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Abstract Oscillators with a non-negative real-power
restoring force and quadratic damping are consid-
ered in this paper. The equation of motion is trans-
formed into a linear first-order differential equation
for the kinetic energy. The expressions for the energy-
displacement function are derived as well as the closed
form exact solutions for the relationship between sub-
sequent amplitudes. They are expressed in terms of in-
complete Gamma functions. On the basis of these re-
sults, expressions for the phase trajectories and the loci
of maximal velocities are obtained. It is also demon-
strated that the time difference between two consecu-
tive relative maxima and minima of the displacement
can both increase and decrease with time.

Keywords Non-negative real-power restoring force ·
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1 Introduction

One of the basic damping mechanisms is quadratic
damping, which occurs, for example, when an im-
mersed object moves through a fluid at relatively high
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Reynolds numbers [1, 2]. The corresponding drag
force is proportional to the square of the velocity

R(ẋ) = c sgn(ẋ)ẋ2, (1)

where the constant c depends on the object geometry
and the fluid properties.

Of interest here is to consider free oscillations of
the systems having a single degree of freedom, with
the damping force modelled by (1) and with the purely
non-linear restoring force

F(x) = k sgn(x)|x|α, (2)

where k and α are a positive and non-negative real
constants, respectively. The model (2) includes the
originally multi-term restoring force tuned to have
a quasi-zero stiffness characteristic [3–5], as well as
those corresponding to a fractional-order restoring
force [6, 7], practical examples of which can be found,
for instance, in [8].

It should be noted that the Sign functions in (1) and
(2) are

sgn(ẋ) =
⎧
⎨

⎩

1, ẋ > 0
0, ẋ = 0
−1, ẋ < 0,

sgn(x) =
⎧
⎨

⎩

1, x > 0
0, x = 0
−1, x < 0.

(3)
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Thus, the equation of motion of the system consid-
ered having the mass m is

mẍ + c sgn(ẋ)ẋ2 + k sgn(x)|x|α = 0. (4)

The initial conditions are assumed to be

x(0) = X0, ẋ(0) = 0, (5)

where dots stand for the differentiation with respect to
time t and X0 is assumed to be a positive real constant.

Numerous authors have performed quantitative
analyses of oscillators with restoring force non-lineari-
ties and small quadratic damping by obtaining their
approximate solution. Some of the methods used have
been: the method of multiple scales [1], the averag-
ing method (Krylov–Bogoliubov method) [9] and the
elliptic Krylov–Bogoliubov method [10]. In addition,
some techniques have been developed for converting
the given equation with a certain type of non-linearity
both in the restoring force and damping force into ones
that have exact closed form solutions (see, for exam-
ple, [11], and references cited therein).

On the other hand, the qualitative analysis given in
[12] for this type of non-linear damping includes an
analytical proof that the energy of the system contin-
uously decreases along the phase path, i.e. the energy
is continuously withdrawn from the system, causing
the corresponding phase path to spiral in towards the
equilibrium point x = ẋ = 0. In [13], a system with
quadratic damping but a linear restoring force was
studied qualitatively by analyzing the phase plane. It
was shown that the phase trajectories in the upper half
of the phase plane are symmetric to the phase trajec-
tories in the lower half with respect to the equilib-
rium point. Klotter [14] considered oscillators with
purely non-linear integer-power or linear-plus-non-
linear integer-power restoring forces. He transformed
the equations of motion into linear first-order differ-
ential equations for the square of the velocity, which
is actually twice the kinetic energy, to derive the tran-
scendental relationship between two consecutive max-
imal displacement amplitudes. Cveticanin [15] used
a similar approach for a system with a linear restor-
ing force to derive the exact analytical expressions for
the energy-displacement function and the amplitudes
of vibration in which the Lambert W -function occurs.

The aim of this paper is to carry out a qualita-
tive analysis of the non-linear oscillator governed by

(4) for the initial conditions (5) focusing on the in-
fluence of an arbitrary non-negative real power α on
the energy-displacement function, which, as far as the
authors are aware, has not been examined so far. The
energy-displacement function obtained is used to find
the values of the amplitude of motion. These values
are exact, unlike the results of the application of the
methods listed above, which are approximate. They
are only valid for weakly non-linear damping forces,
while the procedure proposed here does not have this
limitation. In addition, the expressions for phase tra-
jectories are also derived. Examples are presented to
illustrate the findings. They consist of systems with a
purely non-linear restoring force of odd or even power,
including a fractional-order restoring force.

2 Model

Introducing the non-dimensional variables

ξ = x

X0
, τ = t

√
m
k
x

1−α
2

0

. (6)

Equation (4) can be expressed in non-dimensional
form as

ξ ′′ + μ sgn(ξ ′)ξ ′2 + sgn(ξ)|ξ |α = 0, (7)

where the prime denotes differentiation with respect to
τ and

μ = ck

m
X0. (8)

Thus, instead of having five parameters as in (4) and
(5), the system behavior will depend on two parame-
ters only: the coefficient μ and the power α. The initial
conditions (5) are now

ξ(0) ≡ ξ+
0 = 1, ξ ′(0) = 0, (9)

where the superscript ‘+’ is used to emphasize the
sign of the displacement, which is of importance for
the procedure developed below.

3 Energy-displacement function

As shown analytically in [12], the total mechanical en-
ergy of the system (7) decreases with time. However,
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instead of analyzing the change of this energy in time,
it is more convenient to consider how it changes with
the displacement, as this energy-displacement func-
tion can be used to carry out a qualitative analysis of
the system behavior.

The non-dimensional equation of motion (7) can be
written down in the form

d

dτ

[
1

2
(ξ ′)2 + 1

α + 1
|ξ |α+1

]

= −μ sgn(ξ ′)(ξ ′)3. (10)

Introducing the total mechanical energy

E = T + V , T = 1

2
(ξ ′)2, V = |ξ |α+1

α + 1
, (11)

as well as changing the variable of differentiation from
τ to ξ , (10) becomes

dE

dξ
= −μ sgn(ξ ′)

[

2

(

E − 1

α + 1
|ξ |α+1

)]

. (12)

Based on (11), the following substitution is intro-
duced:

T = E − 1

α + 1
|ξ |α+1, (13)

so that (12) transforms to

dT

dξ
+ 2μ sgn(ξ ′)T = − sgn(ξ)|ξ |α . (14)

In this way, the problem is transformed from a
second-order differential equation to a first-order dif-
ferential equation. In order to solve (14), two cases are
to be considered separately, depending on whether the
power α is odd or even.

3.1 Case I: odd-power restoring force

When the motion starts from a positive initial displace-
ment with respect to the equilibrium position and with
zero velocity as described by (5), being directed to the
left (←), sgn(ξ ′) < 0. For odd-parity restoring force,
(14) can be expressed as

dT←
dξ

− 2μT← = −ξα . (15)

It should be noted that (15) holds both for ξ > 0 and
ξ < 0, due to the fact that the restoring force is odd.

The general solution of (15) is

T←(ξ) = CI1e
2μξ − e2μξ

∫

e−2μξ ξαdξ , (16)

where CI1 is a constant of integration. The subscript I
indicates the case considered and the subscript 1 de-
notes the first interval of motion.

In order to find the solution for T←(ξ), the integral

J =
∫

e−2μξ ξαdξ , (17)

needs to be solved. Therefore, the following substitu-
tion is evaluated. Introducing

2μξ = u, (18)

leads to

J =
(

1

2μ

)α+1 ∫

e−uuαdu. (19)

This integral can be related to the definition to the up-
per incomplete Gamma function [16, 17]

�[s, y] =
∫ ∞

y

e−uus−1du. (20)

In addition, taking α = s−1, the integral (19) becomes

J = −
(

1

2μ

)α+1

�[α + 1,2μξ ], (21)

and the solution for T← in (16) is found

T← = CI1e
2μξ + e2μξ

(
1

2μ

)α+1

�[α + 1,2μξ ]. (22)

On the basis of (13), the energy-displacement function
is

EI1← = 1

α + 1
|ξ |α+1 + CI1e

2μξ

+
(

1

2μ

)α+1

e2μξ�[α + 1,2μξ ]. (23)

The constant CI1 can be obtained by using the initial
conditions (9)

CI1 = −
(

1

2μ

)α+1

�
[
α + 1,2μξ+

0

]
, (24)
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so that the energy during the first interval changes in
accordance with

EI1← = |ξ |α+1

α + 1
+

(
1

2μ

)α+1

e2μξ
(
�[α + 1,2μξ ]

− �
[
α + 1,2μξ+

0

])
. (25)

The motion changes direction when the velocity
and the kinetic energy are zero. Based on (25) this oc-
curs at ξ = ξ−

1 , when

�
[
α + 1,2μξ−

1

] − �
[
α + 1,2μξ+

0

] = 0. (26)

When the system moves from the left to the right
(labelled by ‘→’), sgn(ξ ′) > 0, and (14) becomes

dT→
dξ

+ 2μT→ = −ξα, (27)

whose general solution is

T→ = CI2e
−2μξ +e−2μξ

(
1

−2μ

)α+1

�[α +1,−2μξ ].

(28)

The corresponding energy-displacement function
can be obtained analogously as before and is given by

EI2→ = |ξ |α+1

α + 1
+ CI2e

−2μξ

+
(

1

2μ

)α+1

e−2μξ�[α + 1,−2μξ ]. (29)

The constant of integration CI2 can be obtained
from the fact that at ξ−

1 the energy is equal to the po-
tential one. Thus, one has

CI2 = −
(

1

2μ

)α+1

�
[
α + 1,−2μξ−

1

]
. (30)

The expression for the energy-displacement func-
tion is

EI2→ = |ξ |α+1

α + 1
+

(
1

2μ

)α+1

e−2μξ
(
�[α + 1,−2μξ ]

− �
[
α + 1,−2μξ−

1

])
. (31)

Proceeding in the same way, the following expres-
sions can be found for the energy-displacement func-

tions for the motion to the left and right, respectively:

EIi← = |ξ |α+1

α + 1
+

(
1

2μ

)α+1

e2μξ
(
�[α + 1,2μξ ]

− �
[
α + 1,2μξ+

i−1

])
, ξ−

i ≤ ξ ≤ ξ+
i−1, (32)

EIi+1→ = |ξ |α+1

α + 1
+

(
1

2μ

)α+1

e−2μξ
(
�[α + 1,−2μξ ]

− �
[
α + 1,−2μξ−

i

])
, ξ−

i ≤ ξ ≤ ξ+
i+1,

i = 2j − 1, j ∈ N. (33)

Extremal displacements, i.e. the minimum and
maximum ξ−

i and ξ+
i+1, correspond to zero kinetic en-

ergy. They can be found by equating the second term
in (32) and (33) to zero. These equations give the sub-
sequent amplitude as a function of the previous one

�
[
α + 1,2μξ−

i

] − �
[
α + 1,2μξ+

i−1

] = 0 ⇒ ξ−
i ,

(34)

�
[
α + 1,−2μξ+

i+1

] − �
[
α + 1,−2μξ−

i

]

= 0 ⇒ ξ+
i+1. (35)

The procedure developed will be illustrated next by
considering a pure cubic oscillator.

3.1.1 Example 1. Pure cubic oscillator

On the basis of (34) and (35), the relative minima and
maxima of the amplitude of a pure cubic oscillator,
which corresponds to α = 3, are defined by

�
[
4,2μξ−

1

] − �[4,2μ] = 0, (36)

�
[
4,−2μξ+

2

] − �
[
4,−2μξ−

1

] = 0, (37)

�
[
4,2μξ−

3

] − �
[
4,2μξ+

2

] = 0, (38)

�
[
4,−2μξ+

4

] − �
[
4,−2μξ−

3

] = 0, (39)

�
[
4,2μξ−

5

] − �
[
4,2μξ+

4

] = 0. (40)

Solving these equations numerically for μ = 0.5,
starting from (36), the values given in Table 1 are ob-
tained.

Then, the energy-displacement function in the first
interval of motion (32), starting from the initial posi-
tion ξ+

0 and lasting until the position ξ−
1 is

EI1← = |ξ |4
4

+
(

1

2μ

)4

e2μξ (�[4,2μξ ]

− �[4,2μ]), −0.71149 ≤ ξ ≤ 1. (41)
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Table 1 Values of the negative and positive amplitudes of a
pure cubic oscillator for μ = 0.5

ξ0 ξ−
1 ξ+

2 ξ−
3 ξ+

4 ξ−
5

1 −0.71149 0.55294 −0.45240 0.38288 −0.33193

Fig. 1 Energy-displacement curves and time response for a
pure cubic oscillator and μ = 0.5

This function in plotted in the upper part of Fig. 1,
where the potential well V = |ξ |4/4 is shown, too.
By using (33), the energy-displacement function in the
next interval, when the system moves to the right, is

obtained

EI2→ = |ξ |4
4

+
(

1

2μ

)4

e−2μξ (�[4,−2μξ ],

− �[4,2μ · 0.71149]),
− 0.71149 ≤ ξ ≤ 0.55294. (42)

Further use of (32) and (33) gives the following
energy-displacement functions in the subsequent in-
tervals of motion:

EI3← = |ξ |4
4

+
(

1

2μ

)4

e2μξ (�[4,2μξ ]

− �[4,2μ · 0.55294]),
− 0.45240 ≤ ξ ≤ 0.55294, (43)

EI4→ = |ξ |4
4

+
(

1

2μ

)4

e−2μξ (�[4,−2μξ ]

− �[4,2μ · 0.45240]),
− 0.45240 ≤ ξ ≤ 0.38288, (44)

EI5← = |ξ |4
4

+
(

1

2μ

)4

e2μξ (�[4,2μξ ]

− �[4,2μ · 0.38288]),
− 0.33193 ≤ ξ ≤ 0.38288. (45)

The energy-displacement functions (42)–(45) are also
plotted in the upper part of Fig. 1, clearly indicating
how the energy decreases. The positions at which the
motion changes direction, i.e. the amplitudes ξ+

0 −ξ−
5 ,

are depicted as well. The time evolution ξ(τ ) obtained
by integrating the equation of motion numerically is
shown in the lower part of Fig. 1. The link between
the amplitudes ξ+

0 − ξ−
5 in the energy-displacement

function and the time evolution is also depicted to ver-
ify the results obtained. It is seen that the amplitudes
obtained above coincide with the ones calculated nu-
merically from the equation of motion.

3.2 Case II: even-power restoring force

When the restoring force is an even-power function,
the initial motion to the left needs to be divided into
two parts, depending on the sign of the displacement.
When the displacement is positive, the analysis given
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above for the motion to the left holds and, conse-
quently, the energy changes in accordance with

EII1←+ = |ξ |α+1

α + 1
+

(
1

2μ

)α+1

e2μξ
(
�[α + 1,2μξ ]

− �
[
α + 1,2μξ+

0

])
, (46)

where the subscript II indicates Case II and ‘+’ stands
for the sign of the displacement.

However, when the displacement is negative, which
will be labelled by ‘−’, (14) can be written as

dT←−
dξ

− 2μT←− = ξα . (47)

By carrying out a procedure similar to the one de-
scribed above, the following expression for the energy-
displacement function can be found:

EII1←− = |ξ |α+1

α + 1
+ CII1e

2μξ

− e2μξ

(
1

2μ

)α+1

�[α + 1,2μξ ], (48)

where the constant CII1 can be obtained from the con-
dition

EII1←+(ξ = 0) = EII1←−(ξ = 0). (49)

Knowing that �[α + 1,0] ≡ �[α + 1], i.e. that
the incomplete gamma function turns into the Euler
Gamma function when the second argument is equal
to zero, one obtains

CII1 =
(

1

2μ

)α+1(
2�[α+1]−�

[
α+1,2μξ+

0

])
. (50)

Thus, the energy-displacement function is

EII1←− = |ξ |α+1

α + 1
+

(
1

2μ

)α+1

e2μξ
(
2�[α + 1]

− �
[
α + 1,2μξ+

0

] − �[α + 1,2μξ ]). (51)

The motion changes direction at the position ξ−
1 when

2�[α + 1] − �
[
α + 1,2μξ+

0

] − �
[
α + 1,2μξ−

1

] = 0.

(52)

When the motion is directed towards the right and
the displacement is negative, (14) becomes

dT→−
dξ

+ 2μT→− = ξα , (53)

which results in the following solution for the energy-
displacement function:

EII2→− = 1

α + 1
|ξ |α+1 + CII2e

−2μξ

−
(

1

−2μ

)α+1

e−2μξ�[α + 1,−2μξ ], (54)

with the constant CII2 being defined by the condition

EII1←−
(
ξ−

1

) = EII2→−
(
ξ−

1

)
. (55)

Its value is then

CII2 =
(

1

−2μ

)α+1

�
[
α + 1,−2μξ−

1

]
, (56)

and the energy-displacement function is

EII2→− = 1

α + 1
|ξ |α+1

+
(

1

2μ

)α+1

e−2μξ
(
�[α + 1,−2μξ ]

− �
[
α + 1,−2μξ−

1

])
. (57)

Finally, when the displacement is positive, (14) cor-
responds to (27). The corresponding solution can be
used then together with the condition EII2→−(0) =
EII2→+(0) to derive the constant CII3

CII3 =
(

1

−2μ

)α+1(
�

[
α + 1,−2μξ−

1

] − 2�[α + 1]),

(58)

which completes the expression for the energy-dis-
placement function

EII2→+ = |ξ |α+1

α + 1
+

(
1

2μ

)α+1

e−2μξ
(
2�[α + 1]

− �
[
α + 1,−2μξ−

1

] − �[α + 1,−2μξ ]).

(59)
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In the subsequent intervals of motion, the energy-
displacement functions are defined by

EIIi←+ = V +
(

1

2μ

)α+1

e2μξ
(
�[α + 1,2μξ ]

− �
[
α + 1,2μξ+

i−1

])
, 0 ≤ ξ ≤ ξ+

i−1, (60)

EIIi←− = V +
(

1

2μ

)α+1

e2μξ
(
2�[α + 1]

− �[α + 1,2μξ ]
− �

[
α + 1,2μξ+

i−1

])
, ξ−

i ≤ ξ ≤ 0, (61)

EIIi+1→− = V +
(

1

2μ

)α+1

e−2μξ
(
�[α + 1,−2μξ ]

− �
[
α + 1,−2μξ−

i

])
, ξ−

i ≤ ξ ≤ 0,

(62)

EIIi+1→+ = V +
(

1

2μ

)α+1

e−2μξ
(
2�[α + 1]

− �[α + 1,−2μξ ] − �
[
α + 1,−2μξ−

i

])
,

0 ≤ ξ ≤ ξ+
i+1, (63)

i = 2j − 1, j ∈ N, (64)

where V is defined by the third expression in (11),
while the minima and maxima ξ−

i and ξ+
i+1 can be cal-

culated, respectively, from

2�[α + 1] − �
[
α + 1,2μξ−

i

]

− �
[
α + 1,2μξ+

i−1

] = 0 ⇒ ξ−
i , (65)

2�[α + 1] − �
[
α + 1,−2μξ+

i+1

]

− �
[
α + 1,−2μξ−

i

] = 0 ⇒ ξ+
i+1. (66)

Thus, it is seen that, unlike in Case I with an even
restoring case, in the case with an odd restoring force
twice more expressions for the energy-displacement
functions have been derived due to the fact that the
motion in one direction needed to be split into two
parts: one for positive and the other one for negative
displacements.

The use of the expressions (60)–(66) will be illus-
trated on the example of a restoring force the power of
which is a ratio involving an even integer.

Fig. 2 Energy-displacement curves and time response for a
fractional-order oscillator with α = 4/3 and μ = 0.5

Table 2 Values of the negative and positive amplitudes of a
fractional-order oscillator for α = 4/3, μ = 0.5

ξ0 ξ−
1 ξ+

2 ξ−
3 ξ+

4 ξ−
5

1 −0.619508 0.450347 −0.354093 0.291847 −0.248257

3.2.1 Example 2. Fractional-order oscillator
with the power involving an even integer

A fractional-order restoring force with α = 4/3 is con-
sidered here. The amplitudes of motion are defined by
(65) and (66). Starting from i = 1 in (60) and knowing
the value of ξ+

0 , the energy-displacement function (60)
can be plotted (Fig. 2). Then, using (65), the value of
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ξ−
1 can be obtained numerically and it is given in Ta-

ble 2. Further, for the known ξ−
1 , (61) can be used to

plot the energy-displacement diagram from the zero
position until ξ−

1 ≤ ξ ≤ 0. Then, for the known ξ−
1

and i = 1, (66) yields the value of ξ+
2 and (63) for the

energy-displacement function is completed. By pro-
ceeding in an analogous way, the energy-displacement
function shown in Fig. 2 can be obtained. The ac-
curacy of the obtained amplitudes is confirmed by
comparing them with the numerically obtained ampli-
tudes on the time response plotted in the lower part
of Fig. 2.

4 Phase trajectories and some characteristics
of motion

In this section, the phase trajectories of system (7) will
be obtained analytically. To that end, (7) is written as

dT

dξ
+ sgn(ξ)|ξ |α = −μ sgn(ξ ′)(ξ ′)2, (67)

so that the velocity can be expressed as

ξ ′ = ±
√

− 1

μ

dT

dξ
− 1

μ
sgn(ξ)|ξ |α . (68)

The expressions for the energy-displacement func-
tion for the two cases distinguished above can be used
to define the velocity (68) completely as the function
of ξ , i.e. to obtain the expressions for the phase trajec-
tories. The kinetic energy T is described by the second

term in (32) and (33) for Case I and by the second term
in (60)–(63) for Case II.

4.1 Case I: odd-power restoring force

For the system with an odd-power restoring force and
during the motion to the left, the use of (32) and (68)
yields

ξ ′
Ii← = − 1√

μ

(
1

2μ

) α
2

× eμξ
√

�[α + 1,2μξ ] − �
[
α + 1,2μξ+

i−1

]
,

ξ−
i ≤ ξ ≤ ξ+

i−1. (69)

During the motion to the right, based on (33) and (68),
the part of the phase trajectory is defined by

ξ ′
Ii+1→ = + 1√

μ

(
1

2μ

) α
2

× e−μξ
√

�[α + 1,−2μξ ] − �
[
α + 1,−2μξ−

i

]
,

ξ−
i ≤ ξ ≤ ξ+

i+1, (70)

i = 2j − 1, j ∈ N. (71)

4.2 Case II: even-power restoring force

If the restoring force is even, one can combine (60)–
(63) with (68) to derive the following expressions for
the parts of the phase trajectories, from one relative
maximum to the next one:

ξ ′
IIi←+ = − 1√

μ

(
1

2μ

) α
2

eμξ
√

�[α + 1,2μξ ] − [
�α + 1,2μξ+

i−1

]
, 0 ≤ ξ ≤ ξ+

i−1, (72)

ξ ′
IIi←− = − 1√

μ

(
1

2μ

) α
2

eμξ
√

2�[α + 1] − �[α + 1,2μξ ] − �
[
α + 1,2μξ+

i−1

]
, ξ−

i ≤ ξ ≤ 0, (73)

ξ ′
IIi+1→− = 1√

μ

(
1

2μ

) α
2

e−μξ
√

�[α + 1,−2μξ ] − �
[
α + 1,−2μξ−

i

]
, ξ−

i ≤ ξ ≤ 0, (74)

ξ ′
IIi+1→+ = 1√

μ

(
1

2μ

) α
2

e−μξ
√

2�[α + 1] − �[α + 1,−2μξ ] − �
[
α + 1,−2μξ−

i

]
, 0 ≤ ξ ≤ ξ+

i+1. (75)
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4.3 Examples

The expressions for the phase trajectories derived
above are plotted for Example 1 and Example 2 con-
sidered in Sect. 3. They are shown in Fig. 3a and 3b,
for the characteristic values of ξ+

i−1 and ξ−
i given in

Tables 1 and 2 (Fig. 3c contains one more example,
which will be discussed in the next section). Different
types of lines are used to emphasize the use of differ-
ent expressions depending on the interval. It should
be pointed out that these analytically obtained results
were compared with the phase trajectories obtained by
integrating the equation of motion numerically and the
exact match was found. However, they are not shown
here for clarity. The phase trajectories spiral in from
the initial position and have velocity maxima in the
second and fourth quadrant.

4.4 Maximal velocities

The maximal velocity can be obtained by differentiat-
ing (69) and (72) (or (70) and (74)) with respect to ξ .

As a result of some of that, it follows that

dξ ′

dξ
= −μξ ′ + ξα

ξ ′ . (76)

In case of a maximum, the left side of (76) is zero,
yielding

(
ξ ′∗

)2 = ξα∗
μ

, (77)

where the subscript ‘∗’ stands for the maximal veloc-
ity and the corresponding displacement. If plotted in
the ξ − ξ ′ plane, (77) represents the locus of maximal
velocities. The loci corresponding to Example 1 and
Example 2 are shown in Fig. 3a and 3b as thick lines.
It is interesting to note that in the case of a quadratic
oscillator, the locus is a straight line, i.e. there is pro-
portionality between the square of the maximal veloc-
ities and the corresponding displacements. This case is
plotted in Fig. 3c.

Equation (77) implies that the displacement corre-
sponding to the maximum velocity cannot be zero, un-
like the case of a conservative system.

Fig. 3 Phase trajectories
and loci of maximal
velocities (thick solid line)
for: (a) a pure cubic
oscillator; (b) a frac-
tional-order oscillator with
α = 4/3; (c) a pure
quadratic oscillator. In all
cases μ = 0.5



302 I. Kovacic, Z. Rakaric

In addition, (77) indicates that the ratio of the
square of the maximal velocity and the correspond-
ing displacement raised to the power of the restor-
ing force, remains constant during the motion and it
is equal to the reciprocal of the damping coefficient.
Thus, this ratio represents an invariant of the system
with a non-negative real-power restoring force and
quadratic damping. This conclusion is in agreement
with the physical mechanism of the system described
by the equation of motion (7). Namely, when the ve-
locity is maximal, the acceleration is zero because the
motion considered is rectilinear. This fact yields the
conclusion about the equilibrium between the damp-
ing force and the restoring force at the position corre-
sponding to maximal velocities.

4.5 On the time difference between two consecutive
relative extrema

By using the previously derived results for the veloc-
ity, it is possible to obtain the expression for the time
difference between two consecutive relative maxima
and minima. For example, on the basis of (69), this
time difference T̃ for the case of odd-power restoring
forces is defined by

T̃ = 2
α
2 μ

α+1
2

×
∫ ξ−

i

ξ+
i−1

∣
∣
∣
∣
∣

dξ

eμξ

√

�[α + 1,2μξ ] − �[α + 1,2μξ+
i−1]

∣
∣
∣
∣
∣
.

(78)

The form of the integrand in (78) does not enable
one to obtain a closed form solution for T̃ analytically.
However, this quantity can be obtained numerically for
the boundaries of the integral defined by (34) and (35).

This approach is used to calculate the time differ-
ence between two consecutive relative maxima and
minima for the oscillators with different values of the
power and for two different values of the parameter μ,
as shown in Tables 3 and 4. It is seen that for powers
smaller than unity the time difference becomes shorter
as time passes. This is opposite to the behavior of the
oscillator with the powers higher than unity. It can be
seen from Tables 3 and 4, as well as from the time
responses shown in Figs. 1 and 2, that this time differ-
ence increases with time for these oscillators.

It is interesting to note that these findings can partly
be recovered from the first-order averaging method

Table 3 Duration of the time difference between two consecu-
tive relative maxima and minima for μ = 0.1 and different val-
ues of the power of the restoring force

α T̃1 T̃2 T̃3 T̃4 T̃5

1/3 2.8647 2.72561 2.61031 2.51248 2.428

3/5 2.98105 2.90077 2.83211 2.77227 2.7194

9/11 3.0724 3.03658 3.00532 2.9776 2.9527

1 3.14622 3.14525 3.14455 3.14398 3.1437

11/9 3.23388 3.27311 3.30898 3.34203 3.3726

Table 4 Duration of the time difference between two consecu-
tive relative maxima and minima for μ = 0.5 and different val-
ues of the power of the restoring force

α T̃1 T̃2 T̃3 T̃4 T̃5

1/3 2.73687 2.25834 2.01376 1.85239 1.73384

3/5 2.93448 2.6206 2.44894 2.33098 2.2414

9/11 3.09284 2.92173 2.82865 2.76418 2.7147

1 3.2224 3.17509 3.16008 3.15333 3.1497

11/9 3.37772 3.48692 3.58236 3.663 3.7325

recently developed by Cveticanin [18] for fractional-
order non-conservative oscillators (‘partly’ was used
here since the method presented in [18] is applicable to
the case when the damping force is weakly non-linear;
however, in the procedure developed above no require-
ment of this type is imposed). In order to use Cveti-
canin’s method, the equation of motion (7) is written
down as

ξ ′′ + sgn(ξ)|ξ |α = μf (ξ, ξ ′), (79)

f (ξ, ξ ′) = − sgn(ξ ′)ξ ′2. (80)

According to the results presented in [18] for μ � 1,
the solution for motion can be assumed in the form

ξ = a cosψ, (81)

where the amplitude a and the complete phase ψ are
defined by the following first-order differential equa-
tions:

da

dτ
= − 2μ

π(α + 3)ω(a)

×
∫ 2π

0
f (a cosψ,−aω sinψ) sindψ, (82)
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dψ

dτ
= ω(a) − μ

2πaω(a)

×
∫ 2π

0
f (a cosψ,−aω sinψ) cosdψ, (83)

and

ω(a) = q |a| α−1
2 , q =

√
α + 1

2

√
π�( α+3

2(α+1)
)

�( 1
α+1 )

. (84)

For the non-conservative function (80), (82) and
(83) yield

a = (1 + μBτ)−
2

α+1 , (85)

ψ = −3(α + 3)π

16μ
+ 3(α + 3)π(1 + μBτ)

2
α+1

16μ
, (86)

where

B =
4
√

2
π
(α + 1)3/2�( α+3

2(α+1)
)

3(α + 3)�( 1
α+1 )

. (87)

It should be noted that for a linear oscillator, the am-
plitude decay (85) and the complete phase are in com-
plete agreement with the solution found in [1]. For
the confirmation of the accuracy of the results derived
for α = 1, the time response obtained, i.e. (81), (85)–
(87) is compared with the numerical results and shown
in Fig. 4 for two different cases: under-linear (sublin-
ear) case α = 9/11 and over-linear (superlinear) case
α = 11/9. In both cases, the coefficient μ is kept con-
stant and equal to 0.1. It is seen that the approximate
solutions agree well with the numerical results. The
expression for the complete phase ψ given by (86) can
be utilized to examine how the ratio ψ/τ changes with
time for different values of the power α. This is plot-
ted in Fig. 5. It is seen that for the under-linear oscil-
lator, this ratio increases with time, which implies that
the time difference between two consecutive relative
maxima and minima decreases with time, and this is
in agreement with the findings discussed above. In the
case of the over-linear oscillator, the opposite is true.
It should also be noticed that this procedure leads to
the conclusion that the frequency, to which this ratio
corresponds now, is constant and equal to unity. This
implies that quadratic damping does not influence it,
which is a consequence of having use a first-order ap-
proximation. Hence, higher-order averaging is needed
to define this influence. However, the results of the

Fig. 4 Comparison of the time response obtained numeri-
cally (solid line) and (a) approximate solution (dashed line)
for α = 9/11; (b) approximate solution (dashed-dotted line) for
α = 11/9. In both cases μ = 0.1

Fig. 5 Ratio ψ/τ versus τ for μ = 0.1 and α = 9/11 (dashed
line), α = 1 (solid line) and α = 11/9 (dashed-dotted line)

exact analysis presented above and in Tables 3 and 4
clearly show that the time difference between two con-
secutive relative maxima and minima in the linear os-
cillator is affected by quadratic damping in a way that
it decreases with time.
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5 Conclusions

In this paper, oscillators with a non-negative real-
power restoring force and quadratic damping have
been considered. A second-order differential equation
of motion has been transformed into a first-order dif-
ferential equation with respect to the kinetic energy. In
order to find its solution, two cases have been consid-
ered depending on the type of the restoring force: the
case of an odd-power restoring case and the case of an
even-power restoring case. In both cases the exact ex-
pressions for the energy-displacement function have
been derived in closed form in terms of incomplete
Gamma functions. The exact implicit expressions for
the positions at which the motion changes direction,
i.e. at relative displacement maxima and minima have
also been derived. In addition, the exact expressions
for the phase trajectories have been obtained as well
as the loci of maximal velocities. In the case of a
quadratic oscillator, the locus is a straight line, i.e.
there is proportionality between the square of the max-
imal velocities and the square of the corresponding
displacements. It has been demonstrated that the time
difference between two consecutive relative maxima
and minima can decrease in time, and this occurs for
the under-linear (sublinear) restoring force, the powers
of which are smaller than unity.
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