
Nonlinear Dyn (2011) 66:15–28
DOI 10.1007/s11071-010-9907-z

O R I G I NA L PA P E R

Modeling and simulation for microscopic traffic flow based
on multiple headway, velocity and acceleration difference

Yongfu Li · Dihua Sun · Weining Liu · Min Zhang ·
Min Zhao · Xiaoyong Liao · Liang Tang

Received: 25 July 2010 / Accepted: 1 December 2010 / Published online: 18 December 2010
© Springer Science+Business Media B.V. 2010

Abstract A new car-following model termed as mul-
tiple headway, velocity, and acceleration difference
(MHVAD) is proposed to describe the traffic phe-
nomenon, which is a further extension of the existing
model of full velocity difference (FVD) and full veloc-
ity and acceleration difference (FVAD). Based on the
stability analysis, it is shown that the critical value of
the sensitivity in the MHVAD model decreases and the
stable region is apparently enlarged, compared with
the FVD model and other previous models. At the end,
the simulation results demonstrate that the dynamic
performance of the proposed MHVAD model is bet-
ter than that of the FVD and FVAD models.

Keywords Traffic flow · Car-following model ·
Stability analysis · Dynamic performance

1 Introduction

Traffic problems have been widely investigated in re-
cent years. The hot scope of the traffic includes the ve-
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hicle routing problem [1], dynamic assignment prob-
lem [2], traffic jams problem [3] and so on. In order to
understand the complex traffic behavior, several traf-
fic flow models have been developed. For instance, in
case of macroscopic models, the traffic is viewed as
a compressible fluid formed by vehicles; while in the
microscopic models, each individual vehicle is repre-
sented by a particle and the vehicle traffic is treated as
a system of interacting particles driven far from equi-
librium [3]. The current car-following theory is an ef-
fective method to study the microscopic traffic flow.
A lot of achievements have been obtained [4–18].

In the car-following theory, the relation between
the preceding vehicle and the following vehicle is de-
scribed that each individual vehicle always decelerates
or accelerates as a response of its surrounding stimu-
lus. Thus, the motion equation of the nth vehicle can
be presented in the following way [6]:

[Response]n ∝ [Stimulus]n (1)

Those proposed models vary according to the defini-
tions of the stimulus. Generally speaking, the stimulus
may include the speed of the vehicle, the acceleration
of the vehicle, the relative speed and spacing between
the nth and n+1th vehicle (the nth vehicle follows the
n + 1th vehicle).

In 1995, Bando et al. [7] argued that there were two
types of theories on regulations of car-following. The
first type is based on the assumption that the driver
of each vehicle seeks a safe following distance from
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its leading vehicle, which depends on the relative ve-
locity of the two successive vehicles. The second type
theory assumes that the driver seeks a safe velocity
determined by the distance from the leading vehicle.
Based on the latter assumption, they proposed a car-
following model, by which an optimal velocity was
brought forward. The classical model is known as the
optimal velocity (OV) model, which is simple and
widely used in car-following modeling.

Later in 1998, Helbing and Tilch [8] carried out a
comparison of the OV model simulation results with
respect to the empirical follow-the-leader data. The
comparison with field data suggests that high accel-
eration and unrealistic deceleration occur in the OV
model. In order to make an improvement of the OV
model, the acceleration caused by the relative speed of
any two successive cars was taken into consideration.
Thus, a generalized force (GF) model was developed
which showed a good agreement with the empirical
data.

However, neither the OV model nor the GF model
could explain the traffic phenomena described by
Treiber et al. (1999) [9]. If the preceding cars are
much faster than the followers, the following vehicle
would not brake, even if its headway is smaller than
the safe distance, because the headway between the
two vehicles will become larger. Given the observed
car-following phenomena, Jiang et al. (2001) [10, 11]
argued that the relative speed between the leading and
the following vehicles had an impact on the behav-
ior of the following driver and, therefore, this factor
should be considered explicitly. Based on the assump-
tion, by taking both positive and negative velocity dif-
ference into account, they proposed a full velocity dif-
ference (FVD) model. This model considers the ef-
fects of both the headway and velocity difference.

Both the GF model and FVD model can avoid an
accident if a freely moving car reaches a standing car
from a large distance. In this situation, the velocity
difference has strong effects on the traffic behavior
due to its large value, so that the moving vehicle can
quickly respond to the standing vehicle ahead. How-
ever, if the successive vehicles have nearly identical
speed, there is zero or small velocity difference, the
follower can react correctly to the strong decelerat-
ing leader to avoid a collision. Given this real traffic
phenomena, Zhao et al. (2005) [12, 13] argued that
the acceleration difference played an important role in
traffic dynamics, and by taking the acceleration differ-
ence into account, they developed a new car-following

model known as the full velocity and acceleration dif-
ference (FVAD) model.

Unfortunately, the above car-following models just
consider the two successive vehicles, in the real world,
a following driver may respond to the variation of
not only the nearest preceding vehicle, multiple pre-
ceding vehicles are also in its consideration. There-
fore, by applying the Intelligent Transportation Sys-
tem (ITS), drivers can receive information of other
vehicles on roads, and then determine the velocity of
their own vehicles. In light of this information, an ex-
tended car-following model was proposed by Ge et al.
(2004) [14]. Then Wang et al. (2006) [15] developed a
new car-following model, which considered multiple
preceding vehicles’ stimulus, called the multiple ve-
locity difference (MVD) model. Through the numeri-
cal investigations, it can be found that the critical value
of the sensitivity in the MVD model decreases and the
stable region is apparently enlarged, compared with
the FVD model.

Previous studies have indicated that the headway or
velocity difference can stabilize the traffic flow. How-
ever, all above models are only subject to one type of
the ITS information, either headway or velocity differ-
ence of other cars. It is expected that traffic flow can be
more stable by simultaneously introducing both two
types of the ITS information [16, 17]. Based on this
idea, an extended car-following model by incorporat-
ing both headway and velocity difference of multiple
preceding cars, called the multiple headway and veloc-
ity difference (MHVD)model, was proposed by Xie et
al. (2008) [18]. While from another system viewpoint,
in order to introduce the factors of the different vehi-
cle modes and distinguish the extent of the different
preceding vehicles, Sun et al. (2010) [19] put forward
another way of multiple ahead and velocity difference
(MAVD) model. However, these models also seldom
refer to the acceleration difference of multiple preced-
ing vehicles.

Based on the above car-following models, the
present paper further considers the action of the mul-
tiple acceleration difference of preceding vehicles and
proposed the multiple headway, velocity and accelera-
tion difference (MHVAD) model. The organization of
this paper is as follows: In Sect. 1, we give a review
of car-following models; based on the exiting models,
a new model, called the multiple headway, velocity
and acceleration difference (MHVAD) model is pro-
posed in Sect. 2; in Sect. 3, the stability analysis of
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MHVAD model is conducted, and the comparison
among the OV model, FVD model, MVD model, and
MAVD model is discussed. The numerical simulation
is included in Sect. 4, and then a conclusion is given
in the final section.

2 MHVAD model

Previous studies have indicated that the headway, ve-
locity, or acceleration difference can stabilize the traf-
fic flow. However, among all of these models, only
one type of the ITS information, either headway, ve-
locity, or acceleration difference of other cars, is used.
It is expected that traffic flow can be more stable by
simultaneously introducing all the three types of the
ITS information. In a practice traffic system, all of
the headway, velocity, or acceleration difference in-
formation of the multiple preceding vehicles is useful
for the following vehicle. Indeed, the relation between
the headway and the velocity difference is coupling.
Generally speaking, when the headway between the
preceding vehicle and the following vehicle is large,
the following vehicle will accelerate, and it will re-
sult in that the headway become small, but when the
headway approximates to the critical safe value, the
following vehicle will decelerate until it moves with
a safe distance. During the coupling process, the in-
formation of acceleration difference is so important
that it can not be ignored. Based on the above exiting
car-following models, and according to the real traf-
fic phenomenon, it can be seen that the acceleration
difference of the multiple preceding vehicles also af-
fects the behavior of the following vehicle just as the
headway and the velocity difference. The present pa-
per, with the factor of vehicle mode, proposes a new
car-following model-multiple headway, velocity, and
acceleration difference (MHVAD). Taking q preced-
ing vehicles into account, its mathematical description
is following:

an(t) = k

[
V

( q∑
j=1

βj�xn+j−1(t)

)
− vn(t)

]

+ λ

q∑
j=1

ςj�vn+j−1(t)

+ κ

q∑
j=1

ζj�an+j−1(t − 1) (2)

where xn(t) > 0, vn(t) > 0 and an(t) represent po-
sition (m), velocity (m/s), and acceleration (m/s2),
respectively, of the nth vehicle. t ∈ R is the time(s);
q ∈ N is the number of preceding vehicles in con-
sideration. k, λ, κ ∈ R, and k > 0, λ ≥ 0, κ ≥ 0
and λ,κ ∈ [0,1] are the different constant sensitiv-
ity coefficients. �xn(t) = xn+1(t) − xn(t),�vn(t) =
vn+1(t)− vn(t), and �an(t) = an+1(t)− an(t) are the
spatial headway distance, the velocity difference and
the acceleration difference between the preceding ve-
hicle n + 1 and the following vehicle n at time t , re-
spectively. βj , ςj , ζj ∈ R, and βj ≥ 0, ςj ≥ 0, ζj ≥ 0
are different weighting value coefficients, respectively.
For convenience, we suppose βj = ςj = ζj . And V (•)

is the optimal velocity function, which is a function of
�xn(t) and its general form is as follows [7]:

V
(
�xn(t)

) = [
tanh(�xn(t) − hc) + tanh(hc)

]
vmax/2

(3)

where vmax is the maximal speed of the vehicle, hc is
the safe distance, and tanh(•)is the hyperbolic tangent
function. And (3) is a monotonically increasing func-
tion with �xn(t) and it has an upper bound, while it
has a turning point at �xn(t) = hc: V ′′(hc) = 0.

In the MHVAD model, βj satisfies the following
two conditions:

(1) βj is a monotone decreasing function with the j ,
namely, βj < βj−1. Because the effect of the pre-
ceding vehicle to the current car reduces with the
increase of the headway distance.

(2)
∑q

j=1 βj = 1, βj = 1 for q = 1, so as to ςj and
ζj .

And βj is defined as follows [17]:

βj =
⎧⎨
⎩

q−1
qj for j �= q

1
qj−1 for j = q

(j = 1,2, . . . , q) (4)

3 Stability analysis

For all types of the car-following models, stability
analysis is definitely an important issue [20, 21]. In
the car-following models, the stability means that the
vehicle can drive free with the safe velocity and dis-
tance; in other words, if the stability region is larger,
the opportunity of collision is lower.
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Fig. 1 Sketch of
car-following phenomenon

The car-following phenomenon in the car-following
theory is briefly described as in Fig. 1:

In Fig. 1b is the space headway distance of two suc-
cessive vehicles in the initial phase, and L is the length
of the considering road.

The following behavior of a platoon of vehicles is
similar to that of one vehicle, so the description is also
as the (2). Any specific solution of the equation de-
pends on the velocity of the leading vehicle of the pla-
toon, v0, and the three parameters k, λ , and κ . For any
relative spacing, if a disturbance grows in amplitude,
then a “collision” would eventually occur somewhere
back in the platoon of vehicles.

Assumption 1 Supposing the initial state of the traffic
flow is steady, and the space headway distance is b,
while the corresponding optimal velocity is V (b).

Theorem 1 If the following condition is satisfied:

V ′(b) <
k

1 − κ

q∑
j=1

βj (2j − 1)

2
+ λ

1 − κ
(5)

then the MHVAD model is stable.

Proof According to the above assumption, the posi-
tion solution to the stability flow is:

x0
n(t) = bn + V (b)t (6)

adding a disturbance yn(t) to the (6), it will become

yn(t) = xn(t) − x0
n(t) (7)

And �xn+j−1 = �yn+j−1 + b, vn = ẏn + V (b),
an+j−1(t − 1) = ÿn+j−1(t − 1), substitute (7) into the
(2) and using the Taylor expansion, it will deduce:

ÿn(t) = k

[
V ′(b)

q∑
j=1

βj�yn+j−1 − ẏn(t)

]

+ λ

q∑
j=1

ξj�ẏn+j−1 + κ

q∑
j=1

ηj�ÿn+j−1 (8)

Set yn(t) = exp(iαn + zt), then, �yn+j−1(t) =
eiα(n+j−1)+zt (eiα −1),�ẏn+j−1(t) = zeiα(n+j−1)+zt ×
(eiα −1)�ÿn+j−1(t −1) = z2eiα(n+j−1)+z(t−1)(eiα −
1), substituting it in (8) and according to the Fourier
transform:

z2 = kV ′(b)

q∑
j=1

βj

[
iα + 1

2
(iα)2(2j − 1)

]

− kz + λz

q∑
j=1

ξj

[
iα + 1

2
(iα)2(2j − 1)

]

+ κz2 exp(−z)

q∑
j=1

ηj

[
iα + 1

2
(iα)2(2j − 1)

]

(9)

let z = z1(iα) + z2(iα)2 + · · ·, and expand it to the
second term of (iα), we will obtain
[
z1(iα) + z2(iα)2]2

= kV ′(b)

q∑
j=1

βj

[
(iα) + 1

2
(iα)2(2j − 1)

]

− k
[
z1(iα) + z2(iα)2]

+ λ
[
z1(iα) + z2(iα)2]

×
q∑

j=1

ξj

[
(iα) + 1

2
(iα)2(2j − 1)

]

+ κ
[
z1(iα) + z2(iα)2]2

× exp
(−[

z1(iα) + z2(iα)2])

×
q∑

j=1

ηj

[
(iα) + 1

2
(iα)2(2j − 1)

]
(10)

And so we have⎧⎪⎪⎨
⎪⎪⎩

kV ′(b)
∑q

j=1 βj − kz1 = 0

−z2
1 + kV ′(b)

∑q

j=1
βj (j−1)

2 − kz2

+ λz1
∑q

j=1 ξj + κz2
1

∑q

j=1 ηj = 0

(11)
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Fig. 2 The critical curves
between sensitivity
coefficient and the space
headway distance

that is,
⎧⎪⎪⎨
⎪⎪⎩

z1 = V ′(b)

z2 = V ′(b)
∑q

j=1
βj (2j−1)

2 − V ′(b)2

k
+ V ′(b)λ

k

+ V ′(b)2κ
k

(12)

when z2 > 0, we get

V ′(b) <
k

1 − κ

q∑
j=1

βj (2j − 1)

2
+ λ

1 − κ
(13)

then the stability condition is

V ′(b) <
k

1 − κ

q∑
j=1

βj (2j − 1)

2
+ λ

1 − κ
(14)

so the proof is over. �

Remark 1 According to (14), we can draw a conclu-
sion as follows: when q = 1, λ = κ = 0, that is the OV
model, the stable condition is

V ′(b) < k/2

when q = 1, λ �= 0, κ = 0, that is FVD model, the sta-
ble condition is

V ′(b) < k/2 + λ

when q = 1, λ �= 0, κ �= 0, that is FVAD model, the
stable condition is

V ′(b) < (k + 2λ)/2(1 − κ)

when q �= 1, λ �= 0, κ = 0, that is MAVD model, the
stable condition is

V ′(b) < k

q∑
j=1

βj (2j − 1)/2 + λ

Because k,λ are not negative constants and κ ∈
(0,1), it can be seen that the stable region of MHVAD
model is larger than the other models. In Fig. 2, we
give the critical stable curves of five models, which
are the critical curves between sensitivity coefficient
and the headway of the OV model (q = 1, λ = 0),
FVD model (q = 1, λ = 0.2 s−1), FVAD model
(q = 1, λ = 0.2 s−1, κ = 0.1) MVD model (q = 2,

λ1 = 0.2 s−1, λ2 = 0.15 s−1), MAVD model (q = 2,
λ = 0.2 s−1; q = 3, λ = 0.2 s−1), and MHVAD model
(q = 3, λ = 0.2 s−1, κ = 0.1).

In Fig. 2, the region over the critical curve is the
stable region; while the remainder is the unstable re-
gion. From Fig. 2, it has been intuitively shown that
the stable region of FVD model is larger than that
of OV model. In other words, the vehicles can move
freely within a certain range. The reason is that the
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Fig. 3 The acceleration distribution of vehicles starting from a green traffic signal (a) FVD model; (b) FVAD model; (c) MHVAD
(q = 2) model

FVD model has taken the velocity difference into ac-
count to overcome the drawbacks of the OV model;
the stable region of FVAD model is tiny larger than
FVD model, that is because the former model consid-
ers the effect of the acceleration difference; and the
stable region of MVD model (q = 2) is larger than
FVAD model and FVD model, owing to the velocity
difference information of more preceding vehicles be-
ing taken into account; and the stable region of the
MAVD model (q = 2) is larger than the MVD model
(q = 2), because of both the headway information and
the velocity difference information of more preceding

vehicles being taken into account; and the stable re-
gion of the MHVAD model (q = 3) is larger than the
MAVD model (q = 3), as a result of both the head-
way information, the velocity difference information
and the acceleration difference information of more
preceding vehicles being considered. And further con-
sidering the more preceding vehicles’ information, the
stable region will be enlarged, and up to tend to a fixed
area. The increase of stable region of traffic flow indi-
cates that vehicles can move freely in a wide range (no
congestion), that is meant to suppress traffic jams ef-
fectively.
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Fig. 4 The velocity distribution of vehicles starting from a green traffic signal (a) FVD model; (b) FVAD model; (c) MHVAD (q = 2)

model

4 Numerical simulation

In order to analyze the dynamic performance of the
MHVAD model, three situations are analyzed as fol-
lows:

4.1 Start process

Considering the situation that when the red light turns
to green light, how do the vehicles perform dynami-
cally? First, we apply the MHVAD model to simulate
car motion under a traffic signal and examine certain
properties of the MHVAD model. The same simula-
tion is carried out as that in [10]. First, the traffic signal
is yellow and all vehicles are waiting with the headway

of 7.4 m, where the optimal velocity is zero. Then at
time t = 0 s, the signal changes to green and the ve-
hicles start. For comparison, we use the same parame-
ters as those in the FVD model and FVAD model. The
variations of all vehicles’ acceleration for the three
models are shown in Fig. 3. From Fig. 3, we can see
the maximum value of acceleration in the MHVAD
model is much less than that of the FVD model and the
FVAD model, which is under the limitation of 3 m/s2.
This advantage can effectively prevent the go-and-stop
phenomenon of the vehicles, which exists in the OV
model.

Moreover, Figs. 4 and 5 give the velocity and po-
sition distribution of vehicles starting from a green
traffic signal, respectively. From Fig. 4, we can see
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Fig. 5 The position distribution of vehicles starting from a green traffic signal (a) FVD model; (b) FVAD model; (c) MHVAD (q = 2)

model

that the velocity distribution in the MHVAD model

quickly tends to the maximum value, compared with

the FVD model and the FVAD model. It means that

the followers of the MHVAD model at the initial stage

have a faster start than that of the FVD model and

the FVAD model. This coincides completely with the

real driving behaviors: the following drivers initially

have strong desires to start moving forward, and then

calm down until a steady speed is obtained. From

Fig. 5, we also can see that the position distribution

in the MHVAD model lasts longer than that of the

FVD model and the FVAD model, which indicates

that the vehicles can move far with the steady veloc-
ity.

Based on the above analysis, it has been shown that
the start performance of the MHVAD model is better
than the FVD model and the FVAD model, in terms of
the acceleration, velocity and position distribution of
the vehicles.

4.2 Stop process

Considering the situation that when the green light
turns to red light, how do the vehicles perform dynam-
ically? First, the traffic signal is yellow and all vehi-
cles are moving with the same velocity. Then at the
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Fig. 6 The deceleration distribution of vehicles stopping at a red traffic signal (a) FVD model; (b) FVAD model; (c) MHVAD (q = 2)

model

time t = 0 s, the signal changes to red and the vehicles
stop. For comparison, we use the same parameters as
those in the FVD model and FVAD model. The varia-
tions of all vehicles’ deceleration for the three models
are shown in Fig. 6. From Fig. 6, we can see the max-
imum value of deceleration in the MHVAD model is
much less than that of FVD model and FVAD model,
which is about −4 m/s2. In addition, the velocity and
position distribution of vehicles stopping at a red traf-
fic signal are given in Figs. 7 and 8, respectively. By
observing Fig. 7c, the velocity in the MHVAD model
is nonnegative. However, in Figs. 7a and 7b, there are
negative velocities in the FVD model and the FVAD
model, which is not realistic. While from Fig. 8, we

can see that the position distribution in the MHVAD
model lasts shorter than the FVD model and FVAD
model, and it means that the vehicles can easily stop at
the red light.

Based on the above analysis, it has been shown that
the stop performance of the MHVAD model is better
than FVD model and FVAD model, in terms of the
deceleration, velocity, and position distribution of the
vehicles.

4.3 Evolution process

A numerical simulation is carried out to observe the
traffic dynamics in the MHVAD model. For compar-
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Fig. 7 The velocity distribution of vehicles stopping at a red traffic signal (a) FVD model; (b) FVAD model; (c) MHVAD (q = 2)

model

ison, we take the same parameters as in the FVD

model and FVAD model into consideration. There

are N = 100 vehicles running on a road with the

length of L = 1500 m, under a periodic boundary

condition. The parameters are set as k = 1.0 m−1,

xc = 2.0 m, vmax = 2 m/s, v0 = 0.964 m/s. For all

results, we use Runge–Kutta algorithm for numeri-

cal integration with the time-step �t = 0.01 s. The

uniform random noise with the maximum amplitude

10−3 is added to (2) for all the vehicles. The initial

conditions are chosen as �xi(0) = xc, i = 2, . . . ,N ,

xi(0) = V −1(xc) = v0. We set the same initial distur-

bance as that in [10]

x1(0) = 1 m; xi(0) = (i − 1)L/Nm,

for i �= 1 (15)

vi(0) = V (L/N) (16)

In order to get the information of the spatial organi-
zation of the vehicles, the variations of corresponding
velocities for different vehicles at t = 100 s are plot-
ted in Figs. 9a, 9b, and 9c, respectively. From Figs. 9a
and 9b, it can be seen that the upstream group vehi-
cles oscillate around the constant velocity v0, while the
downstream group vehicles move with constant veloc-
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Fig. 8 The position distribution of vehicles stopping at a red traffic signal (a) FVD model; (b) FVAD model; (c) MHVAD (q = 2)

model

ity v0. The oscillation amplitude converges along the
increasing of the car indices. That indicates that traffic
jams appears in the noisy FVD model and the FVAD
model. While from Fig. 9c, we can see that the vehi-
cles in the MHVAD model move freely with the con-
stant velocity v0.

In addition, Figs. 10a, 10b, and 10c show the space
headway behaviors of all vehicles at t = 100 s. From
Fig. 10, it has been found obviously that the space
headway oscillates around the constant space headway
xc upstream, and gradually becomes constant down-
stream. The oscillation amplitude converges along the
increasing of the car indices.

Based on the above analysis, it has been shown that
the evolution dynamic performance of the MHVAD
model is better than FVD model and FVAD model, in
terms of the velocity and space headway distribution
of the vehicles.

5 Conclusion

Based on the application of the intelligent transporta-
tion system (ITS) which can provide the information
of other vehicles for the driver on the same lane,
the present paper puts forward a multiple headway,
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Fig. 9 The velocity distribution of moving vehicles (a) FVD model; (b) FVAD model; (c) MHVAD (q = 2) model

velocity, and acceleration difference (MHVAD) mi-
croscopic car-following model to describe the traf-
fic phenomenon. Compared with the other existing
models, the presented novel model does not only
take the headway, velocity, and acceleration differ-
ence information into account, but also considers more
than one vehicle in front of the following vehicle.
Therefore, the description of the traffic is more ac-
tual and reasonable. The theoretical analysis and sim-
ulation results have shown that the model can fur-
ther improve the stability of the traffic flow and ef-
fectively restrain the traffic jams. Moreover, the start
process performance, stop process performance, and
the evolution process dynamic performance are bet-

ter than those of the FVD model and FVAD model, in
terms of the acceleration, velocity, and headway dis-
tribution of the vehicles. However, as the complex-
ity of the traffic system, the future research needs to
consider some uncertainties during the car-following
process.
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Fig. 10 The space headway distribution of moving vehicles (a) FVD model; (b) FVAD model; (c) MHVAD (q = 2) model
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