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Abstract In this paper, a new exponential state es-
timation method is proposed for switched Hopfield
neural networks based on passivity theory. Through
available output measurements, the main purpose is
to estimate the neuron states such that the estimation
error system is exponentially stable and passive from
the control input to the output error. Based on aug-
mented Lyapunov–Krasovskii functional, Jensen’s in-
equality, and linear matrix inequality (LMI), a new
delay-dependent state estimator for switched Hopfield
neural networks can be achieved by solving LMIs,
which can be easily facilitated by using some stan-
dard numerical packages. The unknown gain matrix
is determined by solving delay-dependent LMIs. Fi-
nally, a numerical example is provided to demonstrate
the effectiveness of the proposed method.
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1 Introduction

Studying artificial neural networks has been the cen-
tral focus of intensive research activities during the
last decades since these artificial networks have found
wide applications in areas like associative memory,
pattern classification, reconstruction of moving im-
ages, signal processing, solving optimization prob-
lems, etc.; see [1]. Different models of neural networks
such as Hopfield neural networks, cellular neural net-
works, Cohen–Grossberg neural networks, and bidi-
rectional associative memory neural networks have
been extensively investigated in the literature. Among
several neural networks, Hopfield neural networks
[1, 2] are the most popular. They have been exten-
sively studied and successfully applied in many areas
such as combinatorial optimization, signal processing,
and pattern recognition [1].

On the other hand, a class of hybrid systems has at-
tracted significant attention because it can model sev-
eral practical control problems that involve the integra-
tion of supervisory logic-based control schemes and
feedback control algorithms [3]. As a special class
of hybrid systems, switched systems are regarded as
nonlinear systems, which are composed of a family
of continuous-time or discrete-time subsystems and a
rule that orchestrates the switching between the sub-
systems [4–8]. Recently, switched neural networks,
whose individual subsystems are a set of neural net-
works, have found applications in fields of high speed
signal processing, artificial intelligence, and gene se-
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lection in a DNA microarray analysis [9–11]. There-
fore, some researchers have studied the stability issues
for switched Hopfield neural networks [12–14]. How-
ever, up to now, the dynamical behavior of switched
Hopfield neural networks has received very little re-
search attention, despite its potential and practical im-
portance.

The neuron states in relatively large scale neural
networks are not often completely available in the net-
work outputs. Thus, in many applications, one often
needs to estimate the neuron states through available
measurements and then utilizes the estimated neuron
states to achieve certain design objectives. For exam-
ple, in [15], a recurrent neural network was applied
to model an unknown system and the neuron states
of the designed neural network were then utilized by
the control law. Therefore, from the point of view of
control, the state estimation problem for neural net-
works is of significance for many applications. Some
partial results for the neuron state estimation prob-
lem are available [16–18]. In [19, 20], the authors
studied state estimation for Markovian jumping recur-
rent neural networks with time-delays by construct-
ing Lyapunov–Krasovskii functionals and linear ma-
trix inequalities (LMIs). In spite of these advances in
neural network state estimation, the state estimation
problem for switched neural networks has not been in-
vestigated in the literature and it is very important in
both theories and applications.

The passivity theory [21, 22] is an effective and ap-
pealing tool to analyze the stability of nonlinear sys-
tems. It may deal with nonlinear systems using only
the general characteristics of the input–output dynam-
ics and offers elegant solutions for the proof of abso-
lute stability. The passivity framework is a promising
approach to the stability analysis of neural networks
because it can lead to general conclusions on stability
using only input–output characteristics. Natural ques-
tions arise: can we obtain a passivity based state es-
timator for switched neural networks? Moreover, un-
der what condition can this state estimator guarantee
the exponential state estimation? This paper gives an-
swers to these interesting questions. To the best of our
knowledge, for the passivity based exponential state
estimation of switched neural networks, there is no re-
sult in the literature so far, which still remains open
and challenging.

In this paper, we propose a new exponential state
estimator for switched Hopfield neural networks based

on passivity theory. This state estimator is a new
contribution to the topic of state estimation for neu-
ral networks. By constructing a suitable augmented
Lyapunov–Krasovskii functional and employing
Jensen’s inequality, a new sufficient condition is de-
rived such that the estimation error system is expo-
nentially stable and passive from the control input to
the output error. It is shown that an existence criterion
for the proposed state estimator is represented in terms
of LMIs, which can be solved efficiently by using re-
cently developed convex optimization algorithms [23].

This paper is organized as follows. In Sect. 2, we
formulate the problem. In Sect. 3, an LMI problem
for the passivity based exponential state estimation
of switched Hopfield neural networks is proposed. In
Sect. 4, a numerical example is given, and finally, con-
clusions are presented in Sect. 5.

2 Problem formulation

Consider the following Hopfield neural network with
time-delay:

ẋ(t) = Ax(t) + Wφ
(
x(t − τ)

)+ J (t), (1)

y(t) = Cx(t) + Dx(t − τ), (2)

where x(t) = [x1(t) . . . xn(t)]T ∈ �n is the state vec-
tor, y(t) = [y1(t) . . . ym(t)]T ∈ �m is the output vec-
tor, τ ≥ 0 is the time-delay, A = diag{−a1, . . . ,−an} ∈
�n×n (ak > 0, k = 1, . . . , n) is the self-feedback ma-
trix, W ∈ �n×n is the delayed connection weight ma-
trix, φ(x(t)) = [φ1(x(t)) . . . φn(x(t))]T : �n → �n

is the nonlinear function vector satisfying the global
Lipschitz condition with Lipschitz constant Lφ > 0,
G ∈ �n×m and C ∈ �m×n are known constant matri-
ces, and J (t) ∈ �n is an external input vector.

Switched systems are a special class of hybrid
systems consisting of a family of subsystems and a
switching rule. In this paper, we consider the following
model of switched Hopfield neural networks [12]:

ẋ(t) = Aαx(t) + Wαφ
(
x(t − τ)

)+ Jα(t), (3)

y(t) = Cαx(t) + Dαx(t − τ), (4)

where α is a switching signal which takes its val-
ues in the finite set I = {1,2, . . . ,N}. This means
that the matrices (Aα,Wα,Jα(t),Cα,Dα) are allowed
to take values, at an arbitrary time, in the finite set
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{(A1,W1, J1(t), C1,D1), . . . , (AN, WN, JN(t),CN,

DN)}. Throughout this paper, we assume that the
switching rule α is not known a priori and its in-
stantaneous value is available in real time. Define the
indicator function ξ(t) = (ξ1(t), ξ2(t), . . . , ξN (t))T ,
where

ξi(t) =
⎧
⎨

⎩

1, when the switched system is described

by the ith mode (Ai,Wi, Ji(t),Ci,Di),

0, otherwise,

with i = 1, . . . ,N . Therefore, the model of the
switched Hopfield neural networks (3) can also be
written as

ẋ(t) =
N∑

i=1

ξi(t)
[
Aix(t) + Wiφ

(
x(t − τ)

)+ Ji(t)
]
,

(5)

y(t) =
N∑

i=1

ξi(t)
[
Cix(t) + Dix(t − τ)

]
, (6)

where
∑N

i=1 ξi(t) = 1 is satisfied under any switching
rules. For the switched Hopfield neural network (5)–
(6), we propose the following switched state estimator:

˙̂x(t) =
N∑

i=1

ξi(t)
[
Aix̂(t) + Wiφ

(
x̂(t − τ)

)+ Ji(t)

+ L
(
y(t) − ŷ(t)

)− GiI (t)
]
, (7)

ŷ(t) =
N∑

i=1

ξi(t)
[
Cix̂(t) + Dix̂(t − τ) − FiI (t)

]
, (8)

where x̂(t) = [x̂1(t) . . . x̂n(t)]T ∈ �n is the state vector
of the state estimator, ŷ(t) = [ŷ1(t) . . . ŷm(t)]T ∈ �m

is the output vector of the state estimator, I (t) ∈ �m

is the control input vector, L ∈ �n×m is the gain ma-
trix of the state estimator, and Gi ∈ �n×m and Fi ∈
�m×m are known constant matrices. Define the esti-
mation error e(t) = x(t) − x̂(t) and the output error
ỹ(t) = y(t) − ŷ(t). Then the estimation error system
is represented as follows:

ė(t) =
N∑

i=1

ξi(t)
{
(Ai − LCi)e(t) − LDie(t − τ)

+ Wiφ
(
x(t − τ)

)− Wiφ
(
x̂(t − τ)

)

+ (Gi − LFi)I (t)
}
, (9)

ỹ(t) =
N∑

i=1

ξi(t)
[
Cie(t) + Die(t − τ) + FiI (t)

]
. (10)

The main purpose of this paper is to design a switched
state estimator (7)–(8) for the estimation of the state
vector x(t) based on passivity theory. Specifically, find
a proper switched state estimator such that the estima-
tion error system (9)–(10) satisfies the following pas-
sivity inequality:

∫ t

0
IT (σ )ȳ(σ ) dσ + β ≥

∫ t

0
Φ
(
e(σ )

)
dσ,

∀t ≥ 0, (11)

where β is a nonnegative constant, ȳ(t) = exp(κt)ỹ(t),
κ is an enough small positive constant, and Φ(e(t)) is
a positive semi-definite storage function.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

[1,1]i −MDi U1

−DT
i MT L2

φI − exp(−κτ)R1 − 1
τ
S1 −U1

U1 −U1 κU1 − 1
τ
Q1

exp(κτ)−1
κ

QT
2 + RT

2 + (PGi − MFi)
T − 1

2Ci − 1
2Di UT

2

0 − exp(−κτ)RT
2 −UT

2

UT
2 −UT

2 κUT
2 − 1

τ
QT

2

WT
i P 0 0
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exp(κτ)−1
κ

Q2 + R2 + PGi − MFi − 1
2CT

i 0 U2 PWi

− 1
2DT

i − exp(−κτ)R2 −U2 0

U2 −U2 κU2 − 1
τ
Q2 0

exp(κτ)−1
κ

Q3 + R3 − Fi 0 U3 0

0 − exp(−κτ)R3 −U3 0

U3 −U3 κU3 − 1
τ
Q3 0

0 0 0 −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

< 0, (12)

[
Q1 Q2

QT
2 Q3

]
> 0,

[
R1 R2

RT
2 R3

]
> 0,

[
U1 U2

UT
2 U3

]
> 0. (13)

3 Switched exponential state estimation based
on passivity theory

This section is devoted to developing a passivity based
approach to dealing with the exponential state estima-
tion problem for switched Hopfield neural networks.
A delay-dependent condition is derived such that the
resulting estimation error system (9) is passive and ex-
ponentially stable. The design of an appropriate state
estimator can be achieved by solving a corresponding
set of LMIs.

Theorem 1 Assume that there exist common matri-
ces P = P T > 0, Q1 = QT

1 > 0, Q2, Q3 = QT
3 > 0,

R1 = RT
1 > 0, R2, R3 = RT

3 > 0, S1 = ST
1 > 0, S2 =

ST
2 > 0, U1 = UT

1 > 0, U2, U3 = UT
3 > 0, and M such

that LMIs (12) and (13) are satisfied, for i = 1, . . . ,N ,
where

[1,1]i = (PAi − MCi)
T + PAi − MCi + κP

+ exp(κτ) − 1

κ
Q1 + S2 + R1 − 1

τ
S1.

Then the estimation error system (9)–(10) is passive
from the control input I (t) to the output error ȳ(t) and
the gain matrix of the switched state estimator (7)–(8)
is given by L = P −1M .

Proof We consider the following Lyapunov–Kra-
sovskii functional:

V (t) = exp(κt)eT (t)P e(t)

+
∫ 0

−τ

exp(−κβ)

∫ t

t+β

exp(κα)

[
e(α)

I (α)

]T

×
[

Q1 Q2

QT
2 Q3

][
e(α)

I (α)

]
dα dβ

+
∫ 0

−τ

exp
(
κ(t + σ)

)[ e(t + σ)

I (t + σ)

]T

×
[

R1 R2

RT
2 R3

][
e(t + σ)

I (t + σ)

]
dσ

+ exp(κt)

[ ∫ 0
−τ

e(t + σ)dσ
∫ 0
−τ

I (t + σ)dσ

]T [
U1 U2

UT
2 U3

]

×
[ ∫ 0

−τ
e(t + σ)dσ

∫ 0
−τ

I (t + σ)dσ

]

+
∫ 0

−τ

exp(−κβ)

×
∫ t

t+β

exp(κα)ėT (α)S1ė(α) dα dβ. (14)

Calculating the time derivative of V (t) along the tra-
jectory of the estimation error system (9)–(10), we
have

V̇ (t) = exp(κt)ė(t)T P e(t) + exp(κt)eT (t)P ė(t)

+ κ exp(κt)eT (t)P e(t)

+ exp(κτ) − 1

κ
exp(κt)

×
[

e(t)

I (t)

]T [
Q1 Q2

QT
2 Q3

][
e(t)

I (t)

]

− exp(κt)

∫ t

t−τ

[
e(σ )

I (σ )

]T [
Q1 Q2

QT
2 Q3

]

×
[

e(σ )

I (σ )

]
dσ
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+ exp(κt)

[
e(t)

I (t)

]T [
R1 R2

RT
2 R3

][
e(t)

I (t)

]

− exp
(
κ(t − τ)

)[ e(t − τ)

I (t − τ)

]T [
R1 R2

RT
2 R3

]

×
[

e(t − τ)

I (t − τ)

]
+ κ exp(κt)

[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]T

×
[

U1 U2

UT
2 U3

][ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]

+ exp(κt)

[
e(t) − e(t − τ)

I (t) − I (t − τ)

]T [
U1 U2

UT
2 U3

]

×
[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]

+ exp(κt)

[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]T

×
[

U1 U2

UT
2 U3

][
e(t) − e(t − τ)

I (t) − I (t − τ)

]

+ exp(κτ) − 1

κ
exp(κt)ėT (t)S1ė(t)

− exp(κt)

∫ t

t−τ

ėT (σ )S1ė(σ ) dσ

=
N∑

i=1

ξi(t)
{
exp(κt)eT (t)

[
(Ai − LCi)

T P

+ P(Ai − LCi) + κP
]
e(t)

− exp(κt)eT (t)PLDie(t − τ)

− exp(κt)eT (t − τ)DT
i LT P e(t)

+ exp(κt)eT (t)PWi

(
φ
(
x(t − τ)

)

− φ
(
x̂(t − τ)

))

+ exp(κt)
(
φ
(
x(t − τ)

)

− φ
(
x̂(t − τ)

))T
WT

i P e(t)

+ exp(κt)e(t)T P (Gi − LFi)I (t)

+ exp(κt)IT (t)(Gi − LFi)
T P e(t)

}

+ exp(κτ) − 1

κ
exp(κt)

[
e(t)

I (t)

]T

×
[

Q1 Q2

QT
2 Q3

][
e(t)

I (t)

]

− exp(κt)

∫ t

t−τ

[
e(σ )

I (σ )

]T

×
[

Q1 Q2

QT
2 Q3

][
e(σ )

I (σ )

]
dσ

+ exp(κt)

[
e(t)

I (t)

]T [
R1 R2

RT
2 R3

][
e(t)

I (t)

]

− exp
(
κ(t − τ)

)[ e(t − τ)

I (t − τ)

]T [
R1 R2

RT
2 R3

]

×
[

e(t − τ)

I (t − τ)

]
+ κ exp(κt)

[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]T

×
[

U1 U2

UT
2 U3

][ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]

+ exp(κt)

[
e(t) − e(t − τ)

I (t) − I (t − τ)

]T [
U1 U2

UT
2 U3

]

×
[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]

+ exp(κt)

[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]T

×
[

U1 U2

UT
2 U3

][
e(t) − e(t − τ)

I (t) − I (t − τ)

]

+ exp(κτ) − 1

κ
exp(κt)ėT (t)S1ė(t)

− exp(κt)

∫ t

t−τ

ėT (σ )S1ė(σ ) dσ. (15)

Adding and subtracting exp(κt)IT (t)[Cie(t) +
Die(t − τ) + FiI (t)], we obtain

V̇ (t) =
N∑

i=1

ξi(t)

{
exp(κt)eT (t)

[
(Ai − LCi)

T P

+ P(Ai − LCi) + κP
]
e(t)

− exp(κt)eT (t)PLDie(t − τ)

− exp(κt)eT (t − τ)DT
i LT P e(t)

+ exp(κt)eT (t)PWi

× (
φ
(
x(t − τ)

)− φ
(
x̂(t − τ)

))

+ exp(κt)
(
φ
(
x(t − τ)

)

− φ
(
x̂(t − τ)

))T
WT

i P e(t)

+ exp(κt)e(t)T
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×
[
P(Gi − LFi) − 1

2
CT

i

]
I (t)

+ exp(κt)IT (t)

×
[
(Gi − LFi)

T P − 1

2
Ci

]
e(t)

− 1

2
exp(κt)IT (t)

× Die(t − τ) − 1

2
exp(κt)eT (t − τ)DT

i I (t)

+ exp(κt)IT (t)

[
exp(κτ) − 1

κ
Q3

+ R3 − Fi

]
I (t)

+ exp(κt)IT (t)
[
Cie(t) + Die(t − τ)

+ FiI (t)
]}

+ exp(κτ) − 1

κ
exp(κt)

[
e(t)

I (t)

]T

×
[

Q1 Q2

QT
2 0

][
e(t)

I (t)

]

− exp(κt)

∫ t

t−τ

[
e(σ )

I (σ )

]T [
Q1 Q2

QT
2 Q3

]

×
[

e(σ )

I (σ )

]
dσ

+ exp(κt)

[
e(t)

I (t)

]T [
R1 R2

RT
2 0

]

×
[

e(t)

I (t)

]
− exp

(
κ(t − τ)

)[ e(t − τ)

I (t − τ)

]T

×
[

R1 R2

RT
2 R3

][
e(t − τ)

I (t − τ)

]

+ κ exp(κt)

[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]T [
U1 U2

UT
2 U3

]

×
[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]

+ exp(κt)

[
e(t) − e(t − τ)

I (t) − I (t − τ)

]T [
U1 U2

UT
2 U3

]

×
[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]

+ exp(κt)

[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]T [
U1 U2

UT
2 U3

]

×
[

e(t) − e(t − τ)

I (t) − I (t − τ)

]

+ exp(κτ) − 1

κ
exp(κt)ėT (t)S1ė(t)

− exp(κt)

∫ t

t−τ

ėT (σ )S1ė(σ ) dσ. (16)

If we use the inequality XT Y + YT X ≤ XT ΛX +
YT Λ−1Y , which is valid for any matrices X ∈ Rn×m,
Y ∈ Rn×m, Λ = ΛT > 0, Λ ∈ Rn×n, we have

eT (t)PWi

(
φ
(
x(t − τ)

)− φ
(
x̂(t − τ)

))

+ (
φ
(
x(t − τ)

)− φ
(
x̂(t − τ)

))T
WT

i P e(t)

≤ (
φ
(
x(t − τ)

)− φ
(
x̂(t − τ)

))T

× (
φ
(
x(t − τ)

)− φ
(
x̂(t − τ)

))

+ eT (t)PWiW
T
i P e(t)

≤ L2
φ

(
x(t − τ) − x̂(t − τ)

)T (
x(t − τ) − x̂(t − τ)

)

+ eT (t)PWiW
T
i P e(t)

= L2
φeT (t − τ)e(t − τ)

+ eT (t)PWiW
T
i P e(t). (17)

Using the Jesen’s inequality [24], we have

− exp(κt)

∫ t

t−τ

[
e(σ )

I (σ )

]T [
Q1 Q2

QT
2 Q3

][
e(σ )

I (σ )

]
dσ

≤ −exp(κt)

τ

{∫ t

t−τ

[
e(σ )

I (σ )

]
dσ

}T [
Q1 Q2

QT
2 Q3

]

×
{∫ t

t−τ

[
e(σ )

I (σ )

]
dσ

}

= −exp(κt)

τ

[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]T [
Q1 Q2

QT
2 Q3

]

×
[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]
(18)

and

− exp(κt)

∫ t

t−τ

ėT (σ )S1ė(σ ) dσ

≤ −exp(κt)

τ

[∫ t

t−τ

ė(σ ) dσ

]T

S1

[∫ t

t−τ

ėT (σ ) dσ

]
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= −exp(κt)

τ

[
e(t) − e(t − τ)

]T

× S1
[
e(t) − e(t − τ)

]
. (19)

Finally, using (17), (18), and (19), the time derivative
of V (t) can be obtained as

V̇ (t) ≤
N∑

i=1

ξi(t) exp(κt)

{
eT (t)

[
(Ai − LCi)

T P

+ P(Ai − LCi) + κP

+ PWiW
T
i P − 1

τ
S1

]
e(t)

− eT (t)

[
PLDi − 1

τ
S1

]
e(t − τ)

− eT (t − τ)

[
DT

i LT P − 1

τ
S1

]
e(t)

− 1

2
IT (t)Die(t − τ) − 1

2
eT (t − τ)DT

i I (t)

+ IT (t)
[
Cie(t) + Die(t − τ) + FiI (t)

]

+
[

e(t)

I (t)

]T

×
[

exp(κτ)−1
κ Q1 + R1

exp(κτ)−1
κ QT

2 + RT
2 + (Gi − LFi)

T P − 1
2 Ci

exp(κτ)−1
κ Q2 + R2 + P(Gi − LFi) − 1

2 CT
i

exp(κτ)−1
κ Q3 + R3 − Fi

]

×
[

e(t)

I (t)

]
−
[

e(t − τ)

I (t − τ)

]T

×
[

exp(−κτ)R1 − L2
φI + 1

τ S1 exp(−κτ)R2

exp(−κτ)RT
2 exp(−κτ)R3

]

×
[

e(t − τ)

I (t − τ)

]
+
[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]T

×
[

κU1 − 1
τ
Q1 κU2 − 1

τ
Q2

κUT
2 − 1

τ
QT

2 κU3 − 1
τ
Q3

]

×
[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]

+
[

e(t) − e(t − τ)

I (t) − I (t − τ)

]T

×
[

U1 U2

UT
2 U3

][ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]

+
[ ∫ t

t−τ
e(σ ) dσ

∫ t

t−τ
I (σ ) dσ

]T [
U1 U2

UT
2 U3

]

×
[

e(t) − e(t − τ)

I (t) − I (t − τ)

]

+ IT (t)
[
Cie(t) + Die(t − τ) + FiI (t)

]

+ exp(κτ) − 1

κ
ėT (t)S1ė(t)

}

=
N∑

i=1

ξi(t) exp(κt)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢⎢⎢⎢⎢
⎣

e(t)

e(t − τ)∫ t

t−τ
e(σ ) dσ

I (t)

I (t − τ)∫ t

t−τ
I (σ ) dσ

⎤

⎥
⎥⎥⎥⎥⎥
⎦

T

×

⎡

⎢⎢⎢⎢⎢⎢
⎣

(1,1)i
1
τ
S1 − PLDi U1

1
τ
S1 − DT

i LT P (2,2)i −U1

U1 −U1 κU1 − 1
τ
Q1

(1,4)Ti − 1
2 Di UT

2

0 − exp(−κτ)RT
2 −UT

2

UT
2 −UT

2 κUT
2 − 1

τ
QT

2

(1,4)i 0 U2

− 1
2 DT

i − exp(−κτ)R2 −U2

U2 −U2 κU2 − 1
τ
Q2

(4,4)i 0 U3

0 − exp(−κτ)R3 −U3

U3 −U3 κU3 − 1
τ
Q3

⎤

⎥⎥⎥⎥
⎦

×

⎡

⎢
⎢⎢⎢⎢⎢
⎣

e(t)

e(t − τ)∫ t

t−τ
e(σ ) dσ

I (t)

I (t − τ)∫ t

t−τ
I (σ ) dσ

⎤

⎥
⎥⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+
N∑

i=1

ξi(t) exp(κt)

× {−eT (t)S2e(t) + IT (t)
[
Cie(t)

+ Die(t − τ) + FiI (t)
]}

, (20)

where

(1,1)i = (Ai − LCi)
T P + P(Ai − LCi)

+ κP + PWiW
T
i P

+ exp(κτ) − 1

κ
Q1 + S2 + R1 − 1

τ
S1,

(2,2)i = L2
φI − exp(−κτ)R1 − 1

τ
S1,

(4,4)i = exp(κτ) − 1

κ
Q3 + R3 − Fi,
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(1,4)i = exp(κτ) − 1

κ
Q2 + R2

+ P(Gi − LFi) − 1

2
CT

i .

If the following matrix inequality is satisfied
⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

(1,1)i
1
τ
S1 − PLDi U1

1
τ
S1 − DT

i LT P (2,2)i −U1

U1 −U1 κU1 − 1
τ
Q1

(1,4)Ti − 1
2Di UT

2

0 − exp(−κτ)RT
2 −UT

2

UT
2 −UT

2 κUT
2 − 1

τ
QT

2

(1,4)i 0 U2

− 1
2DT

i − exp(−κτ)R2 −U2

U2 −U2 κU2 − 1
τ
Q2

(4,4)i 0 U3

0 − exp(−κτ)R3 −U3

U3 −U3 κU3 − 1
τ
Q3

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

(21)

for i = 1, . . . ,N, we have

V̇ (t) <

N∑

i=1

ξi(t) exp(κt)
{−eT (t)S2e(t)

+ IT (t)
[
Cie(t) + Die(t − τ) + FiI (t)

]}

= − exp(κt)eT (t)S2e(t) + IT (t)ȳ(t). (22)

Integrating both sides of (22) from 0 to t gives

V (t) − V (0) < −
∫ t

0
exp(κσ )eT (σ )S2e(σ )dσ

+
∫ t

0
IT (σ )ȳ(σ ) dσ. (23)

Let β = V (0). Since V (t) ≥ 0,
∫ t

0
IT (σ )ȳ(σ ) dσ + β

>

∫ t

0
exp(κσ )eT (σ )S2e(σ )dσ + V (t)

≥
∫ t

0
exp(κσ )eT (σ )S2e(σ )dσ. (24)

The relation (24) satisfies the passivity inequality (11).
Therefore, the estimation error system (9)–(10) is ren-
dered to be passive from the control input I (t) to the

output error ȳ(t) under the switched state estimator
(7)–(8). From the Schur complement, the matrix in-
equality (21) is equivalent to

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

{1,1}i 1
τ S1 − PLDi U1

1
τ S1 − DT

i
LT P (2,2)i −U1

U1 −U1 κU1 − 1
τ Q1

(1,4)T
i

− 1
2Di UT

2

0 − exp(−κτ)RT
2 −UT

2

UT
2 −UT

2 κUT
2 − 1

τ QT
2

WT
i

P 0 0

(1,4)i 0 U2 PWi

− 1
2DT

i
− exp(−κτ)R2 −U2 0

U2 −U2 κU2 − 1
τ Q2 0

(4,4)i 0 U3 0
0 − exp(−κτ)R3 −U3 0

U3 −U3 κU3 − 1
τ Q3 0

0 0 0 −I

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

< 0, (25)

where

{1,1}i = (Ai − LCi)
T P + P(Ai − LCi) + κP

+ exp(κτ) − 1

κ
Q1 + S2 + R1 − 1

τ
S1.

If we let M = PL, (25) is equivalently changed into
the LMI (12). Then the gain matrix of the switched
state estimator is given by L = P −1M . This completes
the proof. �

Corollary 1 (Zero-input error response) If the control
input I (t) is zero, the estimation error system (9)–(10)
is exponentially stable.

Proof When I (t) = 0, we obtain

V̇ (t) < − exp(κt)eT (t)Se(t) (26)

from (22). That is, V̇ (t) < 0 for all e(t) �= 0. Thus, it
implies that V (t) < V (0) for any t ≥ 0. In addition,
from (14), one has
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V (t) < V (0)

= eT (0)P e(0) +
∫ 0

−τ

exp(−κβ)

∫ 0

β

exp(κα)

× eT (α)Q1e(α)dα dβ

+
∫ 0

−τ

exp(κσ )eT (σ )R1e(σ )dσ

+
[∫ 0

−τ

e(σ ) dσ

]T

U1

[∫ 0

−τ

e(σ ) dσ

]
. (27)

Also, we have

V (t) ≥ λmin(P ) exp(κt)
∥∥e(t)

∥∥2
, (28)

where λmin(P ) is the minimum eigenvalue of the ma-
trix P . It follows immediately from (27) and (33) that

∥∥e(t)
∥∥ <

1
√

λmin(P ) exp(κt)

{
eT (0)P e(0)

+
∫ 0

−τ

exp(−κβ)

×
∫ 0

β

exp(κα)eT (α)Q1e(α)dα dβ

+
∫ 0

−τ

exp(κσ )eT (σ )R1e(σ )dσ

+
[∫ 0

−τ

e(σ ) dσ

]T

U1

×
[∫ 0

−τ

e(σ ) dσ

]} 1
2

= 1√
λmin(P )

{
eT (0)P e(0) +

∫ 0

−τ

exp(−κβ)

×
∫ 0

β

exp(κα)eT (α)Q1e(α)dα dβ

+
∫ 0

−τ

exp(κσ )eT (σ )R1e(σ )dσ

+
[∫ 0

−τ

e(σ ) dσ

]T

× U1

[∫ 0

−τ

e(σ ) dσ

]} 1
2

exp

(
−κ

2
t

)
. (29)

Let

Mc1 = 1√
λmin(P )

{
eT (0)P e(0) +

∫ 0

−τ

exp(−κβ)

×
∫ 0

β

exp(κα)eT (α)Q1e(α)dα dβ

+
∫ 0

−τ

exp(κσ )eT (σ )R1e(σ )dσ

+
[∫ 0

−τ

e(σ ) dσ

]T

U1

[∫ 0

−τ

e(σ ) dσ

]} 1
2

> 0,

Nc1 = κ

2
> 0.

Then (29) is represented by

∥∥e(t)
∥∥< Mc1 exp(−Nc1t). (30)

This implies the exponential stability of the error sys-
tem (9)–(10). This completes the proof. �

According to Theorem 3.2 in [22], once the estima-
tion error system (9)–(10) has been rendered passive,
the control input I (t) = −Λ(ȳ(t)) satisfying Λ(0) = 0
and ȳT (t)Λ(ȳ(t)) > 0 for each nonzero ȳ(t) stabilizes
the estimation error system (9)–(10). For example, a
pure gain output feedback I (t) = −νȳ(t) (ν > 0) can
stabilize the estimation error system (9)–(10).

Corollary 2 (Nonzero-input error response) If the
control input I (t) is selected as

I (t) = −νȳ(t) = −ν exp(κt)
(
y(t) − ŷ(t)

)
,

ν > 0, (31)

the estimation error system (9)–(10) is exponentially
stable.

Proof For I (t) = −νȳ(t), the time derivative of V (t)

satisfies

V̇ (t) < −eT (t)Se(t) − νȳT (t)ȳ(t) (32)

from (22). That is, V̇ (t) < 0 for all e(t) �= 0. Thus, it
implies that V (t) < V (0) for any t ≥ 0. From (14), we
have
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V (t) < V (0)

= eT (0)P e(0) +
∫ 0

−τ

exp(−κβ)

∫ 0

β

exp(κα)

×
[

e(α)

−ν exp(κα)(y(α) − ŷ(α))

]T

×
[

Q1 Q2

QT
2 Q3

]

×
[

e(α)

−ν exp(κα)(y(α) − ŷ(α))

]
dα dβ

+
∫ 0

−τ

exp(κσ )

×
[

e(σ )

−ν exp(κσ )(y(σ ) − ŷ(σ ))

]T

×
[

R1 R2

RT
2 R3

]

×
[

e(σ )

−ν exp(κσ )(y(σ ) − ŷ(σ ))

]
dσ

+
[ ∫ 0

−τ
e(σ ) dσ

−ν
∫ 0
−τ

exp(κσ )(y(σ ) − ŷ(σ )) dσ

]T

×
[

U1 U2

UT
2 U3

]

×
[ ∫ 0

−τ
e(σ ) dσ

−ν
∫ 0
−τ

exp(κσ )(y(σ ) − ŷ(σ )) dσ

]
.

(33)

Using the arguments in the proof of Corollary 1, we
obtain

∥∥e(t)
∥∥

<
1√

λmin(P )

{
eT (0)P e(0) +

∫ 0

−τ

exp(−κβ)

×
∫ 0

β

exp(κα)

[
e(α)

−ν exp(κα)(y(α) − ŷ(α))

]T

×
[

Q1 Q2

QT
2 Q3

]

×
[

e(α)

−ν exp(κα)(y(α) − ŷ(α))

]
dα dβ

+
∫ 0

−τ

exp(κσ )

[
e(σ )

−ν exp(κσ )(y(σ ) − ŷ(σ ))

]T

×
[

R1 R2

RT
2 R3

][
e(σ )

−ν exp(κσ )(y(σ ) − ŷ(σ ))

]
dσ

+
[ ∫ 0

−τ
e(σ ) dσ

−ν
∫ 0
−τ

exp(κσ )(y(σ ) − ŷ(σ )) dσ

]T

×
[

U1 U2

UT
2 U3

]

×
[ ∫ 0

−τ
e(σ ) dσ

−ν
∫ 0
−τ

exp(κσ )(y(σ ) − ŷ(σ )) dσ

]} 1
2

× exp

(
−κ

2
t

)
. (34)

Let

Mc2 = 1√
λmin(P )

{
eT (0)P e(0) +

∫ 0

−τ

exp(−κβ)

×
∫ 0

β

exp(κα)

[
e(α)

−ν exp(κα)(y(α) − ŷ(α))

]T

×
[

Q1 Q2

QT
2 Q3

]

×
[

e(α)

−ν exp(κα)(y(α) − ŷ(α))

]
dα dβ

+
∫ 0

−τ

exp(κσ )

[
e(σ )

−ν exp(κσ )(y(σ ) − ŷ(σ ))

]T

×
[

R1 R2

RT
2 R3

]

×
[

e(σ )

−ν exp(κσ )(y(σ ) − ŷ(σ ))

]
dσ

+
[ ∫ 0

−τ
e(σ ) dσ

−ν
∫ 0
−τ

exp(κσ )(y(σ ) − ŷ(σ )) dσ

]T

×
[

U1 U2

UT
2 U3

]

×
[ ∫ 0

−τ
e(σ ) dσ

−ν
∫ 0
−τ

exp(κσ )(y(σ ) − ŷ(σ )) dσ

]} 1
2

> 0,

Nc2 = κ

2
> 0.

Then (34) is represented by

∥∥e(t)
∥∥< Mc2 exp(−Nc2t). (35)
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This implies the exponential stability of the error sys-
tem (9)–(10). This completes the proof. �

Remark 1 Various efficient convex optimization algo-
rithms can be used to check whether the LMI (12) is
feasible. In this paper, in order to solve the LMI, we
utilize MATLAB LMI Control Toolbox [25], which
implements state-of-the-art interior-point algorithms.

4 Numerical example

Consider the following time-delayed switched Hop-
field neural network:

ẋ(t) =
2∑

i=1

ξi(t)
[
Aix(t) + Wiφ

(
x(t − 1)

)

+ Ji(t)
]
, (36)

y(t) =
2∑

i=1

ξi(t)
[
Cix(t) + Dix(t − 1)

]
, (37)

where

x(t) =
[

x1(t)

x2(t)

]
, φ

(
x(t)

)=
[

tanh(x1(t))

tanh(x2(t))

]
,

A1 =
[−2.2 0

0 −3.5

]
, A2 =

[−3.9 0
0 −2.8

]
,

W1 =
[−1 0.4

0 −0.1

]
, W2 =

[
0.2 −0.8
0.4 0.5

]
,

G1 = G2 =
[

1
−0.5

]
, F1 = F2 = 1,

J1(t) =
[

sin(1.8t)

cos2(t)

]
, J2(t) =

[
3 cos2(0.1t)

− sin(t)

]
,

C1 = [ 1 0 ] , C2 = [ 0 1 ] ,

D1 = [ 0.5 1 ] , D2 = [−1 0.3 ] . (38)

By solving the LMI (12) in Theorem 1, a feasible so-
lution is obtained as

P =
[

0.6821 0.2624
0.2624 1.1716

]
, M =

[
0.3022

−0.2372

]
,

Q1 =
[

2.6196 0.0832
0.0832 2.8001

]
, Q2 =

[−0.0511
0.1885

]
,

Q3 = 0.3400,

R1 =
[

2.9370 0.0318
0.0318 2.7684

]
, R2 =

[−0.0096
0.1374

]
,

R3 = 0.3242,

U1 =
[

0.7772 −0.0191
−0.0191 0.7795

]
, U2 =

[
0.0192
0.0015

]
,

U3 = 0.0989,

S1 =
[

6.2081 −1.3980
−1.3980 4.0715

]
,

S2 =
[

1.6612 0.1803
0.1803 1.9236

]
.

Then the filter gain L can be designed as

L =
[

0.5700
−0.3301

]
.

The switching signal α ∈ {1,2} is given by

α =
{

1, 0 ≤ t ≤ 2,

2, otherwise,

which means that ẋ(t) = A1x(t) + W1φ(x(t − 1)) +
J1(t) and y(t) = C1x(t) + D1x(t − τ) are switched
to ẋ(t) = A2x(t)+ W2φ(x(t − 1))+ J2(t) and y(t) =
C2x(t) + D2x(t − τ), respectively, at t = 2. Network
states on t ∈ [0,2] have zero impact for stability of
systems because stability is an asymptotic behavior
which does not concern with initial network states.
When the initial conditions are given by

x(0) =
[

3
−1

]
, x̂(0) =

[−2
2.3

]
, (39)

the simulation results for the exponential switched
passive state estimator design are shown in Figs. 1–3.
Figures 1 and 2 show the true states x1(t) and x2(t)

and their estimations x̂1(t) and x̂2(t), respectively, and
Fig. 3 shows the responses of the estimation error e(t).
These results demonstrate the effectiveness of the de-
veloped approach for the design of the exponential
switched passive state estimator.

5 Conclusion

In this paper, a new exponential state estimator has
been proposed for switched Hopfield neural networks
based on passivity theory. By the proposed method,
it was shown that the estimation error system is ex-
ponentially stable and passive from the control input
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Fig. 1 Responses of the
state x1(t) and its
estimation x̂1(t)

Fig. 2 Responses of the
state x2(t) and its
estimation x̂2(t)

to the output error. The gain matrix of the proposed
state estimator was determined by solving the LMI
problem. A simulation example was given to show the
effectiveness of the proposed state estimator. The pro-
posed switched state estimator can be used in output–
feedback control applications. A switched neural net-

work is applied to model an unknown switched non-
linear system and the states estimated by the pro-
posed switched state estimator can be then utilized to
achieve control design objectives. Therefore, the pro-
posed switched state estimator is of significance for
several control applications.



Switched exponential state estimation of neural networks based on passivity theory 585

Fig. 3 Responses of the
estimation error e(t)
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