > 0. Then

ap−1b ≤ (p − 1)ap

p
+ bp

p

and

ap−2b2 ≤ (p − 2)ap

p
+ 2bp

p
.

3 Main results and proofs

In this section, the pth moment exponential synchro-
nization for the two coupled neural networks (1) and
(2) is investigated under Assumptions 1–5. To prove
our main result, we need to introduce the following
technical proposition on a generalized Halanay-type
inequality.

Proposition 1 Assume that there are positive constant
numbers λ

(1)
i , λ

(2)
i (i ∈ S) such that λ

(1)
i > λ

(2)
i > 0

(i ∈ S) and z(t, i) (i ∈ S) are nonnegative continuous
functions defined on [−τ,0] and satisfies the following
inequality:

D+z(t, i) ≤ −λ
(1)
i z(t, i) + λ

(2)
i z(t, i),

t ≥ 0 and r(t) = i ∈ S,

where z(t, i) = sup−τ≤s≤0 z(s, r(s)), and τ > 0 is a
positive constant. Then for all t ≥ 0, we have

z(t, i) ≤ z
(
0, r(0)

)
e−λi t ,

t ≥ 0 and r(t) = i ∈ S,

where λi(i ∈ S) are unique positive roots of the follow-
ing equation:

λi = λ
(1)
i − λ

(2)
i eλiτ , i ∈ S.

Proof The proof of Proposition 1 is very similar to that
in [3, Lemma 2], and so we omit it. �

Remark 4 Obviously, if taking S = {1}, then Proposi-
tion 1 is the same as [3, Lemma 2]. So, Proposition 1
extends and improves the correspondent result given
in [3, Lemma 2].

Our main result is the following.

Theorem 1 Under Assumptions 1–5, the two coupled
neural networks (1) and (2) can be pth moment expo-
nentially synchronized, if there exist positive numbers
γi(i ∈ S),mj (j = 1,2, . . . , n) such that

λ
(1)
i > λ

(2)
i > 0, i ∈ S, (8)

where

λ
(1)
i = min

1≤j≤n

{

γipα0
ij δij − γi(p − 1)

n∑

k=1

α1
ij |aijk|u1k

− γi

n∑

k=1

mk

mj

α1
ik|aikj |u1j

− γi(p − 1)

n∑

k=1

α1
ij |bijk|u2k

− 1

2
γi(p − 1)(p − 2)

n∑

k=1

μik

− γi(p − 1)

n∑

k=1

mk

mj

μij

− γi(p − 1)(p − 2)

n∑

k=1

νik −
N∑

l=1

qilγl

}

,

λ
(2)
i = max

1≤j≤n

{

γi

n∑

k=1

mk

mj

α1
ik|bikj |u2j

+ γi(p − 1)

n∑

k=1

mk

mj

νij

}

.

Proof Consider the following Lyapunov–Krasovskii
functional: V (t, i, e(t)) = γi

∑n
j=1 mj |ej (t)|p. Not-

ing that Ve(t, i, e(t)) = γip
∑n

j=1 mj |ej (t)|p−1

sgn{ej (t)} = γip
∑n

j=1 mj |ej (t)|p−2ej (t) and

Vee(t, i, e(t)) = γip(p − 1)
∑n

j=1 mj |ej (t)|p−2

sgn{ej (t)}, it follows from Lemma 2 and (5)–(6) that

LV (t, i, e(t))

= −γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−2

ej (t)αj

(
ej (t), i

)

×
[

βj

(
ej (t), i

) −
n∑

k=1

aijkfk

(
ek(t)

)
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−
n∑

k=1

bijkgk

(
ek

(
t − τ(t)

)
]

+
N∑

l=1

qilγl

n∑

k=1

mk

∣
∣ek(t)

∣
∣p

+ 1

2
γip(p − 1)

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−2sgn

{
ej (t)

}

×
n∑

k=1

σ 2
jk

(
t, i, ek(t), ek

(
t − τ(t)

))

≤ −γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−2

αj

(
ej (t), i

)
ej (t)

× βj

(
ej (t), i

)

+ γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−1

αj

(
ej (t), i

)

×
n∑

k=1

aijkfk

(
ek(t)

)

+ γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−1

αj

(
ej (t), i

)

×
n∑

k=1

bijkgk

(
ek

(
t − τ(t)

))

+
N∑

l=1

qilγl

n∑

k=1

mk

∣
∣ek(t)

∣
∣p

+ 1

2
γip(p − 1)

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−2

n∑

k=1

(
μike

2
k(t)

+ νike
2
k

(
t − τ(t)

))

≤ −γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−2

α0
ij

∣
∣ej (t)βj

(
ej (t), i

)∣
∣

+ γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−1

α1
ij

n∑

k=1

|aijk|
∣
∣fk

(
ek(t)

)∣
∣

+ γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−1

α1
ij

×
n∑

k=1

|bijk|
∣
∣gk

(
ek

(
t − τ(t)

))∣∣

+
N∑

l=1

qilγl

n∑

k=1

mk

∣
∣ek(t)

∣
∣p

+ 1

2
γip(p − 1)

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−2

×
n∑

k=1

(
μike

2
k(t) + νike

2
k

(
t − τ(t)

))

≤ −γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−2

α0
ij δij

∣
∣ej (t)

∣
∣2

+ γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−1

α1
ij

×
n∑

k=1

|aijk|
∣
∣fk

(
ek(t)

) − fk(0)
∣
∣

+ γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−1

α1
ij

×
n∑

k=1

|bijk|
∣
∣gk

(
ek

(
t − τ(t)

)) − gk(0)
∣
∣

+
N∑

l=1

qilγl

n∑

k=1

mk

∣
∣ek(t)

∣
∣p

+ 1

2
γip(p − 1)

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−2

×
n∑

k=1

(
μike

2
k(t) + νike

2
k

(
t − τ(t)

))

≤ −γip

n∑

j=1

mjα
0
ij δij

∣
∣ej (t)

∣
∣p

+ γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−1

α1
ij

n∑

k=1

|aijk|u1k

∣
∣ek(t)

∣
∣

+ γip

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−1

α1
ij

×
n∑

k=1

|bijk|u2k

∣
∣ek

(
t − τ(t)

)∣∣

+
N∑

l=1

qilγl

n∑

k=1

mk

∣
∣ek(t)

∣
∣p
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+ 1

2
γip(p − 1)

n∑

j=1

mj

∣
∣ej (t)

∣
∣p−2

×
n∑

k=1

(
μike

2
k(t) + νike

2
k

(
t − τ(t)

))

= −γip

n∑

j=1

mjα
0
ij δij

∣
∣ej (t)

∣
∣p

+ γip

n∑

j=1

n∑

k=1

mjα
1
ij |aijk|u1k

∣
∣ej (t)

∣
∣p−1∣∣ek(t)

∣
∣

+ γip

n∑

j=1

n∑

k=1

mjα
1
ij |bijk|u2k

∣
∣ej (t)

∣
∣p−1

× ∣
∣ek

(
t − τ(t)

)∣
∣

+
N∑

l=1

qilγl

n∑

k=1

mk

∣
∣ek(t)

∣
∣p

+ 1

2
γip(p − 1)

n∑

j=1

n∑

k=1

mjμik

∣
∣ej (t)

∣
∣p−2

e2
k(t)

+ 1

2
γip(p − 1)

n∑

j=1

n∑

k=1

mjνik

∣
∣ej (t)

∣
∣p−2

× e2
k

(
t − τ(t)

)

≤ −γip

n∑

j=1

mjα
0
ij δij |ej (t)|p

+ γip

n∑

j=1

n∑

k=1

mjα
1
ij |aijk|u1k

[
p − 1

p

∣
∣ej (t)

∣
∣p

+ 1

p

∣
∣ek(t)

∣
∣p

]

+ γip

n∑

j=1

n∑

k=1

mjα
1
ij |bijk|u2k

×
[
p − 1

p

∣
∣ej (t)

∣
∣p + 1

p

∣
∣ek

(
t − τ(t)

)∣
∣p

]

+
N∑

l=1

qilγl

n∑

k=1

mk

∣
∣ek(t)

∣
∣p + 1

2
γip(p − 1)

×
n∑

j=1

n∑

k=1

mjμik

[
p − 2

p

∣
∣ej (t)

∣
∣p + 2

p

∣
∣ek(t)

∣
∣p

]

+ 1

2
γip(p − 1)

n∑

j=1

n∑

k=1

mjνik

[
p − 2

p

∣
∣ej (t)

∣
∣p

+ 2

p

∣
∣ek

(
t − τ(t)

)∣
∣p

]

= −γip

n∑

j=1

mjα
0
ij δij

∣
∣ej (t)

∣
∣p

+ γi

n∑

j=1

n∑

k=1

mjα
1
ij |aijk|u1k

[
(p − 1)

∣
∣ej (t)

∣
∣p

+ ∣
∣ek(t)

∣
∣p

]

+ γi

n∑

j=1

n∑

k=1

mjα
1
ij |bijk|u2k

[
(p − 1)

∣
∣ej (t)

∣
∣p

+ ∣
∣ek

(
t − τ(t)

)∣∣p] +
N∑

l=1

qilγl

n∑

k=1

mk

∣
∣ek(t)

∣
∣p

+ 1

2
γi(p − 1)

n∑

j=1

n∑

k=1

mjμik

[
(p − 2)

∣
∣ej (t)

∣
∣p

+ 2
∣
∣ek(t)

∣
∣p

]

+ 1

2
γi(p − 1)

n∑

j=1

n∑

k=1

mjνik

[
(p − 2)

∣
∣ej (t)

∣
∣p

+ 2
∣
∣ek

(
t − τ(t)

)∣
∣p

]

=
n∑

j=1

[

−γipmjα
0
ij δij

+ γi(p − 1)

n∑

k=1

mjα
1
ij |aijk|u1k

+ γi

n∑

k=1

mkα
1
ik|aikj |u1j

+ γi(p − 1)

n∑

k=1

mjα
1
ij |bijk|u2k

+ 1

2
γi(p − 1)(p − 2)

n∑

k=1

mjμik

+ γi(p − 1)

n∑

k=1

mkμij + 1

2
γi(p − 1)(p − 2)

×
n∑

k=1

mjνik +
N∑

l=1

qilγlmj

]
∣
∣ej (t)

∣
∣p



pth moment exponential synchronization for stochastic delayed Cohen–Grossberg neural networks 837

+
n∑

j=1

[

γi

n∑

k=1

mkα
1
ik|bikj |u2j + γi(p − 1)

×
n∑

k=1

mkνij

]
∣
∣ej

(
t − τ(t)

)∣
∣p

≤ −
n∑

j=1

λ
(1)
ij mj

∣
∣ej (t)

∣
∣p

+
n∑

j=1

λ
(2)
ij mj

∣
∣ej

(
t − τ(t)

)∣
∣p

≤ −λ
(1)
i V

(
t, i, e(t)

) + λ
(2)
i V

(
t, i, e

(
t − τ(t)

))
, (9)

where λ
(1)
i = min1≤j≤n λ

(1)
ij , λ

(2)
i = max1≤j≤n λ

(2)
ij ,

λ
(1)
ij = γipα0

ij δij − γi(p − 1)

n∑

k=1

α1
ij |aijk|u1k

− γi

n∑

k=1

mk

mj

α1
ik|aikj |u1j

− γi(p − 1)

n∑

k=1

α1
ij |bijk|u2k

− 1

2
γi(p − 1)(p − 2)

n∑

k=1

μik

− γi(p − 1)

n∑

k=1

mk

mj

μij − γi(p − 1)(p − 2)

×
n∑

k=1

νik −
N∑

l=1

qilγl,

λ
(2)
ij = γi

n∑

k=1

mk

mj

α1
ik|bikj |u2j

+ γi(p − 1)

n∑

k=1

mk

mj

νij .

For any small enough h > 0, applying the generalized
Itô’s formula and (9),we get

EV
(
t + h, r(t + h), e(t + h)

) − EV
(
t, r(t), e(t)

)

=
∫ t+h

t

ELV
(
s, r(s), e(s)

)
ds

≤
∫ t+h

t

[−λ
(1)
r(s)EV

(
s, r(s), e(s)

)

+ λ
(2)
r(s)EV

(
s, r(s), e

(
s − τ(s)

))]
ds

≤
∫ t+h

t

[−λ
(1)
r(s)EV

(
s, r(s), e(s)

)

+ λ
(2)
r(s) sup

s−τ≤θ≤s

EV
(
s, r(s), e(s)

)]
ds.

Taking z(t, r(t)) = EV (t, r(t), e(t)), then by the above
inequality we obtain

D+z(t, i) ≤ −λ
(1)
i z(t, i) + λ

(2)
i z(t, i),

for all r(t) = i ∈ S.

So, it follows from Proposition 1 that

z(t, i) ≤ z
(
0, r(0)

)
e−λi t ,

t ≥ 0 and r(t) = i ∈ S,

which gives

E|e(t)|p ≤ γr(0)

γi

max1≤i≤n mi

min1≤i≤n mi

sup
−τ≤s≤0

E|e(s)|pe−λi t ,

t ≥ 0 and r(t) = i ∈ S, (10)

where λi is the unique positive root of the following
equation:

λi = λ
(1)
i − λ

(2)
i eλiτ , i ∈ S.

Taking α = maxi∈S γi

mini∈S γi

max1≤i≤n mi

min1≤i≤n mi
and β = mini∈S λi ,

then by (10) we obtain

E
∥
∥e(t)

∥
∥p ≤ αe−βt sup

−τ≤s≤0
E

∥
∥e(s)

∥
∥p

, t ≥ 0.

Therefore, by Definition 1, we see that the two coupled
neural networks (1) and (2) are pth moment exponen-
tially synchronized. �

Remark 5 Theorem 1 is our first main result, which
gives a new sufficient condition to prove that the two
coupled neural networks (1) and (2) can be pth mo-
ment exponentially synchronized. It should be men-
tioned that Theorem 1 does not need the differentia-
bility of the time-vary delay τ(t), and τ(t) is only re-
quired to be bounded, i.e., 0 ≤ τ(t) ≤ τ . However, all
delays in [4, 7–9, 11, 12, 17, 20, 21, 23, 26, 29, 30, 32,
34] are constants or differential and their derivatives
are simultaneously required to be smaller than 1, and
so Theorem 1 is less conservatism than those reported
in [4, 7–9, 11, 12, 17, 20, 21, 23, 26, 29, 30, 32, 34].
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Remark 6 In Theorem 1, we have discussed the pth
moment exponential synchronization problem. How-
ever, the exponential or asymptotic or almost surely
asymptotic synchronization problem is investigated in
[4, 7–9, 11, 12, 17, 20, 21, 23, 26, 29, 30, 32, 34], and
the pth moment exponential synchronization problem
is not considered in [4, 7–9, 11, 12, 17, 20, 21, 23,
26, 29, 30, 32, 34]. Obviously, when p = 2, the 2th
moment exponential synchronization is the exponen-
tial synchronization, and the exponential synchroniza-
tion implies the asymptotic synchronization. There-
fore, Theorem 1 extends and improves those exponen-
tial or asymptotic synchronization criteria given in [4,
7–9, 11, 12, 17, 20, 21, 23, 26, 29, 30, 32, 34].

Remark 7 In Theorem 1, Markovian switching has
been employed to discuss the pth moment exponen-
tial synchronization problem. However, all authors in
[4, 7–9, 11, 12, 17, 20, 21, 23, 26, 29, 30, 32, 34]
did not consider Markovian switching. As we know,
the neural network without Markovian switching can
be regarded as a special case of the neural network
with Markovian switching when the Markov chain r(·)
only takes a unique value, i.e., S = {1}. Therefore,
the model studied in Theorem 1 also generalizes some
models discussed in the previous literature.

We now discuss some special cases of our result.

(a) When p = 2, we have the following result based
on Theorem 1.

Theorem 2 Under Assumptions 1–5, the two coupled
neural networks (1) and (2) can be exponentially syn-
chronized, if there exist positive numbers γi(i ∈ S),mj

(j = 1,2, . . . , n) such that

λ
(1)
i > λ

(2)
i > 0, i ∈ S, (11)

where

λ
(1)
i = min

1≤j≤n

{

2γiα
0
ij δij − γi

n∑

k=1

α1
ij |aijk|u1k

− γi

n∑

k=1

mk

mj

α1
ik|aikj |u1j

− γi

n∑

k=1

α1
ij |bijk|u2k

− γi

n∑

k=1

mk

mj

μij +
N∑

l=1

qilγl

}

,

λ
(2)
i = max

1≤j≤n

{

γi

n∑

k=1

mk

mj

α1
ik|bikj |u2j

+ γi

n∑

k=1

mk

mj

νij

}

.

(b) When the Markov chain r(·) only takes a unique
value, i.e., S = {1}, the two coupled neural networks
(1) and (2) will become the following two coupled
neural networks without Markovian switching:

dx(t) = {−α̃
(
x(t)

)[
β̃
(
x(t)

) − Cf̃
(
x(t)

)

− Dg̃
(
x
(
t − τ(t)

))] + J
}
dt, (12)

dy(t) = {−α̃
(
y(t)

)[
β̃
(
y(t)

) − Cf̃
(
y(t)

)

− Dg̃
(
y
(
t − τ(t)

))] + J + u(t)
}
dt

+ σ
(
t, y(t) − x(t), y

(
t − τ(t)

)

− x
(
t − τ(t)

))
dw(t), (13)

where C, D, α̃(x(t)), β̃(x(t)), α̃(y(t)), β̃(y(t)),
u(t), σ(t, y(t) − x(t), y(t − τ(t)) − x(t − τ(t))) de-
note C(1), D(1), α̃(x(t),1), β̃(x(t),1), α̃(y(t),1),
β̃(y(t),1), u(t,1), σ(t,1, y(t) − x(t), y(t − τ(t)) −
x(t − τ(t))), respectively. Accordingly, in Assump-
tions 1–5, we will use α0

j , α
1
j , δj ,μj , νj , j = 1,2, . . . ,

n to denote α0
1j , α

1
1j , δ1j ,μ1j , ν1j , j = 1,2, . . . , n.

Taking V (t, e(t)) = ∑n
j=1 mj |ej (t)|p , then by us-

ing Theorems 1 and 2, we obtain the following syn-
chronization criteria about the two coupled neural net-
works (12) and (13).

Theorem 3 Under Assumptions 1–5, the two coupled
neural networks (12) and (13) can be pth moment ex-
ponentially synchronized, if there exist positive num-
bers mj (j = 1,2, . . . , n) such that

λ(1) > λ(2) > 0, (14)

where

λ(1) = min
1≤j≤n

{

pα0
j δj − (p − 1)

n∑

k=1

α1
j |ajk|u1k

−
n∑

k=1

mk

mj

α1
k |akj |u1j − (p − 1)

n∑

k=1

α1
j |bjk|u2k
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− 1

2
(p − 1)(p − 2)

n∑

k=1

μk

− (p − 1)

n∑

k=1

mk

mj

μk

− (p − 1)(p − 2)

n∑

k=1

νj

}

,

λ(2) = max
1≤j≤n

{
n∑

k=1

mk

mj

α1
k |bkj |u2j

+ (p − 1)

n∑

k=1

mk

mj

νj

}

.

Theorem 4 Under Assumptions 1–5, the two cou-
pled neural networks (12) and (13) can be exponen-
tially synchronized, if there exist positive numbers mj

(j = 1,2, . . . , n) such that

λ(1) > λ(2) > 0, (15)

where

λ(1) = min
1≤j≤n

{

2α0
j δj −

n∑

k=1

α1
j |ajk|u1k

−
n∑

k=1

mk

mj

α1
k |akj |u1j −

n∑

k=1

α1
j |bjk|u2k

−
n∑

k=1

mk

mj

μj

}

,

λ(2) = max
1≤j≤n

{
n∑

k=1

mk

mj

α1
k |bkj |u2j +

n∑

k=1

mk

mj

νj

}

.

Letting mi = 1, i = 1,2, . . . , n in Theorems 1–4,
then we get the following corollaries.

Corollary 1 Under Assumptions 1–5, the two coupled
neural networks (1) and (2) can be pth moment expo-
nentially synchronized, if there exist positive numbers
γi, i ∈ S such that

λ
(1)
i > λ

(2)
i > 0, i ∈ S, (16)

where

λ
(1)
i = min

1≤j≤n

{

γipα0
ij δij − γi(p − 1)

n∑

k=1

α1
ij |aijk|u1k

− γi

n∑

k=1

α1
ik|aikj |u1j

− γi(p − 1)

n∑

k=1

α1
ij |bijk|u2k

− 1

2
γi(p − 1)(p − 2)

n∑

k=1

μik

− γi(p − 1)nμij − γi(p − 1)(p − 2)

n∑

k=1

νik

−
N∑

l=1

qilγl

}

,

λ
(2)
i = max

1≤j≤n

{

γi

n∑

k=1

α1
ik|bikj |u2j + γi(p − 1)nνij

}

.

Corollary 2 Under Assumptions 1–5, the two coupled
neural networks (1) and (2) can be exponentially syn-
chronized, if there exist positive numbers γi, i ∈ S such
that

λ
(1)
i > λ

(2)
i > 0, i ∈ S, (17)

where

λ
(1)
i = min

1≤j≤n

{

2γiα
0
ij δij − γi

n∑

k=1

α1
ij |aijk|u1k

− γi

n∑

k=1

α1
ik|aikj |u1j

− γi

n∑

k=1

α1
ij |bijk|u2k − γinμij +

N∑

l=1

qilγl

}

,

λ
(2)
i = max

1≤j≤n

{

γi

n∑

k=1

α1
ik|bikj |u2j + γinνij

}

.

Corollary 3 Under Assumptions 1–5, the two coupled
neural networks (12) and (13) can be pth moment ex-
ponentially synchronized, if the following holds:

λ(1) > λ(2) > 0, (18)

where

λ(1) = min
1≤j≤n

{

pα0
j δj − (p − 1)

n∑

k=1

α1
j |ajk|u1k
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−
n∑

k=1

α1
k |akj |u1j − (p − 1)

n∑

k=1

α1
j |bjk|u2k

− 1

2
(p − 1)(p − 2)

n∑

k=1

μk − (p − 1)nμj

− (p − 1)(p − 2)

n∑

k=1

νk

}

,

λ(2) = max
1≤j≤n

{
n∑

k=1

α1
k |bkj |u2j + (p − 1)nνj

}

.

Corollary 4 Under Assumptions 1–5, the two coupled
neural networks (12) and (13) can be pth moment ex-
ponentially synchronized, if the following holds:

λ(1) > λ(2) > 0, (19)

where

λ(1) = min
1≤j≤n

{

2α0
j δj −

n∑

k=1

α1
j |ajk|u1k

−
n∑

k=1

α1
k |akj |u1j −

n∑

k=1

α1
j |bjk|u2k − nμj

}

,

λ(2) = max
1≤j≤n

{
n∑

k=1

α1
k |bkj |u2j + nνj

}

.

4 Numerical example and simulation

In this section, a numerical example and its simula-
tion are given to demonstrate the effectiveness of the
obtained results.

Example 1 Consider the following two coupled Mar-
kovian jump neural networks with time-varying de-
lays:

dx(t) = {−α̃
(
x(t), r(t)

)[
β̃
(
x(t), r(t)

)

− C
(
r(t)

)
f̃

(
x(t)

)

− D
(
r(t)

)
g̃
(
x
(
t − τ(t)

))] + J
}
dt, (20)

dy(t) = {−α̃
(
y(t), r(t)

)[
β̃
(
y(t), r(t)

)

− C
(
r(t)

)
f̃

(
y(t)

)

− D
(
r(t)

)
g̃
(
y
(
t − τ(t)

))]

+ J + u
(
t, r(t)

)}
dt + σ

(
t, r(t), y(t)

− x(t), y
(
t − τ(t)

)

− x
(
t − τ(t)

))
dw(t), (21)

with J = (0,0)T, x(t) = (x1(t), x2(t))
T, y(t) = (y1(t),

y2(t))
T, u(t, r(t)) = K1(r(t))[f̃ (y(t)) − f̃ (x(t))] +

K2(r(t))[̃g(y(t − τ(t))) − g̃(x(t − τ(t)))], w(t) is
a two-dimensional Brownian motion, and r(t) is a
right-continuous Markov chain taking values in S =
{1,2} with generator Q = [ −0.06 0.06

0.08 −0.08

]
. Take τ(t) =

0.1| cos t | + 1, f̃ (xj ) = g̃(xj ) = tanh(xj ), αj (xj (t),

i) = 0.5 + 0.3 cos(t), βj (xj (t), i) = 2xj (t) (i, j =
1,2),

σ
(
1, t, e(t), e

(
t − τ(t)

))

= 0.05

(
e1(t) e1(t − τ(t))

(e1(t) + e1(t − τ(t))) e2(t − τ(t))

)

,

σ
(
2, t, e(t), e

(
t − τ(t)

))

= 0.05

(
e1(t − τ(t)) e2(t)

e2(t − τ(t)) (e1(t) + e1(t − τ(t)))

)

.

It is easy to check that Assumptions 1–4 hold. Other
parameters of the two coupled neural networks (20)
and (21) are given as follows:

C(1) =
[

4.1 −0.3
−9.9 6

]

,

D(1) =
[−3.1 −0.2
−0.5 −4.9

]

,

K1(1) =
[−4 0.2

10 −6

]

,

K2(1) =
[

3.2 0.2
0.5 5

]

,

C(2) =
[

4 −0.2
−10 6.2

]

,

D(2) =
[ −3 −0.2
−0.4 −5

]

,

K1(2) =
[−4 0.1

10 −6.1

]

,

K2(2) =
[

3 0.1
0.3 5.1

]

.

Figures 1 and 2 show that system (20) has a chaotic
attractor. Let p = 4 and take γ1 = 0.5, γ2 = 1, then a
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Fig. 1 The chaotic
attractor of neural network
(20) in model 1

simple computation yields

λ
(1)
1 = min

1≤j≤n

{

γ1pα0
1j δ1j − γ1(p − 1)

×
n∑

k=1

α1
1j |a1jk|u11k − γ1

n∑

k=1

α1
1k|a1kj |u11j

− γ1(p − 1)

n∑

k=1

α1
1j |b1jk|u12k

− 1

2
γ1(p − 1)(p − 2)

n∑

k=1

μ1k

− γ1(p − 1)nμ1j − γ1(p − 1)(p − 2)

n∑

k=1

ν1k

−
N∑

l=1

q1lγl

}

= 1.7025,

λ
(1)
2 = min

1≤j≤n

{

γ2pα0
2j δ2j − γ2(p − 1)

×
n∑

k=1

α1
2j |a2jk|u21k − γ2

n∑

k=1

α1
2k|a2kj |u21j

− γ2(p − 1)

n∑

k=1

α1
2j |b2jk|u22k − 1

2
γ2(p − 1)

× (p − 2)

n∑

k=1

μ2k

− γ2(p − 1)nμ2j − γ2(p − 1)(p − 2)

×
n∑

k=1

ν2k −
N∑

l=1

q2lγl

}

= 3.335,

λ
(2)
1 = max

1≤j≤n

{

γ1

n∑

k=1

α1
1k|b1kj |u12j + γ1(p − 1)nν1j

}

= 1.025,

λ
(2)
2 = max

1≤j≤n

{

γ2

n∑

k=1

α1
2k|b2kj |u22j + γ2(p − 1)nν2j

}

= 2.19.

Obviously, λ
(1)
1 > λ

(2)
1 > 0, λ

(1)
2 > λ

(2)
2 > 0. There-

fore, it follows from Corollary 1 that the two coupled
neural networks (20) and (21) can be 4th moment ex-
ponentially synchronized. Moreover, Figs. 3 and 4 also
show perfectly that the two coupled neural networks
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Fig. 2 The chaotic
attractor of neural network
(20) in model 2

Fig. 3 The synchronization
error of the model 1 in
Example 1
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Fig. 4 The synchronization
error of the model 2 in
Example 1

(20) and (21) can be 4th moment exponentially syn-
chronized.

Remark 8 In Example 1, we discuss a class of gen-
eralized coupled neural networks, which includes
many coupled neural networks with/without Marko-
vian switching as its special cases. In particular, the
time-varying delays in Example 1 are not differential.
Therefore, all of the synchronization criteria obtained
in [4, 7–12, 17, 19–21, 23, 24, 26, 29, 30, 32, 34, 37]
fail in our example.

5 Concluding remarks

In this paper, we have studied the pth moment ex-
ponential synchronization problem for a class of
stochastic delayed Cohen–Grossberg neural networks
with Markovian switching. By using the Lyapunov–
Krasovskii functional, stochastic analysis theory, a
generalized Halanay-type inequality as well as out-
put coupling with delay feedback control technique,
some novel sufficient conditions are derived to achieve
complete pth moment exponential synchronization of
the addressed neural networks. The results obtained

in this paper generalize and improve many known re-

sults. Moreover, a numerical example and its simu-

lation are also provided to demonstrate the effective-

ness and applicability of the theoretical results. It is

worth pointing out that the contribution of this pa-

per is threefold. (1) Firstly, different from the tradi-

tional criteria such as asymptotical synchronization,

almost surely asymptotical synchronization and expo-

nential synchronization criterion, the synchronization

criterion considered in this paper is pth moment expo-

nential stability of the error dynamical system, which

has seldom been applied to investigate the synchro-

nization problem. (2) Secondly, the model considered

in this paper is a class of stochastic delayed Cohen–

Grossberg neural networks with Markovian switching,

which has never been used to study the synchroniza-

tion problem. (3) Thirdly, the traditional assumptions

on the differentiability of the time varying delay and

the boundedness of its derivative are necessary in the

earlier works. However, we take off these restrictive-

ness in this paper. Moreover, we present a numerical

example and its simulation to illustrate well the ob-

tained results.
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