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Abstract Under investigation in this paper is a (1+1)-
dimensional nonlinear dispersive-wave system for
the long gravity waves in shallow water. With sym-
bolic computation, we derive the multi-soliton solu-
tions for the system. Four sorts of interactions for
the system are discussed: (1) Soliton shape preserv-
ing, in which two solitons undergo the fusion behav-
ior while the amplitudes and velocities of the other
two remain unchanged during the interaction process;
(2) Head-on collisions between the two-soliton com-
plexes; (3) Overtaking collisions between the two-
soliton complexes; (4) Two-soliton complexes formed
by the inelastic collisions. Such soliton structures
might be of certain value in fluid dynamics.

Keywords (1 + 1)-dimensional nonlinear
dispersive-wave system · Shallow water · Soliton
shape preserving · Soliton complex · Darboux
transformation · Symbolic computation

L. Wang · Y.-T. Gao (�) · D.-X. Meng · X.-L. Gai ·
P.-B. Xu
Ministry-of-Education Key Laboratory of Fluid Mechanics
and National Laboratory for Computational Fluid
Dynamics, Beijing University of Aeronautics and
Astronautics, Beijing 100191, China
e-mail: gaoyt@public.bta.net.cn

Y.-T. Gao
State Key Laboratory of Software Development
Environment, Beijing University of Aeronautics and
Astronautics, Beijing 100191, China

1 Introduction

Nonlinear evolution equations (NLEEs) have been
frequently seen in fluid mechanics, plasma physics
and other fields [1–15]. Those NLEEs have been re-
ported to possess the soliton solutions, i.e., some sta-
tionary pulses or wave packets propagating, e.g., in
the nonlinear dispersive media [1–15]. Solitons pre-
serve their stable wave forms because of a dynami-
cal balance among the nonlinear, dissipative and dis-
persive effects [1–15]. On a uniform layer of water,
Korteweg–de Vries equation describes the interac-
tion of unidirectional (overtaking collisions) solitary
waves, N-soliton solution of which has been presented
by the inverse scattering method [16]. Other NLEEs
in fluid dynamics have also been found with the cor-
responding solitons obtained, such as the Kadomtsev–
Petviashvili [17], Whitham–Broer–Kaup [18–20] and
Camassa–Holm [21] equations.

With different fluid velocities such as the depth-
mean, bottom and surface ones considered, the follow-
ing set of NLEEs [22–24]:

ut + uux + vuy + ζx = 0,

vt + uvx + vvy + ζy = 0,

ζt + [
(1 + ζ )u

]
x

+ [
(1 + ζ )v

]
y

+ 1

3
(uxxx + uxyy + vxxy + vyyy) = 0,

(1)

has been seen, which models certain nonlinear and dis-
persive long gravity waves traveling in two horizontal
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directions on shallow waters of uniform depth, with
the higher-order terms ignored [22–24], where x and
y represent the space, t denotes the time, u(x, y, t)

is the surface velocity of water along the x-direction,
v(x, y, t) is the surface velocity of water along the y-
direction and ζ(x, y, t) is the elevation of the water
wave [23, 24]. Model (1) can also be used to describe
the evolution of the solitary waves on a uniform layer
of the water including the oblique interaction, oblique
reflection from a vertical wall and turning in a curved
channel [23, 24]. Solutions of Model (1) are said by
[23, 24] to be valuable for the coastal and civil en-
gineers to study the nonlinear water wave during a
harbor and coastal design. Model (1) cannot pass the
Painlevé test [23]; however, via the scaling transfor-
mation [24] and symmetry reduction [25], Model (1)
reduces to the (1 + 1)-dimensional integrable nonlin-
ear dispersive-wave system as follows [24]:

ξt + [
(1 + ξ)u

]
x

= −1

4
uxxx,

ut + uux + ξx = 0.

(2)

In System (2), u(x, t) denotes the surface velocity of
the water wave along the x-direction, ξ(x, t) is the
wave elevation [24].

System (2) is integrable and has three Hamiltonian
structures [26, 27]. Bidirectional one-, two-, three- and
four-soliton solutions of System (2) have been pre-
sented via the Darboux transformations (DTs) of a
Broer–Kaup (BK) system [28, 29], while the multi-
soliton solutions have also be given through the N -
fold DT method [30, 31]. System (2) is equivalent
to a member of the Ablowitz–Kaup–Newell–Segur
(AKNS) system and given the multi-soliton solutions
in terms of the Vandermonde determinant via the DTs
of the latter [24, 32, 33]. Two types of DTs have
been constructed based on the Lax pair of System (2)
with the one- and two-soliton solutions obtained [34].
Relevant issues on the bidirectional solitonic solu-
tions of the variable-coefficient NLEEs are seen, e.g.,
in [35, 36].

In this paper, with symbolic computation [1–15],
we will present some solutions with mechanical prop-
erties for System (2), which involve the soliton shape
preserving (when the fusion behavior and elastic col-
lision occur simultaneously), head-on and overtak-
ing collisions among the two-soliton complexes, two-
soliton complexes formed by the inelastic collision

(when the fission behavior and elastic collision oc-
cur simultaneously). To our knowledge, those results
have not been reported in the literatures. Outline of
this paper will be organized as follows: Two sorts of
multi-soliton solutions for System (2) will be derived
in Sect. 2; Sect. 3 will discuss the soliton interactions;
Sect. 4 will be our conclusions.

2 Multi-soliton solutions

Via the variable transformations [32],

u = qx

q
, (3a)

ξ = −1 − qr + 1

2
ux, (3b)

one sees the following conclusion [32]:
If q and r are the solutions of the second-order

AKNS system

qt − rq2 + 1

2
qxx − q = 0, (4a)

rt + qr2 − 1

2
rxx + r = 0, (4b)

then u and v defined by transformations (3) satisfy
System (2), where System (4) is associated with the
following Lax pair [24, 32, 33, 44]:

φx = Uφ, φt = V φ (5)

with

U =
(

λ q

r −λ

)
,

V =
(−λ2 + 1

2qr + 1
2 −λq − 1

2qx

−λr + 1
2 rx λ2 − 1

2qr − 1
2

)
.

(6)

Next, we will use the DT of System (4) (see
Appendix) to derive the multi-soliton solutions in
terms of the double Wronskian for System (2).

Different from [32], substituting q = r = 0 into the
Lax pair of System (4), we have two basic solutions:

ϕ(λj ) = (ϕ1, ϕ2)
T = (

eξj ,0
)T

,

ψ(λj ) = (ψ1,ψ2)
T = (

0, e−ξj
)T

,

(7)

with

ξj = λj (x − λj t) + 1

2
t (1 ≤ j ≤ 2N). (8)
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According to (38) (see Appendix), we have

σj = −rj e
−2ξj (1 ≤ j ≤ 2N). (9)

The double Wronskian is defined as [37–42]:

WN,M(ϕ;ψ)

= det
(
ϕ, ∂xϕ, . . . , ∂N−1

x ϕ;ψ,∂xψ, . . . , ∂M−1
x ψ

)
,

(10)

where ϕ = (ϕ1, ϕ2, . . . , ϕM+N)T , ψ = (ψ1,ψ2,

. . . ,ψM+N)T .
With the help of the DT of System (4) (see Ap-

pendix), we can prove that System (4) has the double
Wronskian-type solutions as follows:

r = −2
|̂N − 2; N̂ |

|̂N − 1; ̂N − 1|
,

q = 2
|N̂; ̂N − 2|

|̂N − 1; ̂N − 1|
,

(11)

where
∣∣̂N − 1; ̂N − 1

∣∣ = WN,N
[
ϕ1(λj );−rjψ2(λj )

]
,

∣∣N̂; ̂N − 2
∣∣ = WN+1,N−1[ϕ1(λj );−rjψ2(λj )

]
, (12)

∣∣̂N − 2; N̂ ∣∣ = WN−1,N+1[ϕ1(λj );−rjψ2(λj )
]
.

In fact, from the Lax pair of System (4), we obtain
the relations

ϕ1x = λjϕ1, (13)

ψ2x = −λjψ2, (14)

j = 1,2, . . . ,2N. (15)

Noticing (38) (see Appendix), we have

σj = − rjψ2(λj )

ϕ1(λj )
(j = 1,2, . . . ,2N). (16)

Solving System (37) (see Appendix), we get

BN−1 = �BN−1

� , CN−1 = �CN−1

� (17)

with

� =

∣
∣∣∣∣∣∣∣

1 σ1 λ1 σ1λ1 · · · λN−1
1 σ1λ

N−1
1

1 σ2 λ2 σ2λ2 · · · λN−1
2 σ2λ

N−1
2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1 σ2N λ2N σ2Nλ2N · · · λN−1
2N σ2NλN−1

2N

∣
∣∣∣∣∣∣∣

,

(18)

�BN−1

=

∣∣∣∣
∣∣∣∣
∣∣

1 σ1 λ1 σ1λ1 · · · λN−1
1 −λN

1
1 σ2 λ2 σ2λ2 · · · λN−1

2 −λN
2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1 σ2N λ2N σ2Nλ2N · · · λN−1
2N −λN

2N

∣∣∣∣
∣∣∣∣
∣∣

, (19)

�CN−1

=

∣∣∣
∣∣∣∣
∣∣∣

1 σ1 λ1 σ1λ1 · · · −σ1λ
N
1 σ1λ

N−1
1

1 σ2 λ2 σ2λ2 · · · −σ2λ
N
2 σ2λ

N−1
2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1 σ2N λ2N σ2Nλ2N · · · −σ2NλN
2N σ2NλN−1

2N

∣∣∣
∣∣∣∣
∣∣∣

. (20)

Then, substituting (16) into (17), we obtain

BN−1 = − |N̂; ̂N − 2|
|̂N − 1; ̂N − 1|

, (21)

CN−1 = − |̂N − 2; N̂ |
|̂N − 1; ̂N − 1|

. (22)

Thus, the double Wronkian-type solution for Sys-
tem (4) is presented in the form of (11). So, we can
obtain the double Wronskian-type solution for Sys-
tem (2):

u =
(

|N̂;̂N−2|
|̂N−1;̂N−1| )x

(
|N̂;̂N−2|

|̂N−1;̂N−1| )
, (23)

ξ = −1 + 4

( |N̂; ̂N − 2|
|̂N − 1; ̂N − 1|

)( |̂N − 2; N̂ |
|̂N − 1; ̂N − 1|

)

+ 1

2

[
(

|N̂;̂N−2|
|̂N−1;̂N−1| )x

(
|N̂;̂N−2|

|̂N−1;̂N−1| )

]

x

. (24)

As mentioned in [42, 57], expressions (23) and (24)
could be also obtained by the Hirota method [58].

In [28, 29], with the transformations

u = −v, (25a)

ξ = w − 1 − 1

2
vx, (25b)

System (2) can be changed to the BK system,

vt = 1

2

(
v2 + 2w − vx

)
x
, (26a)
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wt =
(

vw + 1

2
wx

)

x

. (26b)

With the seeds v = 0 and w = 1 selected, the bidirec-
tional soliton solutions of System (2) have been pre-
sented [28, 29].

Different from [28, 29], substituting v = w = 0 into
the Lax pair of System (26), we have two basic solu-
tions

ϕ(λj ) = (ϕ1, ϕ2)
T = (

e−ξj ,0
)T

,

ψ(λj ) = (ψ1,ψ2)
T =

(
1

2λj

eξj , eξj

)T

,

(27)

with

ξj = λj (x + λj t) (1 ≤ j ≤ 2N). (28)

According to (19) in [43], we have

σj = 2λj rj

rj − 2λj e
−2ξj

(1 ≤ j ≤ 2N). (29)

Via transformations (25) and DT of System (26)
[43], the multi-soliton solution of System (2) is pre-
sented as

u = 2BN−1,x

1 + 2BN−1
, (30)

ξ = −1 + 2CN−1(1 + 2BN−1)

+
(

BN−1,x

1 + 2BN−1

)

x

, (31)

where BN−1 and CN−1 have the same forms as ex-
pression (17) except that σj is replaced with (29).

3 Soliton interactions

Figure 1 displays a type of nonlinear phenomenon
for System (2), namely, the soliton shape preserving,
in which the fusion behavior accompanies with the
elastic collision. Hereby, we will take the wave ele-
vation ξ depicted in Fig. 1(b) for example [the sim-
ilar analysis for the surface velocity u can be seen
from Fig. 1(a) which describes the shock wave inter-
action]. Waves S1 and S4 fuse into the wave S14 with
the higher amplitude at t > 0, while the shapes, ampli-
tudes and velocities of the solitons S2 and S3 remain
unchanged after the collision except for their phase
shifts. The elastic and fusion behaviors occur simul-
taneously without any affection on each other. There-
fore, System (2) could not only exhibit the pure elas-
tic interactions among bidirectional solitons [24, 28–
34] but also admits the coupled ones (fusion behavior
and elastic collision). Figure 2 describes the head-on
collision between two soliton complexes [45], each of
which is formed by two solitons. We also take Fig. 2(b)
as example to explain such behavior [the shock-wave
interaction for Fig. 2(a)]. It is observed that two paral-
lel solitons R1 and R2 (or R3 and R4) propagate with
the same velocity, which can be considered as a two-
soliton complex, R1–R2 (or R3–R4). R2 and R3 firstly
fuse into one solitary wave with the higher amplitude
and then split, so do the waves R1 and R4. On the
whole, the interaction between the two-soliton com-
plexes R1–R2 and R3–R4 is elastic; that is to say, be-
sides the amplitudes, velocities and shapes, the rela-
tive separation distance between R1 and R2 (or R3

and R4) is also unchanged before and after the col-
lision. In contrast, Fig. 3 depicts the overtaking colli-
sion of two soliton complexes along same directions of

Fig. 1 Soliton shape
preserving of System (2)
via expressions (23) and
(24) with q = 0, r = 0,
λ1 = −7, λ2 = −0.1,
λ3 = 1, λ4 = 6, r1 = −0.5,
r2 = 0.5, r3 = −0.5 and
r4 = 0.5
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Fig. 2 Head-on collision between two soliton complexes for System (2) via expressions (30) and (31) with v = 0, w = 0, λ1 = 0.002,
λ2 = −1, λ3 = 0.005, λ4 = 1.5, r1 = −0.5, r2 = 1.5, r3 = 0.5 and r4 = −1.5

Fig. 3 Overtaking collision
between two soliton
complexes for System (2)
via expressions (30) and
(31) with v = 0, w = 0,
λ1 = 0.002, λ2 = −1,
λ3 = 0.005, λ4 = −1.5,
r1 = −0.5, r2 = 1.5,
r3 = 0.5 and r4 = −1.5

propagation, which can show the large-amplitude two-
soliton complex with faster velocity overtaking the
small-amplitude one, and after collision, the shorter
being left behind. Through the above pictures, we can
know that System (2) possesses bidirectional soliton-
complex interactions including the head-on and over-
taking collisions. Figure 4 exhibits the inelastic inter-
action among three waves where the two-soliton com-
plexes are formed after the collision. For example,
three waves shown in Fig. 4(b) firstly interact with
each other and split into four ones later. Taken sepa-
rately, T23 fissions into a left-going soliton T2 and a
right-going one T3 at t > 0, while the wave shapes,
amplitudes and velocities of T1 and T4 do not change
after the collision except for their phase shifts. Simi-
larly to the soliton complexes in Figs. 2 and 3, T1 and
T3 (or T2 and T4) also progress with the same velocity
and constant separation distance. It should be pointed
out that such structure can be also seen as a type of
soliton shape preserving discussed above, while the

differences include two aspects: (1) Figs. 1 and 4 in-
volve the fusion and fission behaviors, respectively;
(2) There are the soliton complexes in Fig. 4 (not in
Fig. 1).

4 Conclusions

In this paper, with symbolic computation [1–15], our
interest has been focused on System (2) for the long
gravity waves in shallow water. Relevant topics can be
found in [46–56]. Different from [32], substituting the
seeds q = r = 0 into System (4), we have derived the
multi-soliton solutions with the determinant represen-
tations for System (2), i.e., expressions (23) and (24)
{selecting v = w = 0 into System (26), we have ob-
tained expressions (30) and (31), which are different
from the results in [28, 29]}. Via those solutions, we
can conclude that System (2) possesses the following
properties:
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Fig. 4 Soliton complexes
formed by the inelastic
collision via
expressions (30) and (31)
with v = 0, w = 0,
λ1 = 0.002, λ2 = −1,
λ3 = 0.005, λ4 = 1.5,
r1 = −0.5, r2 = 1.5, r3 = 0
and r4 = −1.5

• Surface velocity of the water wave u has the inter-
actions among the shock waves, as seen in parts (a)
of Figs. 1–4.

• In addition to the bidirectional soliton solutions [24,
28–34], System (2) admits the coupled interactions
for both the surface velocity of the water wave u and
the wave elevation ξ , i.e., soliton shape preserving
in which the fusion behavior accompanies with the
elastic collision (Fig. 1).

• Head-on and overtaking collisions can occur be-
tween/among the two soliton complexes, each of
which is formed by two solitons with the same ve-
locity (Figs. 2 and 3).

• Inelastic collision can lead to the two-soliton com-
plexes in which the fission behavior and elastic col-
lision occur simultaneously (Fig. 4).
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Appendix

N -fold DT of a 2 × 2 AKNS system includes Sys-
tem (4) as a member of it [44]. A gauge transformation
has been introduced in [44], i.e.,

φ = T ∗φ, (32)

where T is defined by

T ∗
x + T ∗U = UT ∗, (33a)

T ∗
t + T ∗V = V T ∗. (33b)

Lax pair (5) can be transformed into

φx = Uφ, φt = V φ, (34)

where U and V have the same forms as U and V , re-
spectively, except replacing r and q with r and q . Let
the matrix T ∗ in (32) be in the form of

T ∗ = T ∗(λ) =
(

A B

C D

)
, (35)

with

A = λN +
N−1∑

k=0

λkAk, B =
N−1∑

k=0

λkBk, (36a)

C =
N−1∑

k=0

λkCk, D = λN +
N−1∑

k=0

λkDk, (36b)

where Ak,Bk,Ck and Dk are the functions of x and t .
Ak,Bk,Ck and Dk can be determined by the following
linear algebraic system:

N−1∑

k=0

λk
j (Ak + Bkσj ) = −λN

j , (37a)

N−1∑

k=0

λk
j (Ck + Dkσj ) = −σjλ

N
j , (37b)
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with

σj = ϕ2(λj ) − rjψ2(λj )

ϕ1(λj ) − rjψ1(λj )
, (1 ≤ j ≤ 2N), (38)

where ϕ = (ϕ1, ϕ2)
T and ψ = (ψ1,ψ2)

T are two basic
solutions of Spectral Problem (5), and λj and rj (λk �=
λj , rk �= rj as k �= j ) are some parameters suitably
chosen such that the determinant of the coefficients for
(37) is nonzero.

If the transformations between the old potentials
(q and r) and the new ones (q and r) are given by
[44]

q = q − 2BN−1, (39)

r = r + 2CN−1, (40)

then the matrices U and V have the same forms as U

and V , respectively.
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