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Abstract A visco-elastoplastic model for the impact
between a compact body and a composite target is pre-
sented. The model is a combination of a nonlinear con-
tact law that includes energy loss due to plastic defor-
mation and a viscous element that accounts for energy
losses due to wave propagation and/or damping. The
governing nonlinear equations are solved numerically
to obtain the response. A piecewise linear version of
the model is also presented, which facilitates analyt-
ical solution. The model predictions are compared to
those of the well-known and commonly used Hunt–
Crossley model. The effects of the various impact pa-
rameters, such as impactor mass, velocity, plasticity,
and damping, on the impact response and coefficient
of restitution are investigated. The model appears to
be suitable for a wide range of impact situations, with
parameters that are well defined and easily calculated
or measured. Furthermore, the resulting coefficient of
restitution is shown to be a function of impact velocity
and damping, as confirmed by published experimental
data.
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1 Introduction

Despite the presence of an extensive literature in im-
pact dynamics, the choice of an adequate model for
a given problem is still an important issue to be ad-
dressed. Even when a model appears to be adequate
for a given situation, often determining the model pa-
rameters is not straightforward. Traditionally, impacts
between relatively rigid compact bodies have been
treated by utilizing the impulse-momentum principle
with the coefficient of restitution to account for en-
ergy lost during impact [1–4]. Though quite simple,
this approach suffers from several problems. First, in
the presence of friction, the method can lead to incon-
sistent results [5]. Another problem is that when one
or both of the impacting bodies are part of a flexible
multi-body system, the value of the coefficient of resti-
tution to be used is difficult to determine. Furthermore,
this method requires an effective contact algorithm and
intermittent solutions before and after impact, and this
may cause implementation problems [6, 7].

In order to address these difficulties, a number of
continuous models have been proposed. Most of these
models are based on contact laws in the form of force-
indentation relationships. The Hertz contact law, de-
veloped for perfectly elastic contact between noncon-
forming compact bodies (e.g., spheres), was one of the
first models used for hard impacts at very low veloc-
ities [1]. Clearly, this model is not adequate for most
impacts in practice, as some energy is dissipated due
to plastic deformation, wave propagation, and other
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effects. Therefore, a number of contact models have
been developed which include a damping element to
account for energy dissipation during impact [8–11].
Linear damping models based on the Kelvin–Voigt
solid were shown to be inconsistent since they result
in nonzero impact forces at the beginning and at the
end of contact due to nonzero approach and rebound
velocities. Hunt and Crossley [12] proposed to use a
nonlinear damping model to overcome this difficulty.
However, this model is a result of an ad hoc fix and
does not rely on any physical explanation. Moreover,
the model parameters are difficult to determine us-
ing the given material properties and geometric condi-
tions and often are “tuned” based on experimental re-
sults [13]. Also, the additional nonlinearity introduced
by the model unnecessarily complicates the solution
method. Despite these difficulties, the Hunt–Crossley
model gained popularity in recent years and has been
used in a number of studies [14, 15].

As an alternative to stiffness/damping models, an
elastoplastic contact law was proposed to account for
energy losses due to local plastic deformation during
impact [11, 16, 17]. The model parameters can be de-
termined easily from geometric conditions and mater-
ial properties, and it has been used successfully in im-
pact situations involving compact bodies. Using this
model, the coefficient of restitution was shown to be
a function of impact velocity, which is consistent with
the experimental evidence [11, 18, 19]. One drawback
of this model is the fact that it does not account for
energy loss due to wave propagation. In a real situ-
ation, the disturbance generated at the contact point
travels through the body as elastic stress waves of fi-
nite speeds. These waves produce vibrations, and part
of the impact energy is converted to vibration. If the
impacting bodies are of similar size, the elastic waves
can travel across the bodies many times before the im-
pact event ends and are therefore not lost. However, if
one of the bodies is relatively large, the waves in the
larger body do not have sufficient time to be reflected
from any boundary and, in essence, remain “trapped”
in the body [11, 20]. When one of the impacting bod-
ies is a slender structural element such as a beam or
plate, a significant amount of energy is transferred to
the structure in the form of vibrations. The elastoplas-
tic contact law can still be used in this case provided
that the global deformation of the structure is included
in the model along with the local contact deforma-
tion (i.e., the larger body is modeled as a flexible el-
ement) [21]. In some cases, however, it is convenient

to treat the bodies as “rigid.” In this case, the amount
of energy transferred to the “flexible” element should
be considered for an accurate representation of the im-
pact event. In order to do this, the energy loss due to
wave propagation should be included along with the
energy loss due to local plastic deformation or dam-
age. The impact of a small mass on an “infinite” struc-
ture can be a good model for isolating the effect of
wave propagation. In this case, the waves do not have
sufficient time to reflect back from the boundaries, and
there is no significant structural deformation during
impact. Therefore, in the absence of local plastic de-
formation, the only energy loss is due to wave propa-
gation.

The impact of a compact body (e.g., a sphere) with
an “infinite structure” (e.g., a large plate) was stud-
ied both analytically and experimentally [22, 23]. It
was shown that the impact force is proportional to the
velocity at the impact point, and a viscoelastic model
similar to a Maxwell model was shown to govern the
local contact behavior. In this case, the energy lost in
“damping” represents the energy lost to the structure,
and the damping coefficient can be determined from
structural and material properties.

From the foregoing discussion, it can be concluded
that if the elastic element in the Maxwell model is
replaced by an elastoplastic element, the effects of
both local plastic deformation and wave propagation
can be accounted for. Ismail and Stronge [24] pro-
posed a modified Maxwell model for impacts of vis-
coplastic bodies. They replaced the linear spring of the
Maxwell model with a bilinear stiffness element to ac-
count for energy losses due to plastic deformation in
the contact zone. Their model uses an ad hoc plastic
loss factor in addition to the damping coefficient as
model parameters. Though not explicitly stated, these
model parameters were implied to be material prop-
erties. They concluded that their viscoplastic model,
like the linear viscoelastic Maxwell model, results in
a coefficient of restitution that is independent of im-
pact velocity, which clearly contradicts the experimen-
tal evidence that the coefficient of restitution is indeed
a function of impact velocity. The main objective of
this work is to present a nonlinear visco-elastoplastic
impact model where both the elastic-plastic stiffness
and the damping behavior are derived based on well-
defined elastoplastic contact and impact of a compact
body with an infinite structure. Unlike some models
that require tuning of parameters to match a certain
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impact response [13], the parameters of the proposed
model are well defined and can easily be calculated
or measured a priori. The model can be used for a
wide range of impact situations involving rigid body
dynamics, wave propagation, viscoelasticity, and plas-
ticity. Furthermore, the model predicts a consistent co-
efficient of restitution, which is a function of impact
velocity and damping as confirmed by published ex-
perimental data.

2 Impact model

In the case of impact between a spherical object having
an initial velocity of v0 and a visco-elastoplastic half-
space, or an infinite structure (see Fig. 1), the motion
of the impactor is described by

mα̈ = −F, (1)

cẏ = F, (2)

where m is the mass of the impactor, α is the total
displacement of the impactor, c is the damping coef-
ficient, which represents either the viscous dissipation
in the material, or the effect of energy lost to the waves
which do not have sufficient time to be reflected back
from the boundaries, y is the dashpot displacement,
and F is the impact force to be obtained from a con-
tact law given as

F =
{

f (z), if F > 0,

0, if F ≤ 0,
(3)

where z is the relative deformation in the spring de-
fined as

z = α − y. (4)

The initial conditions are described as α(0) = y(0) =
z(0) = ẏ(0) = 0 and α̇(0) = ż(0) = v0.

Fig. 1 Sketch of the model
for nonlinear
visco-elastoplastic impact

The value of the damping coefficient c can be cal-
culated as in [20, 23, 25]: For the energy lost to ax-
ial waves (in the case of a relatively long slender el-
ement), c = ρA

√
E/ρ, where ρ and E are the ma-

terial density and Young’s modulus, respectively, and
A is the cross-sectional area of an effective infinite
bar. For the energy lost to transverse waves (in the
case of a relatively large thin element such as a plate),
c = 8

√
ρhD∗, where h is the thickness and D∗ is the

effective bending stiffness of the structure. In a general
case of a small compact body impacting a large struc-
ture, both axial and transverse waves are generated. In
this case, these two damping elements can be thought
of as combined in series. As is clear from Fig. 1 and
the foregoing equations, for the purpose of presenta-
tion of the impact model, it is assumed that all defor-
mation occurs in a relatively small contact region, and
the remaining parts of the bodies are assumed to be
rigid otherwise.

Hertz contact law In cases where impacts are elas-
tic in nature (i.e., no plastic deformation or damage),
the classical Hertz contact theory [1, 11] may be used
to obtain the impact force. The relationship between
the contact force and local deformation for an elastic
sphere and an elastic half-space is given as

F = Khz
3/2, (5)

where Kh is the Hertzian contact stiffness given as

Kh = 4

3

√
RE∗. (6)

In the above equation, R is the radius of the impactor,
and E∗ is the effective contact modulus given as

1

E∗ = 1 − ν2
1

E1
+ 1 − ν2

2

E2
, (7)

where νi and Ei are the Poisson ratios and elastic mod-
uli of the two contacting bodies, respectively. In the
case of a composite laminate, a transversely isotropic
material is assumed for the half-space [16, 26], and the
corresponding elastic modulus is taken to be that of the
transverse modulus of a ply, i.e., E2 = E22.

It is important to note here that when the Hertzian
elastic contact law is used alone, the coefficient of
restitution, which is a measure of the severity of im-
pact, is always equal to unity. This is correct as long
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as the deformation is elastic and there is no plastic de-
formation or damage. It is well known, however, that
there is energy loss due to local damage and plastic
deformation even for relatively low impact velocities
[1, 11]. Therefore, the Hertzian contact law has been
used as part of more complicated elastoplastic contact
laws that account for damage effects due to plastic or
permanent deformation. Such a contact law and its lin-
earized version are explained in detail in the following
section.

Elastoplastic contact law Experimental evidence
suggests that during impact between metallic bodies,
even at very low impact velocities, the contact stresses
are high enough to cause material yielding, and thus
plastic deformation [11]. A similar behavior was ob-
served in the case of composite laminates where lateral
contact loads cause permanent indentation [26, 27]. In
the case of composite materials, the term “yielding”
denotes a combination of different failure modes such
as matrix and fiber damage.

In order to account for permanent deformation, an
elastoplastic contact law [16] may be used to obtain
the impact force. The contact law was obtained by
combining the classical Hertzian contact theory [1]
and the elastic-plastic indentation theory given in [11].
The contact consists of three phases, namely, elas-
tic Hertzian loading, elastic-plastic loading where the
contact is assumed to exceed a threshold value and it
includes both elastic and plastic deformation, and elas-
tic Hertzian unloading. The contact law is given as fol-
lows [16].

Phase I: Hertzian elastic loading

F = Khz
3/2, 0 ≤ z ≤ zy. (8)

Phase II: Elastic-plastic loading

F = Ky(z − zy) + Khz
3/2
y , zy ≤ z ≤ zm. (9)

Phase III: Hertzian elastic unloading

F = Kh

(
z3/2 − z

3/2
m + z

3/2
y

) + Ky(zm − zy), (10)

where zy is the deformation where yielding or damage
occurs and is given as

zy = 0.68S2
yπ2R

E∗2
(11)

and Sy is the yield strength for metals, and Sy = 2Su

for composite laminates with Su being their shear

strength. Ky is the linear contact stiffness of the
elastic-plastic loading phase, which is the slope of the
force-deformation curve at zy and is given as

Ky = 1.5Kh
√

zy. (12)

Finally, zm is the maximum spring deformation. Note
that the transition from compression to restitution
occurs at maximum impactor displacement, αc , i.e.,
when the impactor velocity vanishes:

α̇(tc) = 0. (13)

It is important to note that, in the presence of damp-
ing, this transition occurs after the time of maximum
impact force, and zm < αc; in other words, the maxi-
mum impactor displacement is reached after the max-
imum impact force.

As mentioned earlier, the severity of impact can
be assessed by the coefficient of restitution. There
are three definitions: Newton (kinematic), Poisson (ki-
netic), and energetic [4]. Depending on the prob-
lem, these definitions result in different values for the
coefficient of restitution. However, if friction is not
present, which is the case considered here, all defin-
itions give the same result [4]. Newton’s definition for
the coefficient of restitution is the easiest as it involves
the ratio of the relative velocities of the impactor and
the target after and before impact. It is simply given as

e = − α̇(tf )

α̇(0)
= − ż(tf )

v0
. (14)

In previous work it was shown that the elastoplas-
tic contact law can be used effectively in the impact of
compact bodies as well as flexible structures [16, 21].
Physically consistent results for the coefficient of resti-
tution for the impact of spherical objects on thick com-
posite laminates and for the impact response of flex-
ible structures with local contact damage were ob-
tained. Furthermore, a linearized contact law was used
to obtain simple, yet informative, results for the nondi-
mensional response of structures [21, 25]. The linear
contact law, however, was elastic in nature, and the ef-
fect of permanent deformation was neglected. There-
fore, a piecewise linear elastoplastic contact law is
now proposed. The loading and unloading phases of
the contact law are obtained by neglecting the initial
elastic loading phase and by linearizing the elastic-
plastic loading and elastic unloading phases of the
nonlinear elastoplastic law given in (8)–(10). The two
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phases of the linearized contact law are given as fol-
lows.

Phase I: Loading

F = Kyz, 0 ≤ z ≤ zm. (15)

Phase II: Unloading

F = Ky

γ 2
(z − zf ), (16)

where zf is the permanent spring deformation, which
is obtained as

zf = zm

(
1 − Ky

Kh
√

zm

)2/3

(17)

and γ is the plastic loss factor as defined in [24], which
is obtained as

γ 2 = 1 − zf

zm

= 1 −
(

1 − Ky

Kh
√

zm

)2/3

. (18)

It is important to note here that the plastic loss factor γ

is the coefficient of restitution when there is no damp-
ing or wave propagation effect. In such cases, the tran-
sition from compression to restitution occurs at maxi-
mum impact force and deformation, and zm = αc. It is
easy to show that the impact model, (1)–(4), without
damping, along with the linearized contact law given
by (15)–(17), predicts this transition as

zm = αc = v0

√
m

Ky

. (19)

Substituting (19) into (18) yields

γ 2 = 1 −
[

1 −
(

Ky

Kh

)(
Ky

mv2
0

)1/4]2/3

. (20)

For low velocities, there is no significant permanent
deformation, and the coefficient of restitution is close
to unity. For large velocities that cause significant per-
manent deformation, (20) can be simplified by using
the binomial theorem, and the plastic loss factor, or in
this case the coefficient of restitution, can be obtained
as

γ 2 = 2

3

(
Ky

Kh

)(
Ky

mv2
0

)1/4

. (21)

Equation (21) clearly shows the (v0)
−1/4 dependence

of the coefficient of restitution as observed in experi-
ments (see p. 363 in [11]). This analytical expression is

only possible because of the appropriate linearization
of the nonlinear elastoplastic contact law given before.
As mentioned above, the contact stiffness during the
loading phase, Ky , is taken as the slope of the elastic
Hertzian loading curve at zy . As is clear from (11), this
value depends on the material properties and geome-
try of the impactor. The stiffness during the unloading
phase is obtained by a secant linearization of the elas-
tic unloading curve. Unlike the slope of the loading
phase, the linear unloading stiffness also depends on
the impact energy (21). Though intuitive, this result
is significant in accounting for the effect of impact ve-
locity on the coefficient of restitution, which was over-
looked by some researchers [24].

When the nonlinear elastoplastic contact law given
by (8)–(13) is used, no analytical solution exists, and
the problem must be solved numerically. However, it
is possible to obtain an analytical solution when the
linearized elastoplastic contact law given by (15)–(19)
is used. Analytical solutions are useful for validating
computational results and for conducting parametric
studies. These solutions are straightforward once the
piecewise linear equations are obtained as follows.

Phase I: Loading. Substituting (15) into (1) and (2)
and utilizing (4), the equations of motion can be com-
bined into a single equation for the spring deforma-
tion:

z̈ + 2ζω0ż + ω2
0z = 0, (22)

where ω0 is the undamped natural frequency, and ζ is
the damping ratio given, respectively, as

ω0 =
√

Ky

m
, ζ =

√
mKy

2c
. (23)

The initial conditions are the same as prescribed ear-
lier; z(0) = 0 and ż(0) = v0.

Phase II: Unloading. Following the same proce-
dure used in the loading phase, but instead using the
unloading equations of the contact law, (16)–(18), the
equation of motion for the unloading phase is obtained
as

z̈ + 2ζ1ω1ż + ω2
1z = ω2

1

(
1 − γ 2)zm, (24)

where

ω1 = ω0

γ
, ζ1 = ζ

γ
(25)
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are the natural frequency and damping ratio for the un-
loading phase, respectively. The initial conditions are
the spring deformation and velocity at maximum im-
pact force, i.e., z(tm) = zm and ż(tm) = 0. Solutions to
(22)–(25) are readily available. Once the analytical ex-
pressions for the spring deformation z(t) are obtained,
the impact force and the impactor displacement can
easily be calculated.

Also, it is convenient to present some of the results
in a normalized form. The time, indentation, and im-
pact force are normalized as follows:

τ = ω0t, ᾱ = α

v0/ω0
, F̄ = F

mv0ω0
. (26)

3 Simulation results and discussion

In the following, the simulation results of the impact
of a 0.5 kg hemispherical steel impactor of radius
R = 10 mm and a composite target are presented. The
material properties of the two impacting bodies used
in the simulations (unless otherwise stated) are given
in Table 1. Figures 2–7 show the comparisons of non-
linear and linear solutions for the impact force history
and the resulting hysteresis diagrams for a set of im-
pactor velocity values. In these figures, the nonlinear
solutions are obtained by numerically solving (1)–(4),
with the impact force given by (8)–(10). The linear so-
lutions are obtained by analytically solving (1)–(4) (or
(22)–(24)), with the impact force given by (15)–(16).

The parameters used in these cases along with a damp-
ing coefficient, c = 11440 Ns/m, result in a damping
ratio of ζ = 0.1. Also shown in these figures are the re-
sults from the well-known Hunt–Crossley model [12],
for which the impact force is given as

F = Kα3/2(1 + μα̇) (27)

where K and μ are the model parameters that need
to be chosen to obtain a desired impact response (e.g.,
experimental data) [28]. Here, these parameters are se-
lected to yield the same maximum impact force and
coefficient of restitution as predicted from the pro-
posed impact model. The Hunt–Crossley model results
are obtained by numerically solving (1) with the im-
pact force given by (27).

At low speeds (v0 = 0.1 m/s), the impact response
is elastic and follows a Hertzian type of contact law.
As can be seen in Figs. 2 and 3, the predictions by
the nonlinear and Hunt–Crossley (K = 9.28 × 108,
μ = 4.4) models are very close to each other. On the

Table 1 Material properties used in the simulations

Composite laminate (target)

[0/90/0/90/0]s T300/934 carbon-epoxy

E11 = 120 GPa, E22 = 7.9 GPa, G12 = G23 = 5.5 GPa,

Su = 101 MPa

ν12 = ν23 = 0.3, ρ = 1580 kg/m3

Steel (impactor)

E = 207 GPa, ν = 0.3, ρ = 7960 kg/m3

Fig. 2 Model predictions
for the impact response
with no plastic deformation,
v0 = 0.1 m/s
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Fig. 3 Impact
force-displacement
relationships with no plastic
deformation, v0 = 0.1 m/s

Fig. 4 Model predictions
for the impact response
with moderate plastic
deformation, v0 = 1 m/s

Fig. 5 Impact
force-displacement
relationships with moderate
plastic deformation,
v0 = 1 m/s
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Fig. 6 Model predictions
for the impact response
with large plastic
deformation, v0 = 5 m/s

Fig. 7 Impact
force-displacement
relationships with large
plastic deformation,
v0 = 5 m/s

other hand, using the linear contact law overestimates
the impact force. It should be noted that the appar-
ent permanent deformation shown in Fig. 3 is due to
the limitation of the Maxwell-type viscoelastic model,
which is valid only during contact. This type of vis-
coelastic model will predict permanent deformation at
the dashpot, since there is no elastic element parallel to
it. In a real case, when the load is removed (i.e., once
impact is over), this deformation is eventually restored
through the elastic compliance and inertia of the half-
space, which are not included in the model. Certainly,
the model can be improved by adding a spring paral-
lel to the dashpot (similar to the standard solid model).
However, this is not done since the effect is negligible

for most impacts where there is significant energy loss
due to plastic deformation.

At higher velocities, and once permanent deforma-
tion is present, the nonlinear and linear predictions are
very close to each other, which can be clearly seen in
Figs. 4–7. Figures 4 and 5 show the model predictions
when the impactor velocity is 1 m/s that causes mod-
erate plastic deformation. The Hunt–Crossley model
parameters used in this case are K = 4.2 × 108,
μ = 1.608. As can be seen, the linearized model pro-
vides an excellent approximation to that of the non-
linear model. As mentioned above, the parameters
for the Hunt–Crossley model are chosen to yield the
same maximum impact force and energy dissipation
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Fig. 8 Effect of plasticity
on the impact response,
v0 = 1 m/s

Fig. 9 Effect of impactor
mass on the impact
response, v0 = 1 m/s

of nonlinear visco-elastoplastic model. As can be seen
from Figs. 4 and 5, the resulting maximum forces,
although not identical, are reasonably close to each
other such that two model predictions can be com-
pared. The Hunt–Crossley model overpredicts the im-
pact duration to compensate for the permanent defor-
mation which is not accounted for. Also, the maxi-
mum indentation is smaller with the Hunt–Crossley
model as shown in Fig. 5, indicating that it has larger
impedance than that of the visco-elastoplastic model.
Figures 6 and 7 show the simulation results for an im-
pact velocity of 5 m/s, which results in a large plastic
deformation. There is an excellent agreement between
the linearized and nonlinear model predictions. The

Hunt–Crossley model behaves similarly as in the pre-
vious case.

Figure 8 shows the effect of plasticity on the im-
pact response using the proposed nonlinear visco-
elastoplastic impact model. As the yield strength de-
creases, the contact stiffness decreases, resulting in
smaller impact forces and longer impact durations.
The effect of impactor mass is shown in Fig. 9. As
the impactor mass decreases, the maximum impact
force decreases due to the decrease in impact energy.
Also, the impact duration decreases with decreasing
impactor mass.

In the rest of the simulations the normalized re-
sponses are chosen for easy and clear presentation,
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Fig. 10 Effect of velocity
on the normalized impact
response, ζ = 0.1

Fig. 11 Effect of velocity
on the normalized
force-deformation
relationships, ζ = 0.1

as they can be placed on the same figure even if the
dimensional results are different by an order of mag-
nitude. Since some low-velocity impacts are included,
the numerical solutions to the nonlinear model are pre-
sented. Figures 10 and 11 show the effects of velocity
on the normalized impact response when the damping
ratio is constant. As it can be seen in Fig. 10, the im-
pact duration decreases with increasing impact veloc-
ity due to the increase of plastic deformation, which
is shown in Fig. 11. As predicted by the analytical re-
sults, when the impact velocity increases the plastic
loss factor decreases (21), and the slope of the un-
loading phase of the contact law increases (16). The
effect of nonlinearity (Hertzian) is visible in the ini-

tial stages of loading and it gets smaller as the veloc-
ity increases. Figures 12 and 13 show the effects of
the damping ratio on the normalized impact response
when the impact velocity is constant. As expected,
a higher damping ratio decreases the maximum impact
force and increases the impact duration. Figure 13 in-
dicates that the plastic loss factor is the same, as seen
by the same slope in the unloading phase. However,
the plastic deformation in the spring decreases with
increasing damping ratio due to decreasing maximum
impact force.

The effects of impact velocity and damping ratio
on the coefficient of restitution are shown in Fig. 14.
For a given impact velocity, increasing the damping
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Fig. 12 Effect of damping
ratio on the normalized
impact response, v0 = 1 m/s

Fig. 13 Effect of damping
ratio on the normalized
force-deformation
relationships, v0 = 1 m/s

ratio results in lower values of the coefficient of resti-
tution. The coefficient of restitution decreases as the
impact velocity increases, which is consistent with ex-
perimental data. This result is in contrast to that of the
linear Maxwell viscoelastic and viscoplastic models,
where the coefficient of restitution is independent of
impact velocity [24].

4 Conclusions

A nonlinear impact model that incorporates energy
losses due to plastic deformation, viscoelastic mate-
rial behavior, and wave propagation has been devel-

oped and used to study impacts of a compact body
and a composite target. The governing equations of
motion have been linearized, enabling analytical so-
lutions with excellent agreement with the numerical
solutions at moderate to high impact velocities. The
model predictions have been compared to those of the
well-known Hunt–Crossley model. The analytical so-
lutions facilitated by the linearization are helpful in
identifying the effects of the various impact parame-
ters, such as impactor mass and velocity, and material
properties, such as plasticity and damping, on the im-
pact response and coefficient of restitution. It has been
shown that the coefficient of restitution is a function
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Fig. 14 Variation of the
coefficient of restitution
with damping ratio and
impact velocity

of both the damping ratio and the impact velocity. It
is expected that the proposed model can be useful in
parametric and experimental studies and in validating
computational (FE) models.
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