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Abstract Lyapunov exponents can indicate the as-
ymptotic behaviors of nonlinear systems, and thus can
be used for stability analysis. However, it is noto-
riously difficult to estimate these exponents reliably
from experimental data due to the measurement error
(noise). In this paper, a novel method for estimating
Lyapunov exponents from a time series in the presence
of additive noise corruption is presented. The method
combines the ideas of averaging the noisy data to form
new neighbors and of nonlinear mapping to determine
neighborhood mapping matrices. Two case studies of
balancing control of a bipedal robot and the Lorenz
systems are presented to demonstrate the efficacy of
the proposed method. The bipedal robot system has
two negative Lyapunov exponents while the Lorenz
system has one positive, zero, and negative exponents,
respectively. It is shown that, as compared with the ex-
isting methods, our proposed one is more robust to the
ratio of signal to noise, and is particularly effective in
estimating negative Lyapunov exponents. We believe
that the work can contribute significantly to the stabil-
ity analysis of nonlinear systems using a noisy time
series.

C. Yang · C.Q. Wu (�)
Department of Mechanical and Manufacturing
Engineering, University of Manitoba, Winnipeg, MB,
R3T 5V6, Canada
e-mail: cwu@cc.umanitoba.ca

Keywords Stability analysis · Lyapunov exponents ·
Noisy time series · Nonlinear mapping

1 Introduction

Lyapunov’s stability theory is of central importance
for the stability analysis of nonlinear systems, espe-
cially of robotic control systems. The core of Lya-
punov’s stability analysis is the derivation of a Lya-
punov function. However, there is no constructive
method available for such a derivation. Consequently,
stability of many nonlinear systems cannot be ana-
lyzed. Lyapunov exponents, defined as the average ex-
ponential rates of divergence or convergence of nearby
orbits in the state space, can indicate system stability
[1–3]. As compared to its counterpart of Lyapunov’s
second method, the main advantage of the concept of
Lyapunov exponents is that the methods for estimat-
ing the exponents are constructive, which makes the
stability analysis of complex nonlinear systems pos-
sible. Since, for complicated systems, it is in general
impossible to determine Lyapunov exponents analyti-
cally, we can estimate them numerically using either a
mathematical model or a time series. The results can
characterize the system stability provided that the nu-
merical artifact is under control [4].

Methods for estimating Lyapunov exponents based
on a mathematical model have been well developed
[1, 3, 5, 6] and widely used for diagnosing chaotic sys-
tems. In addition, Lyapunov exponents have also been
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used for the stability analysis of complex nonlinear
systems, as discussed in detail in [7–13] and the refer-
ences cited in our previous work [14]. However, when
considering real world physical systems, those crucial
differential equations are not always known. Even if
the models are available, due to their complexities and
uncertainties, the estimation of Lyapunov exponents
can be unfeasible [13–16].

A time series is a sequence of observations which
are ordered in time. Since a single experimental time
series is affected by all of the relevant dynamical
variables, it contains a relatively complete historical
record of the dynamics. The work of Takens [17]
shows that the complete dynamics of a system can be
constructed from a suitable single time series derived
from that system; therefore, an algorithm for extract-
ing Lyapunov exponents of a system from such a time
series is possible and highly desirable. The most at-
tractive advantage of using a time series is that the
data for only one state is required, which can often
be measured experimentally. Due to the above advan-
tage, estimation of Lyapunov exponents from a time
series is extremely attractive for the analysis of large
and unknown complex systems, such as biological sys-
tems [18–23]. An excellent review of the applications
of Lyapunov exponents to biomedical applications has
been published by Dingwell [24].

There are two challenges when estimating Lya-
punov exponents using a time series. One challenge is
that the available methods for estimating Lyapunov ex-
ponents based on a time series are for chaotic systems
where at least one exponent is positive. These methods
are not reliable for stable systems where all Lyapunov
exponents are zero or negative [1]. Reliable estima-
tion of negative Lyapunov exponents may not be cru-
cial for diagnosing chaotic systems since positive ex-
ponents are of interests. However, it is extremely im-
portant for the analysis of stable systems, especially
those of which all exponents are negative. To address
this challenge, in our previous work [14], an improved
method was proposed for estimating negative Lya-
punov exponents from a time series using nonlinear
mapping to form neighborhood matrices. The results
have shown that our method has three advantages over
those based on linear mapping, in that (1) the accu-
racy of the negative Lyapunov exponents estimated us-
ing nonlinear mapping is improved as compared with
those from linear mapping; (2) the Lyapunov expo-
nents are less sensitive to the parameters, such as the

time lag and the evolve time; and (3) since Taken’s
theorem on embedding dimension is often required
for linear mapping, spurious exponents are generated.
However, when nonlinear mapping is used, the num-
ber of spurious exponents can be significantly lower
than the one from linear mapping. If the system di-
mension is known, e.g., the robotic system shown in
the first case study, no spurious Lyapunov exponent is
generated since the embedding dimension can be cho-
sen the same as the system dimension.

Another challenge of using a time series for esti-
mating Lyapunov exponents is that it is inevitable to
have measurement noise in the measured time series.
The presence of such noise has adverse effects on the
quality of the estimated Lyapunov exponents since the
accuracy of the neighborhood matrix is degraded, and
the chance of picking a false neighbor is increased.
Several methods for determining Lyapunov exponents
using a noisy time series for chaotic systems have been
developed [1, 3, 25–32]. Among them, Zeng et al. [29]
proposed a method aiming at using a short time series
of low precision for determining Lyapunov exponents,
where a concept of “a shell” to minimize the effects
of noise was proposed. Their “shell” was formed by
inner and outer hyper-spheres, which were determined
by the nature and the level of noise. It was believed that
effects of noise were high for the neighbors too close
to, as well as too far from, the trajectory points. Thus,
the neighboring vectors falling in the “shell” were be-
lieved with low effects from noise, and were used
for determining the neighborhood matrices. Banbrook
et al. [33] proposed a method of defining a neighbor-
hood matrix using a noisy time series where the aver-
age of the selected neighbors was used for each entry
in the neighborhood matrix. To demonstrate the effec-
tiveness of their method, they included results using
all the noise robustness measures suggested by Dar-
byshire and Broomhead [34]. Banbrook et al. [33] be-
lieved that averaging the neighboring vectors tends to
reduce the effects of noise, and thus improves the per-
formance of their method in comparison to the con-
ventional ones. However, in the reference [33], the
neighborhood matrix was defined differently from the
conventional way, and the rationale for their definition
was not discussed. We also found that the method by
Banbrook et al. [33] has a limitation on the number
of the sub-groups, i.e., the number of the sub-groups
should be an even number. Otherwise, the estimation
procedure could not be implemented. Thus it is imper-
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ative to develop methods robust to noise involved in
the time series.

In this work, we propose a new method for estimat-
ing Lyapunov exponents using a noisy time series. Al-
though not restricted to negative Lyapunov exponents,
we are especially interested in estimating negative ex-
ponents using noisy time series for systems of which
all exponents are negative. We combine our previous
work of nonlinear mapping with the ideas of (1) set-
ting an inner hyper-sphere to exclude the neighbors
too close to the fiducial trajectory point, where the ef-
fects of noise are believed high, and (2) averaging the
neighboring vectors to form a new neighboring vec-
tor for determining the neighborhood mapping matrix.
Furthermore, we follow the conventional definition of
neighbors, i.e., all vectors are measured from the cen-
tral point, or on the evolved central point [1]. Note that
different from Zeng’s method [29], the outer hyper-
sphere is not used in order to obtain enough nearest
neighbors required for nonlinear mapping.

The effectiveness of the proposed method is demon-
strated through two case studies of a balancing biped
during standing and the Lorenz system. In the bipedal
system, the biped is simplified as an inverted pendu-
lum attached to a foot-link. A control torque is applied
at the ankle joint to keep the biped at the upright posi-
tion. The foot-link is stationary on the ground, rather
than pinned to the ground. Thus, three constraints be-
tween the foot-link and the ground (no lifting, no slip-
ping and no rolling over) must be satisfied. Such a re-
quirement makes the stability analysis of the balancing
control system, using a Lyapunov function, difficult
(please see details in [16, 37]). For the Lorenz sys-
tem, the same parameters are used as those in Zeng’s
work [28]. A time series from each system is first gen-
erated from the mathematical model by the numeri-
cal integration using fourth-order Runge–Kutta inte-
gration. In this work, the effect of an additive noise
component on the data set is considered. Thus, the
second time series is obtained by adding indepen-
dent identically distributed Gaussian white noise to
the time series produced by the mathematical model.
Such a noisy time series is used for estimating Lya-
punov exponents in this work. Gaussian white noise
is of special interest here since it is the type of mea-
surement noise commonly encountered in experimen-
tal situations, especially for mechanical systems [34].
Lyapunov exponents are then estimated using (1) the
mathematical model, and (2) a noisy time series,

where the method developed by Banbrook et al. [33]
and our proposed method are employed. To demon-
strate the role of nonlinear mapping, with the same
time series both the linear map and a second-order
nonlinear map are employed. All of these results are
compared with those estimated from the mathemati-
cal model. In the estimation of Lyapunov exponents,
the selection of several parameters, such as the time
delay, evolution time and embedding dimensions, can
affect the estimated exponents significantly [3, 35]. In
this work, the time delays were determined by the first
zero crossing of the autocorrelation method [14]. The
selections of the embedding dimension and the evolu-
tion time are discussed later.

2 Mathematical preliminary

2.1 The concept of Lyapunov exponents

Lyapunov exponents, λi (i = 1, . . . , n), are the aver-
age exponential rates of divergence or convergence of
nearby orbits in the state space. Wolf et al. [1] de-
fined the spectrum of Lyapunov exponents in the man-
ner most relevant to spectral estimations. Given a con-
tinuous dynamical system in an n-dimensional phase
space, we monitor the long-term evolution of an infin-
itesimal n-sphere of initial conditions; the sphere will
become an n-ellipsoid due to the locally deforming na-
ture of the flow. The ith one-dimensional Lyapunov
exponent is then defined in terms of the length of the
ellipsoidal principal axis ‖δxi(t)‖:

λi = lim
t→∞

1

t
ln

‖δxi(t)‖
‖δxi(t0)‖ (i = 1, . . . , n), (1)

where λi are ordered from the largest to the smallest.
The ‖δxi(t)‖ and ‖δxi(t0)‖ denote the lengths of the
ith principal axes of the infinitesimal n-dimensional
hyper-ellipsoids at final and initial times, t and t0, re-
spectively. Thus, Lyapunov exponents are related to
the expanding or contracting nature of different direc-
tions in phase space. Since the orientation of the ellip-
soid changes continuously as it evolves, the directions
associated with a given exponent vary in a complicated
way through the attractor. Therefore, one cannot speak
of a well-defined direction associated with a given ex-
ponent.

The concept of Lyapunov exponents provides a
generalization of the linear stability analysis of nonlin-
ear dynamic systems. Lyapunov exponents are global
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properties and are independent of the trajectory chosen
to estimate them (the fiducial trajectory). This inde-
pendence is a consequence of a theorem of Oseledec
[6], which applies in the limit of infinite time. How-
ever, in practical applications, we deal with finite-time
Lyapunov exponents, which are defined as

λi = 1

T
ln

‖δxi(t)‖
‖δxi(t0)‖ (i = 1, . . . , n). (2)

In the limit, as t → ∞, the finite-time Lyapunov expo-
nents converge to the true Lyapunov exponents [29].
The exponents, λi , can be ordered as λ1 ≥ λ2 ≥ · · · ≥
λk , which gives the spectrum of Lyapunov exponents.
These exponents are independent of the initial condi-
tions if the system is ergodic [6].

2.2 Noise levels

In this work, additive Gaussian white noise is consid-
ered. The noise level has often been represented by
the signal-to-noise ratio (SNR) and the percentage of
noise. The white noise was scaled by an appropriate
factor in order to achieve a desired signal-to-noise ra-
tio. The signal-to-noise ratio is defined as

SNR(dB) = 20 log10(Asignal/Anoise), (3)

where A is the root mean square, which is a statistical
measure of the magnitude of a varying quantity. The
percentage of noise is defined as

Noise(%) = Anoise/Asignal × 100. (4)

The percentage of noise varies upon the measured sig-
nals. For robots consisting of close-to-rigid links, the
percentage of noise can be easily controlled below
2%.1 When the percentage of noise is greater than 5%,
the measured values would be considered unreliable.
Correspondingly, an SNR greater than 35 dB can be
regarded as low noise and an SNR less than 25 dB as
high noise. In this work, the noise level between 1 and
5% (SNR from 25 to 40 dB) is selected to investigate
the effects of noise on the values of Lyapunov expo-
nents for the first case. We added Gaussian white noise
to simulated data similarly to how Brown and Bryant
did in [35] for their second case.

1See http://www.posital.com/us/products/POSITAL/
AbsoluteInclinometers/AbsoluteInclinometers_base.html?
gclid=COff3_GO4J0CFSDxDAodiQLRNw.

3 Methodology

3.1 Estimation of Lyapunov exponents based on a
time series using linear mapping

When dealing with a time series xi = x(i�t) (i =
1,2, . . . ,N), where N is the number of observations
and �t is the time interval between measurements, the
procedure of estimating Lyapunov exponents from a
time series includes the following steps [20, 39]:

1. Reconstructing the dynamics in a finite dimen-
sional phase space: Choose an embedding dimen-
sion dE and reconstruct a dE-dimensional orbit
representing the time evolution of the system using
delay coordinates to form the vectors:

yi = (
xi, xi+Tlag , . . . , xi+(dE−1)Tlag

)T
, (5)

where Tlag is the time lag. Equation (5) provides the
fiducial trajectory for the estimation of Lyapunov
exponents.

2. Determining the neighbors yr(n) of each fiducial
trajectory point y(n): for each fiducial trajectory
point y(n), consider the hyper-sphere centered at
y(n) of the radius rmin, which is selected based
on trial and error in this work to obtain accurate
Lyapunov exponents. Consider the set of trajectory
points yr(n) such that:

∥∥yr(n) − y(n)
∥∥ ≥ rmin. (6)

Note that differently from Zeng’s method [29], the
outer hyper-sphere is not used in order to obtain
enough nearest neighbors for nonlinear mapping.

3. Determining the dE ×dE matrix Ji which describes
how the time evolution sends vectors around y(n)

to vectors around y(n + m): After a time m�t ,
the vectors (yr (n) − y(n)) evolve to the vectors
(yr (n+m)−y(n+m)). Suppose that the evolution
of y(n) is given by the map y(n + m) = F(y(n)),
the matrix Ji corresponding to linear mapping is
obtained by looking for neighbors yr(n) of y(n),
and imposing

Ji

(
yr(n) − y(n)

) ≈ yr(n + m) − y(n + m). (7)

The elements of Ji are obtained by a least-squares
fit (refer to description in [14] for details).

http://www.posital.com/us/products/POSITAL/AbsoluteInclinometers/AbsoluteInclinometers_base.html?gclid=COff3_GO4J0CFSDxDAodiQLRNw
http://www.posital.com/us/products/POSITAL/AbsoluteInclinometers/AbsoluteInclinometers_base.html?gclid=COff3_GO4J0CFSDxDAodiQLRNw
http://www.posital.com/us/products/POSITAL/AbsoluteInclinometers/AbsoluteInclinometers_base.html?gclid=COff3_GO4J0CFSDxDAodiQLRNw
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4. Determining Lyapunov exponents: A sequence of
matrices J1, J2, J3, . . . is obtained from Step 3. Us-
ing QR decomposition, one can determine succes-
sively orthogonal matrices Q(j) and upper triangu-
lar matrices R(j) with positive diagonal elements
such that Q(0) is the identity matrix and

J1Q(0) = Q(1)R(1),

J2Q(1) = Q(2)R(2),
...

Jj+1Q(j) = Q(j+1)R(j+1).

(8)

This decomposition is unique except in the case of
zero diagonal elements. Then Lyapunov exponents
λi

K are given by

λi
K = 1

T K

K−1∑

j=0

lnR(j)ii , (9)

where K is the available number of matrices, T is
sampling time step, i = 1,2, . . . , dE .

5. Repeat Steps 2 through 4 along the fiducial trajec-
tory until the convergent Lyapunov exponents are
achieved.

3.2 Estimation of Lyapunov exponents based on a
time series using nonlinear mapping

In most previous work, the linear Taylor series ex-
pansion, shown in (7), was used to generate the local
neighborhood-to-neighborhood map of the embedding
chaotic systems. It has been stated that linear map-
ping prevents the applicability of the methods for es-
timating negative Lyapunov exponents [1, 30, 35,
36]. This is a significant restriction to the concept of
Lyapunov exponents for analyzing stable systems, of
which the exponents are negative or zero. Linear map-
ping is not reliable for estimating negative exponents
because the displacement due to the local data-set cur-
vature is comparable to the thickness of the data set,
which occurs in stable systems with all exponents be-
ing negative or zero [1, 30, 35, 36]. In principle, using
higher-order expansions, the local neighborhood-to-
neighborhood map contains more information of the
underlying dynamical system than just using the lo-
cal linear map, and more accurate descriptions of the
system can be achieved. Thus, we propose to use non-
linear expressions, i.e., the higher-order expansions in-
stead of the linear expression, for obtaining the local

neighborhood-to-neighborhood map of the embedding
potentially stable engineering systems.

In the Taylor series expansion, the relationship be-
tween the order of the Taylor series NTay, the embed-
ding dimension of the phase space dE , and the mini-
mum number of parameters Np is given by the follow-
ing equation [39]:

Np =
[NTay∏

k=1

dE + k

k

]

− 1 = (dE + NTay)!
dE !NTay! − 1. (10)

From (10) we observe that Np grows rapidly with the
order of Taylor series NTay and the dimension of the
reconstructed phase space dE . Np is also the mini-
mum number of neighbors required to estimate the
values for the fitted parameters in the expansion. Us-
ing less than Np neighbors would result in an under-
determined least-squares fit. This also means that as
the embedding dimension of the system and the or-
der of the Taylor series increase, the amount of data
required to find Np appropriate neighbors will also in-
crease proportionally.

For a fiducial orbit y(n), its r th neighbor is defined
as yr(n), the small displacement between yr(n) and
y(n) is represented by Zr(n;T0), after time-step T1;
the small displacement is represented by Zr(n;T1). In
the embedding phase space, Zr(n;T1) has dE compo-
nents.

Let Zr
α(n;T1) be the αth component of Zr(n;T1).

Expanding the local neighborhood-to-neighborhood
map F (which is a nonlinear function) in a Taylor se-
ries about the fiducial orbit y(n), we find

Zr
α(n;T1) = DFαβ(n)Zr

β(n;T0)

+ DF(2)
αβγ (n)Zr

β(n;T0)Z
r
γ (n;T0)

+ · · · (11)

where

DF(2)
αβ (n) = ∂Fα

∂Fβ

, (12a)

DF(2)
αβγ (n) = 1

2!
∂2Fα

∂yβ∂yγ

. (12b)

In summary, we can get the common form of matrix J

for any dimension dE as follows:

Jk,l = ∂Fkl + 1

2

dE∑

α=1

∂FklαZr
α,

k, l = 1, . . . , dE. (13)
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Once the matrix J at each time instant is determined,
Lyapunov exponents are obtained using (8) and (9).

In this work, the second-order mapping, i.e., if the
order of Taylor series NTay is equal to 2, is used for
constructing the mapping matrices J . The derivation
will be presented in detail in the Appendix where
the dimension of the reconstructed phase space dE is
equal to 2, as the case studied is a two-dimensional
system.

3.3 Averaging method for reducing the noise
influence

The idea of averaging the neighboring vectors is
shown through the following formulation:

Z̃1(n;T0) = ((
y1(n) − y(n)

) + (
y2(n) − y(n)

) + · · ·
+ (

y(M/Np)(n) − y(n)
)
/(M/Np),

Z̃2(n;T0) = ((
y(M/Np)+1(n) − y(n)

)

+ (
y(M/Np)+2(n) − y(n)

) + · · ·
+ (

y2(M/Np)(n) − y(n)
)
/(M/Np),

Z̃3(n;T0) = ((
y2(M/Np)+1(n) − y(n)

)
(14)

+ (
y2(M/Np)+2(n) − y(n)

) + · · ·
+ (

y3(M/Np)(n) − y(n)
)
/(M/Np),

...

Z̃Np (n;T0) = ((
y(Np−1)(M/Np)+1(n) − y(n)

)

+ (
y(Np−1)(M/Np)+2(n) − y(n)

) + · · ·
+ (

yNp(M/Np)(n) − y(n)
)
/(M/Np),

where y(n) is the nth centered point, while yr(n) is
the noisy r th neighbor of the central point y(n), M

is the total number of noisy neighbors of the central
point y(n) on fiducial trajectory, and Np is the number
of sub-groups, which is equal to the minimum num-
ber of the neighbors required to estimate the values
for the fitting parameters in the expansion. Note that
Z̃r (n;T0) in (14) represents the neighboring vectors,
which is equivalent to Zr(n;T0) described in Sect. 3.2,
except that the effects of noise have been compensated
using the averaging procedure.

After applying the averaging procedure, a sequence
of neighboring vectors is obtained, which corresponds
to (yr (n) − y(n)) in Step 3 of Sect. 3.1, with the ef-
fects of noise reduced. To obtain accurate Lyapunov

exponents, the inner radius in this work was selected
based on trial and error.

Additive Gaussian white noise is considered here,
and an average of a number of vectors will tend to re-
duce the effects of such noise. All vectors are mea-
sured from the central point, or on the evolved central
point, which is directly based on Wolfs’ definition. In
addition, our averaging method eliminates the limita-
tion on the number of the sub-groups.

3.4 Case studies

Two distinguished case studies are presented here. For
the first case study, balancing control of a biped during
standing is presented, where all Lyapunov exponents
are negative. For the second case study, the Lorenz
system is presented, where the system has one posi-
tive, one zero and one negative Lyapunov exponents.
We demonstrate that the method proposed in this work
can estimate negative Lyapunov exponents and im-
prove the accuracy of positive exponents.

3.4.1 Case study 1

A balancing bipedal robot during standing is used as a
case study to demonstrate the effectiveness of our pro-
posed method. The time series is first generated by the
mathematical model. Independent identically distrib-
uted Gaussian white noise is added to the time series,
which simulates the kind of measurement noise com-
monly encountered in experimental situations [34].

A bipedal robot during standing is simplified as a
two-link bipedal model including a foot-link, which
provides a base of support on the ground and an in-
verted pendulum representing the legs, trunk, arms and
head, as shown in Fig. 1(a). The feet position is as-
sumed to be bilaterally symmetric and stationary, and
the biped moves in the sagittal plane [16, 37]. Free-
body diagrams of the inverted pendulum and the foot-
link are shown in Fig. 1(b) and (c) respectively.

Three dynamic equations of the inverted pendulum
are developed using the Euler–Lagrangian equation
as:

τ = mgr sin θ − (
I + mr2)θ̈ , (15a)

Fax = mrθ̇2 sin θ − mrθ̈ cos θ, (15b)

Fay = mrθ̇2 cos θ + mrθ̈ sin θ − mg, (15c)

where Fax and Fay are the horizontal and vertical force
components respectively between the foot-link and the



A robust method on estimation of Lyapunov exponents from a noisy time series 285

Fig. 1 (a) A simplified bipedal model consisting of an inverted
pendulum moving in the sagittal plane and a rigid foot-link,
which is not fixed on the ground but remains stationary. Con-

trol torque acting at the ankle stabilizes the inverted pendulum
to upright position, (b) free body diagram of the inverted pen-
dulum, and (c) free body diagram of the foot-link

inverted pendulum, i.e. at the ankle joint. As shown
in Fig. 1, τ, θ, θ̇ and θ̈ are the ankle torque (coun-
terclockwise as “+”), angular displacement, velocity
and acceleration of the body (clockwise as “+”), re-
spectively. The parameters r , L, m and I are the dis-
tance between the center of mass of the pendulum and
the ankle, length of pendulum, mass of the body and
the moment of inertia of the pendulum about the mass
center, respectively. The origin of the fixed coordinate
system is located at the toe. The x-axis is pointing hor-
izontally from the toe to the heel, and the y-axis is up-
ward.

Since the foot-link is static, three equilibrium equa-
tions are:

Fax = −Fgx, (16a)

Fay = mfg − Fgy, (16b)

Fgy(Lf − a − xcop) + mfgc − Fgxb − τ = 0. (16c)

The Fgx and Fgy are the horizontal and vertical ground
reaction forces, respectively. The parameters a, c, b,
xcop, Lf, mf and m are the horizontal distance between
the ankle and the heel, between the foot mass center
and the ankle, ankle height, distance between the pres-
sure center and the toe, foot length, mass of the feet
and mass of the body, respectively.

By eliminating the ankle forces, Fax and Fay

from (15) and (16), the dynamic equations for the

bipedal system become

τ = mgr sin θ − (I + mr2)θ̈ , (17a)

Fgx = mrθ̈ cos θ − mrθ̇2 sin θ, (17b)

Fgy = (mf + m)g − mrθ̈ sin θ − mrθ̇2 cos θ. (17c)

Unlike many of the previous papers, in this work, the
foot-link is not fixed on the ground, but is required to
be stationary. Since the roll-over constraint is equiva-
lent to the center of pressure (COP) constraint as the
foot-link is on level ground [38], three constraints are
considered. The gravity constraint requires that the
vertical ground force (Fgy) be upward. The friction
constraint requires that the horizontal ground force
(Fgx) be lower than the maximum static friction. The
COP constraint requires that the pressure center (xcop)

be between the toe and the heel, indicating that the ro-
tation about the toe or the heel does not occur. The
three constraints are written as

Fgy ≥ 0, (18a)

|Fgx | ≤ μFgy, (18b)

0 ≤ xcop ≤ Lf. (18c)

From (18c), the pressure center (xcop) is

xcop = Lf − a − bFgx − τ + cmfg

Fgy

. (18d)
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These constraints impose bounds to the control torque,
which change with the states of the system. The de-
termination of the control bounds was presented in
our previous work [16, 37]. The control bounds im-
posed on the control torque, due to the constraints,
have significant effect on designing balance control
laws. Such bounds make the control design and the
stability analysis highly challenging [37]. A PD-based
switching state feedback control law is designed to sta-
bilize the biped at the upright position while keeping
the foot-link stationary. The controller considers each
constraint, shown in inequalities (18), and determines
the maximum and minimum feasible torque necessary
to satisfy the constraints between the foot-link and
the ground. The controller is a simple PD control as
the control torque is within the control bounds, and it
takes the value of the control bounds as it reaches the
bounds. The controller is shown as:

τ =

⎧
⎪⎪⎨

⎪⎪⎩

τPD if τlower ≤ τPD ≤ τupper

τupper if τPD ≥ τupper

τlower if τPD ≤ τlower

(19)

where τPD = −kPθ − kDθ̇ , the upper bound τupper

and the lower bound τlower depend on the states, i.e.,
θ and θ̇ , which have been determined from our previ-
ous work [16].

The state-space model of the system is derived by
defining the state vector x = {θ, θ̇}T = {x1, x2}T and

combining (19) with (17a):

ẋ = f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) =
{

x2
mgr sinx1−τPD

M (Region 1)
if τlower ≤ τPD ≤ τupper

f2(x) =
{

x2
mgr sinx1−τupper

M (Region 2)
if τPD ≥ τupper

f3(x) =
{

x2
mgr sinx1−τlower

M (Region 3)
if τPD ≤ τlower

(20)

The above 2-dimensional state-space model leads
to two Lyapunov exponents. The stability of the above
control system has been studied based on the con-
cept of Lyapunov exponents where the exponents have
been estimated using the mathematical model [37].
The estimated Lyapunov exponents will be used as a
reference in this work for comparison.

The time series was generated from the math-
ematical model, of which the simulation program
was written using Matlab. The initial conditions were
θ0 = π/36 rad, θ̇0 = −0.1 rad/s. Numerical integra-
tion time step-size was h = 0.0005 s, the time series
included 20,000 data points. The additive Gaussian
white noise was then generated and added into the
above time series. The noise range was selected from 1
to 5% (40 to 26 dB). The physical parameters and the
control gains are listed in Table 1.

Table 1 Physical
parameters and control
gains of the bipedal robotic
system

Body height H = 1.78 m

Body mass mass = 80 kg

Foot-link mass mf = 2 × 0.0145 × mass = 2.32 kg

Pendulum mass m = mass − mf = 77.68 kg

Length of ankle-to-center of mass r = 0.575 × H = 1.02 m

Foot-link length Lf = 0.152 × H = 0.27 m

Horizontal ankle-to-heel distance a = 0.19 × Lf = 0.05 m

Vertical ankle height b = 0.039 × H = 0.07 m

Horizontal ankle-to-center of foot c = 0.5 × Lf − a = 0.085 m

Pendulum length L = H − b = 1.71 m

Coefficient of friction μ = 0.5

Gravity acceleration g = 9.80 m/s2

Control gain Kp = 10000 Nm

Control gain Kd = 2000 Nms
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In estimating Lyapunov exponents based on a time
series, some parameters have significant effects on the
accuracy of the estimated Lyapunov exponents. Such
parameters include the value of the time lag (Tlag)

which determines the number of the data points to be
used in the analysis, as discussed in Sect. 3.1, the evo-
lution time, Tevol, and the embedding dimension, dE .
Regarding the time lag (Tlag), Taken’s results [17] in-
dicate that, in principle, any choice of lags Tlag will
do. However, if Tlag is too small, the coordinates at
the successive points in the state space represent al-
most the same information. On the other hand, if Tlag

is too large, the successive points represent distinct un-
correlated descriptions of the embedding phase space
[25]. Methods have been developed for determining
the time lag [27, 39, 40]. In this research, the time
lag Tlag was determined to be 540 using the first zero
crossing of the autocorrelation method [39, 40]. Note
that in this work the time lag and evolution time are
presented in terms of data points, i.e., the time dif-
ference in the number of samples. In terms of time,
Tlag = 540 × 0.0005 = 0.27 s.

Another important parameter is the evolution time,
Tevol. The question of proper selections of the above
parameters still remains open. In order to demonstrate
that the nonlinear mapping truly improves the accu-
racy of the estimated Lyapunov exponents and leads
to true negative exponents, in this work, the evolution
times (Tevol) from 100 to 900 were tested, and the best
results were found when Tevol = 600 (in terms of time,
Tevol = 600 × 0.0005 = 0.30 s), of which the results
are presented here.

The embedding dimension is another important
parameter, especially when estimating Lyapunov ex-
ponents using linear mapping. Taken’s theorem [17]
stated that in order to preserve the dynamical proper-
ties of the original attractor, theoretically the embed-
ding dimension should satisfy dE ≥ 2[d] + 1, where d

is the fractal dimension and [d] is the lowest integer
greater than d . In our previous work [14], it has been
demonstrated that for the bipedal system investigated
here, embedding dimension of 5 has to be used for lin-
ear mapping to obtain acceptable negative Lyapunov
exponents and dimension of 2 can be used for nonlin-
ear mapping. Note that three spurious Lyapunov expo-
nents will be generated when linear mapping is used.
Identifying true exponents is challenging and beyond
the scope of this work. Two exponents closest to those
from the mathematical model are assumed to be the

true ones for comparison. A more detailed discussion
on the effects of above important parameters on the ac-
curacy of Lyapunov exponents have been presented in
our previous work [14].

3.4.2 Case study 2

In this subsection, we apply our proposed method to
the Lorenz system to demonstrate that our method is
effective not only for potential stable robotic systems
in which all Lyapunov exponents are negative, but also
suitable for chaotic systems in which positive, zero,
and negative Lyapunov exponents are present.

The Lorenz system:

ẋ = σ(y − x),

ẏ = rx − y − xz, (21)

ż = −bz + xy

was designed to describe convective motion of the
Rayleigh–Bénard type, where x is the velocity of the
fluid, y is the temperature difference between ascend-
ing and descending fluid, and z is the deviation of the
temperature profile form linearity [27]. The x compo-
nent of numerical data for the Lorenz system is created
numerically by integrating the Lorenz system with the
parameters σ = 16, r = 45.92, and b = 4.0 (which
have been often used by other researchers [1, 35])
by the fourth-order Runge–Kutta method with a time
step �t = 0.001. The time series included 20,000 data
points. Following the same idea as [35], the additive
Gaussian white noise was added into the above time
series. Time delay was Tlag = 4 × 0.001 = 0.004 s,
Tevol = 7040 × 0.001 = 7.04 s, embedding dimension
is selected as 3 used by other researchers [1, 35].

4 Results

We now present our results of Lyapunov exponents es-
timated from noisy time series for balancing a bipedal
robot during standing and the Lorenz system. We com-
pared the effects of four total combinations of two dif-
ferent mappings (linear vs. nonlinear) and two differ-
ent averaging procedures (Banbrook’s [32] and ours as
proposed in Sect. 3.3).



288 C. Yang, C.Q. Wu

4.1 Balancing bipedal robot during standing

Using the parameters listed in Table 1, two Lyapunov
exponents were first estimated from the mathematical
model with the values of −10.3318 and −18.0704,
respectively. Linear mapping was first used for esti-
mating Lyapunov exponents. The averaging method
proposed by Banbrook [32], as well as the modi-
fied averaging method proposed here, is employed for
counteracting the effects of noise. The noise ranges
from 1 to 5% (40 to 26 dB). The estimated Lyapunov
exponents and their relative errors, with respect to
those from the mathematical model, are listed in Ta-
ble 2 using Banbrook’s method [32] and in Table 3
using our proposed averaging method. Tables 2 and 3
show that the relative errors of the exponents deter-
mined using both averaging methods are high with the
minimum relative error of 53%. This demonstrates that
linear mapping is sensitive to the effect of noise, and
is not recommended for estimating negative Lyapunov
exponents when the time series is contaminated with
noise.

The Lyapunov exponents were then estimated using
nonlinear mapping with Banbrook’s averaging method

Table 2 Lyapunov exponents and relative errors for the bipedal
robotic system with different noise levels using 5D local lin-
ear mapping by Banbrook’s averaging method (λ∗

1 = −10.3318,
λ∗

2 = −18.0704)

Noise% S/N λ4 Error% λ5 Error%

5.0 26 dB −1.7198 83.3543 −5.3881 70.1827

4.0 28 dB −1.7944 82.6323 −5.3945 70.1473

3.0 30.5 dB −1.9734 80.8997 −5.4083 70.0709

2.0 34 dB −2.3555 77.2015 −5.4306 69.9475

1.0 40 dB −3.1979 69.0480 −5.4802 69.6731

Table 3 Lyapunov exponents and relative errors for the bipedal
robotic system with different noise levels using 5D local lin-
ear mapping by our averaging method (λ∗

1 = −10.3318, λ∗
2 =

−18.0704)

Noise% S/N λ4 Error% λ5 Error%

5.0 26 dB −1.8381 82.2093 −6.2211 65.5730

4.0 28 dB −1.8566 82.0302 −6.5328 63.8481

3.0 30.5 dB −1.8756 81.8463 −6.9374 61.6090

2.0 34 dB −1.9127 81.4873 −7.5007 58.4918

1.0 40 dB −1.9908 80.7313 −8.4858 53.0403

(Table 4) and the modified averaging method proposed
here (Table 5). Table 4 shows that the relative errors
between the Lyapunov exponents estimated using non-
linear mapping are below 32% as compared to the
minimum relative errors of 53% using linear maps.
Table 4 also shows that the minimum relative error
for the largest negative exponents is 21.3%, which is
significantly higher than the relative errors from the
second exponents. Note that the largest Lyapunov ex-
ponent is of special interest for stability analysis. The
above results demonstrate that nonlinear mapping is
less sensitive to the effects of white noise as compared
to the linear mapping. However, using the averaging
procedure proposed by Banbrook [32], the accuracy of
the negative exponents is still dissatisfactory with 25.8
and 12% relative errors for both exponents, even with
low level of noise of 1% (signal-to-noise ratio 40 dB).

Table 5 shows the Lyapunov exponents and their
relative errors using nonlinear mapping and our pro-
posed modified averaging method. It shows that the
relative errors are significantly lower than those using
Banbrook’s method. To be specific, for the low noise
level of 1% (signal-to-noise ratio 40 dB), the relative
errors of both exponents are 5.2 and 1.3% as com-

Table 4 Lyapunov exponents and relative errors for the bipedal
robotic system with different noise levels using second-order
mapping embedding in 2-dimensional phase space by Ban-
brook’s averaging method (λ∗

1 = −10.3318, λ∗
2 = −18.0704)

Noise% S/N λ1 Error% λ2 Error%

5.0 26 dB −12.5322 21.2974 −13.4367 25.6425

4.0 28 dB −13.0230 26.0477 −13.8491 23.3603

3.0 30.5 dB −13.4557 30.2358 −14.5342 19.5690

2.0 34 dB −13.6091 31.7205 −15.3761 14.9100

1.0 40 dB −12.9937 25.7641 −15.9049 11.9837

Table 5 Lyapunov exponents and relative errors for the bipedal
robotic system with different noise levels using second-order
mapping embedding in 2-dimensional phase space by our av-
eraging method (λ∗

1 = −10.3318, λ∗
2 = −18.0704)

Noise% S/N λ1 Error% λ2 Error%

5.0 26 dB −8.5168 17.57 −14.1326 21.79

4.0 28 dB −8.8449 14.39 −14.7825 18.19

3.0 30.5 dB −9.2672 10.30 −15.5943 13.70

2.0 34 dB −9.8426 4.73 −16.6652 7.78

1.0 40 dB −10.8649 5.16 −18.3048 1.30
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Table 6 Lyapunov exponents and relative errors for the Lorenz system with the same noise level using first-order and second-order
mapping embedding in 3-dimensional phase space (λ∗

1 = 2.16, λ∗
2 = 0.00, λ∗

3 = −32.4)

λ1 Error% λ2 Error% λ3 Error%

Without noise 1st-order 2.0416 5.48 −0.1728 n/a −11.8349 63.47

2nd-order 2.1235 1.69 −0.7566 n/a −19.0374 41.24

With noise, no average 1st-order 2.0409 5.51 −0.1744 n/a −11.8342 63.47

2nd-order 2.1232 1.70 −0.7527 n/a −19.0747 41.13

With noise, average 1st-order 2.1610 0.046 −0.7275 n/a −13.4618 58.45

2nd-order 2.1608 0.037 −0.7747 n/a −21.1014 34.87

pared to 25.8 and 12% using Banbrook’s method. As
the noise level increases to 3% (signal-to-noise ratio
30.5 dB), the relative errors of the exponents are still
below 15% (10.3 and 13.7%) as compared to 30.2%
shown in Table 4. The low relative errors show that
the combination of nonlinear mapping and our pro-
posed averaging method for generating the neighbors
is effective on counteracting the effects of noise for
estimating accurate Lyapunov exponents using noisy
time series.

4.2 Lorenz system

With the parameters σ = 16, r = 45.92, and b = 4.0
for the Lorenz system shown in (21), three Lyapunov
exponents were first estimated from the mathematical
model with the values of 2.16, 0.0 and −32.4, respec-
tively, and these values are used as reference in this
case study.

The computed Lyapunov exponents’ spectrum for
the Lorenz system based on time series and their rela-
tive errors with respect to those from the mathemat-
ical model are listed in Table 6. The first two rows
show the estimated Lyapunov exponents and their rel-
ative errors for the precision of 10−4 of the time se-
ries without adding white noise using linear mapping
and nonlinear mapping. The following two rows show
the results for times series with additive white noise
using linear mapping and nonlinear mapping but with-
out applying averaging procedure to compensate for
the noise influence. The last two rows show the results
for times series with additive white noise using linear
mapping and nonlinear mapping, and with averaging
procedure to compensate for the noise influence. From
Table 6, the first two rows show that nonlinear map-
ping can achieve a more accurate largest positive expo-
nent (1.69% error versus 5.48%), and a better negative

one than linear mapping (41.24 versus 63.47%). When
noise was added to the time series without applying
the averaging technique, similar observations can be
made. Table 6 also shows that when our proposed av-
eraging technique was used, the errors between the ex-
ponents from the noisy time series and those from the
mathematical model are significantly reduced regard-
less of the type of mapping. To be specific, when lin-
ear mapping is used, the errors for the positive expo-
nents dropped from 5.51 to 0.046%, and for nonlinear
mapping, the errors dropped from 1.7 to 0.037%. For
negative Lyapunov exponents, the errors dropped from
63.47 to 58.45% using linear mapping, and for nonlin-
ear mapping the errors in negative exponents dropped
from 41.13 to 34.87%. It is clear that combining the
averaging technique with nonlinear mapping further
improves the accuracy of both positive and negative
exponents.

5 Discussion

This research is motivated by the fact that existing
methods for estimating Lyapunov exponents using a
time series are effective for positive exponents, but not
reliable for the negative ones. Although for diagnos-
ing chaotic systems positive exponents are of interest,
reliable estimation of negative Lyapunov exponents is
crucial for the stability analysis when all exponents are
negative. Another motivation is that when a time series
is collected from experiments, noise measurement is
inevitable, especially additive white noise for mechan-
ical systems. Such a noise can have adverse effect on
the accuracy of both positive and negative Lyapunov
exponents.

We developed a method for estimating Lyapunov
exponents using a time series with additive white
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noise. The method consists of two key components:
(1) nonlinear mapping to determine the neighborhood
mapping matrices, and (2) modified averaging pro-
cedure based on Banbrook’s method [33] to counter-
act the effect of noise when forming the neighbors.
The role of each part, nonlinear mapping versus linear
mapping and our proposed modified averaging proce-
dure versus Banbrook’s procedure, is systematically
examined using two case studies: (a) balancing con-
trol of a bipedal robot, and (b) the Lorenz system. The
two systems are very different in that for Case I, both
Lyapunov exponents are negative and for Case II, all
positive, zero and negative exponents are exhibited.
It has been found that, as compared with the previ-
ous method [33], each individual part of our proposed
method improves the accuracy of the Lyapunov expo-
nents. However, it is the combination of both nonlinear
mapping and our modified averaging procedure that
makes the proposed method robust to the effects of
noise.

Another advantage is that by using nonlinear map-
ping, we can use the reconstructed state space with
lower embedding dimensions. In our previous work
[14], it has been demonstrated that for the bipedal
system investigated here, embedding dimension of 5
has to be used for linear mapping to obtain accept-
able Lyapunov exponents and dimension of 2 can
be used for nonlinear mapping. This is because, us-
ing higher-order mapping, the local neighborhood-to-
neighborhood map contains more information of the
underlying dynamical system than just using the local
linear map, and a more accurate description of the sys-
tem can be achieved. Thus the embedding dimension
of 2 is adequate for estimating Lyapunov exponents
using nonlinear mapping. Using lower dimensions of
the embedded state space is highly desirable to reduce
spurious exponents.

The significance of this work is that, previously, es-
timating the Lyapunov exponents using a time series
has been restricted to chaotic systems, i.e., the largest
Lyapunov exponent is positive, which restricts the ap-
plications of the concept of Lyapunov exponents to
potential stable systems, where the largest Lyapunov
exponent is negative. The proposed method, together
with our previous work [14], extends the applications
of Lyapunov exponents to the analysis of potentially
stable systems. Our second case study also shows that
our proposed method with nonlinear mapping can also
improve the accuracy of positive Lyapunov exponents
using noisy time series.

In spite of the promises of the proposed method,
there are several limitations. One is that the noise con-
sidered in this work is restricted to additive Gaussian
white noise. Such a type of noise is for us of interest
because it is often encountered in the measurements
of mechanical systems and other engineering systems.
For other types of noise, such as colored noise, non-
uniformly distributed noise and stochastic elements,
etc., the applicability of the proposed method has not
been explored and remains a future work. In addition,
estimation of zero Lyapunov exponents is of great in-
terest for systems with stable limit cycles, which is be-
yond the scope of this work. Another limitation of the
proposed method is the requirement of a large amount
of data due to nonlinear mapping. For a short time se-
ries, the effectiveness of the proposed method is ques-
tionable.

This research is in line with the ongoing research
efforts on developing methods for estimating Lya-
punov exponents using a time series, of which the
quality of the time series might be compromised (noise
contamination, length of the time series, etc.). Fu-
ture work includes the consideration of other types
of noise associated with the time series, such as col-
ored noise, non-uniformly distributed noise and sto-
chastic elements, etc. For control systems, controller
design has significant effect on the system’s qualitative
and quantitative performance. Exploring such effects
and, in return, the design of stability control based on
Lyapunov exponents, is highly desirable to the control
community.
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Appendix

When α,β = 1,2, (11) can be written as

Zr
1(n;T1) = ∂F11Z

r
1(n;T0) + ∂F12Z

r
2(n;T0)

+ 1

2!
{
∂F111Z

r
1(n;T0)Z

r
1(n;T0)

+ 2∂F112Z
r
1(n;T0)Z

r
2(n;T0)

+ ∂F122Z
r
2(n;T0)Z

r
2(n;T0)

}
, (A1a)
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Zr
2(n;T1) = ∂F21Z

r
1(n;T0) + ∂F22Z

r
2(n;T0)

+ 1

2!
{
∂F211Z

r
1(n;T0)Z

r
1(n;T0)

+ 2∂F212Z
r
1(n;T0)Z

r
2(n;T0)

+ ∂F222Z
r
2(n;T0)Z

r
2(n;T0)

}
. (A1b)

Rewriting (A1) in a matrix form, we have

(
Zr

1(n;T1)

Zr
2(n;T1)

)
=

[
J11 J12

J21 J22

](
Zr

1(n;T0)

Zr
2(n;T0)

)
. (A2)

The ten coefficients in (A1) can be determined using
the least-squares method, which minimizes the follow-
ing distance:

Π =
NP∑

i=1

∥∥Zi(n;T1) − JZi (n;T0)
∥∥2

. (A3)

Since the focus of this work is on the robustness to
noise method, the reader is referred to our previous
work [14] for detailed description on the procedures
of obtaining coefficients ai, bi (i = 1, . . . ,5) (which
were derived in detail in Appendix A of [14]), the
mapping matrices, and the estimation of the Lyapunov
spectra.
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