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Abstract The system under investigation comprises
a linear oscillator coupled to a non-linear energy sink
(NES) under quasi-periodic forcing in the regime of
1:1:1 resonance. Interaction of the quasi-periodic ex-
citation with the strongly modulated response (SMR)
regime is studied in detail both analytically and nu-
merically. Theoretical study developed in the paper
allows establishing the threshold value for the am-
plitude of modulation beyond which SMR regime
is excited. This phenomenon is of great practical
use since applying the quasi-periodic excitation be-
yond the threshold results in elimination of possi-
ble undesired regimes causing high-amplitude oscil-
lations of the main structure. Bifurcations of the SMR
caused by quasi-periodic excitation were analyzed
with the help of semi-analytical procedure based on
two-dimensional maps. Numerical evidences for ex-
citing the strongly modulated bursts in the response
by a random, quasi-periodic narrow-band excitation
are also provided. Fairly good correspondence was ob-
served between analytical model and numerical simu-
lations.
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1 Introduction

Targeted energy transfer (TET) from the initially ex-
cited linear substructure to a strongly non-linear light-
weight mass attachment has been extensively studied
for the last decade [1–6]. These studies gave rise to
a new concept of non-linear energy sink (NES). Re-
cently the ideas of targeted energy transfer found suc-
cessful implementations not only in vibration attenu-
ation of the unwanted mechanical vibrations but also
in the field of acoustics [7] where the aforementioned
methodology is used for a passive sound control. In
contrast to the targeted energy transfer we would like
also to note that addition of the light mass attachment
may also assist in vibration isolation designs where the
idea of strong (non-linearizable) non-linearity is stud-
ied in relationship to isolation of the non-linear attach-
ment from the harmonically excited linear substruc-
ture [8]. The dynamics of slightly different non-linear
system comprising light mass non-linear element with
geometrical non-linearity attached to the shaker which
was driven harmonically has been studied in [9].

It was also demonstrated [2–4] that the possi-
bility of the energy pumping phenomenon in non-
conservative systems can be understood and explained
by studying the energy dependence of the non-linear,
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un-damped free periodic solutions (non-linear normal
modes (NNM)) of the corresponding conservative sys-
tem which are obtained when all damping forces are
eliminated. Recent studies [10] based on the approach
of invariant manifolds [11, 12] has introduced an as-
ymptotic procedure suitable for the explicit inclusion
of damping within the framework of non-linear normal
modes (NNMs).

Simple periodic responses (i.e. the responses with
almost constant amplitude) of the primary linear os-
cillator subject to a trivial harmonic excitation with
NES attached were studied previously in [13]. In
recent studies it was demonstrated [14, 15] that in
the close vicinity of the fundamental (1:1) resonance
surface the system comprising linear oscillator sub-
ject to harmonic excitation with NES attached may
exhibit weakly modulated motions (quasi-periodic)
rather than simple periodic-response regimes. In pa-
pers [16, 17] it was established that the combination
of essential non-linearity and strong mass asymmetry
brings about a possibility of response regimes qual-
itatively different from simple periodic and weakly
modulated responses—existing in the vicinities of fun-
damental 1:1 resonance. Obviously, these extremely
unusual response regimes characterized by deep am-
plitude of modulation cannot be described with the
help of local analysis of the slow-flow equations. The
most appropriate way of treating these motions is from
the viewpoint of relaxation oscillations, i.e. switches
between slow motions at stable critical manifolds of
the system and fast jumps between them. It is pos-
sible to distinguish the “slow” and the “fast” time
scales due to a small parameter related to the mass
ratio. These response regimes were referred to as a
strongly modulated response (SMR). In paper [16]
however it was demonstrated that such a response
maybe in fact multi-locked (due to phase locking) or
even chaotic.

In paper [17] it was demonstrated numerically that
the SMR exists in the vicinity of the exact 1:1 reso-
nance and sometimes is very favorable from viewpoint
of vibration absorption and mitigation (better than
tuned linear absorber). A semi-analytical approach for
analysis of the SMR was developed in [18], allowing
the systematic study of the stability of the SMR and its
global bifurcations. Series of additional studies based
on this approach were carried out in [19, 20]. These
studies have extended the system under consideration
to three degrees of freedom under different conditions

of internal resonances and forcing. The effect of the
mass of the NES on the global bifurcations of SMR
has been investigated both analytically and numeri-
cally in [21].

One of the major drawbacks of using NES as a vi-
bration absorber reported in several recent works is
an existence of simple periodic-response regimes of
rather high amplitudes exhibited by a linear substruc-
ture. One of the proposed solutions to overcome that
was an inclusion of non-linear damping in the system
under investigation [22].

We suggest another tool for coping with the un-
wanted periodic-response regimes. All recent studies
dealing with the dynamics of the harmonically forced
2DOF and 3DOF systems comprising the excited lin-
ear substructure and the NES attached dealt with sim-
ple harmonic external forcing. In the present paper
we study the dynamics of the system comprising lin-
ear oscillator given to a quasi-periodic excitation (two
harmonic forces with closely spaced frequencies) and
the NES attached. As it is demonstrated in the paper,
quasi-periodic excitation may be of preference due to
its ability to eliminate the undesired periodic-response
regimes and to facilitate excitation of the SMR (favor-
able in a sense of vibration mitigation).

The second section of the paper provides theoreti-
cal study of various types of responses existing in the
system under investigation. This study allows estab-
lishing the threshold value for the amplitude of mod-
ulation beyond which SMR regime is excited. This
phenomenon is of great practical use since apply-
ing the quasi-periodic excitation beyond the threshold
results in elimination of possible undesired regimes
causing high-amplitude oscillations of the main struc-
ture. Certain interesting bifurcations as period dou-
bling of SMR caused by quasi-periodic excitation are
revealed. Semi-analytical procedure based on two-
dimensional maps is developed for studying these bi-
furcations. All the theoretical findings of Sect. 2 are
verified numerically in Sect. 3. Fairly good agree-
ment between the theoretical and numerical models
is observed. System response to the random, narrow-
band excitation is also addressed in Sect. 3. It is
demonstrated that weakly modulated, random force
may cause the effect similar to that of a deterministic,
weakly modulated force-elimination of the unwanted
response regimes.
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2 Description of the model and analytical
treatment

Following previous studies [15–21], we consider the
linear oscillator subject to a two term, harmonic ex-
citation and attached to a non-linear energy sink with
small relative mass, essentially non-linear (pure cubic)
spring and linear damping. The two exciting harmonic
terms are assumed to have closely spaced frequencies
and are situated in the vicinity of the main frequency
of linear oscillator. The system under investigation is
described by the following non-dimensionalized equa-
tions:

ÿ1 + (1 + εσ1)y1 + ελ(ẏ1 − ẏ2) + 4

3
ε(y1 − y2)

3

= ε
(
A1 cos(t) + A2 cos

(
(1 + εσ2)t

))
,

εÿ2 + ελ(ẏ2 − ẏ1) + 4

3
ε(y2 − y1)

3 = 0,

(1)

where y1 and y2 are the displacements of the linear
oscillator and the attachment respectively, ελ is the
damping coefficient, εA1, εA2 are the amplitudes of
external forces and σ1, σ2 are the frequencies mis-
matches parameters. ε � 1 is a small parameter which
establishes the order of magnitude for coupling, damp-
ing, amplitude of the external force, detuning and rel-
ative mass of the attachment.

Coefficients: A1,A2, λ, σ1, σ2 are adopted to be
of order unity. Rigidity of the non-linear spring is
adopted to be equal to 4

3ε and linear frequency of
the primary oscillator-close to unity. The latter adop-
tion does not affect the generality of a treatment be-
low, since it may be changed independently by proper
rescaling of time and the dependent variables.

Several changes of variables are applied to (1) as
follows:

v = y1 + εy2, w = y1 − y2. (2)

We are interested in studying the responses of (1) in
the vicinity of (1:1:1 resonance). Therefore it is con-
venient to introduce another change of variables in the
following complex form (Manevitch (1999) [22]).

ϕ1(t) exp(it) = v̇ + iv,

ϕ2(t) exp(it) = ẇ + iw.
(3)

Assuming that ϕ1(t), ϕ2(t) are slowly varying com-
paring to the frequency of excitation one can derive

slow-flow system corresponding to (1) under condi-
tion of (1:1) resonance. To this extent introducing (2),
(3) into (1) and performing averaging over the fast fre-
quency � = 1, one obtains:

ϕ̇1 + iε

2(1 + ε)
(ϕ1 − ϕ2) − iεσ (ϕ1 + εϕ2)

2(1 + ε)

= ε(A1 + A2 exp(iεσ2t))

2
,

ϕ̇2 + λ(1 + ε)
ϕ2

2
+ i

2(1 + ε)
(ϕ2 − ϕ1)

− iεσ (ϕ1 + εϕ2)

2(1 + ε)
− i(1 + ε)

2
|ϕ2|2ϕ2

= ε(A1 + A2 exp(iεσ2t))

2
.

(4)

2.1 Analytical study for the case of single exciting
harmonic force (A2 = 0)

For the sake of completeness, we briefly repeat the
analysis previously reported in [18] and main results
for the case of a single forcing term (i.e. A2 = 0). The
following slow-flow system is considered:

ϕ̇1 + iε

2(1 + ε)
(ϕ1 − ϕ2) − iεσ (ϕ1 + εϕ2)

2(1 + ε)
= εA1

2
,

ϕ̇2 + λ(1 + ε)
ϕ2

2
+ i

2(1 + ε)
(ϕ2 − ϕ1)

− iεσ (ϕ1 + εϕ2)

2(1 + ε)
− i(1 + ε)

2
|ϕ2|2ϕ2 = εA1

2
.

(5)

Fixed points of (5) correspond to periodic re-
sponses of the system described by (1). The investiga-
tion of these fixed points and their stability is beyond
the scope of this paper—it can be performed by stan-
dard methods and will be published elsewhere. Sys-
tem (4) has a somewhat special form-the time deriv-
ative in the first equation is proportional to the small
parameter and thus the time evolution of variable ϕ1

can be considered as slow compared to ϕ2. This pe-
culiarity means that the dynamics of System (4) in
four-dimensional real state space may be presented in
terms of two “fast” and two “slow” real variables, thus
giving a chance of tractable global description.

By simple manipulations, System (5) may be re-
duced to a single second-order ODE:

d2ϕ2

dt2
+ d

dt

[
αϕ2 − i(1 + ε)

2
|ϕ2|2ϕ2
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+ iε

2(1 + ε)
(1 − σ)ϕ2

]
+ iε

2(1 + ε)
(1 − σ)

×
[
αϕ2 − i(1 + ε)

2
|ϕ2|2ϕ2 − εA1

2

]

− iεβ

2(1 + ε)
[1 + εσ ]ϕ2 = εA1β

2
, (6)

where

α = λ(1 + ε)2 + i − iε2σ

2(1 + ε)
,

β = i

2(1 + ε)
(1 + εσ ).

Multiple scale expansion is introduced as:

ϕ2 = ϕ2(τ0, τ1, . . .);
d

dt
= ∂

∂τ0
+ ε

∂

∂τ1
+ · · · ,

τk = εkt, k = 0,1, . . . .

(7)

Substituting (7) into (6) and equating the like powers
of ε one obtains equations for zero and the first order
approximations:

ε0:
∂2ϕ2

∂τ 2
0

+ ∂

∂τ0

[
λϕ2

2
+ iϕ2

2
− i

2
|ϕ2|2ϕ2

]
= 0,

ε1: 2
∂2ϕ2

∂τ0∂τ1
+ ∂

∂τ1

[
λϕ2

2
+ iϕ2

2
− i

2
|ϕ2|2ϕ2

]

+ ∂

∂τ0

[
λϕ2

2
+ i(1 − σ)ϕ2

2
− i

2
|ϕ2|2ϕ2

]

+ 1 − σ

4
|ϕ2|2ϕ2 +

[
σ

4
+ iλ(1 − σ)

4

]
ϕ2

− iA1

4
= 0.

(8)

The first equation of (7) describes “fast” evolution of
the averaged system. It can be trivially integrated:

∂

∂τ0
ϕ2 +

(
i

2
ϕ2 + λ

2
ϕ2 − i

2
|ϕ2|2ϕ2

)
= C(τ1, . . .), (9)

where C is arbitrary function of higher-order time
scales. Approximations of higher orders are not used
in current analysis. Then for the sake of brevity only
dependence on time scales τ0 and τ1 will be denoted

explicitly below. Fixed points Φ(τ1) of (8) depend
only on time scale τ1 and obey algebraic equation:

i

2
Φ + λ

2
Φ − i

2
|Φ|2Φ = C(τ1). (10)

Equation (9) is easily solved by taking Φ(τ1) =
N(τ1) exp(iθ(τ1)) and performing trivial calculations:

λ2N4 + (
N2 − N4)2 = 4

∣∣C(τ1)
∣∣2

N2

or, equivalently,

λ2Z(τ1) + Z(τ1)
(
1 − Z(τ1)

)2 = 4
∣∣C(τ1)

∣∣2
,

Z(τ1) = (
N(τ1)

)2
.

(11)

The expression for argument of the fixed point may be
written as

θ(τ1) = argC(τ1) − tan−1 1 − Z(τ1)

λ
, (12)

where Z(τ1) is solution of (11).
Number of solutions of (11) depends on |C(τ1)|

and λ. Function in the left-hand side can be monoto-
nous or can have maximum and minimum. In the for-
mer case the change of |C(τ1)| has no effect on the
number of solutions (11) will have one positive solu-
tion. In the latter case the change of |C(τ1)| will bring
about a pair of saddle-node bifurcations. In order to
distinguish between different cases we should check
whether the derivative of the left-hand side of (11) has
roots:

1 + λ2 − 4Z + 3Z2 = 0 or

Z1,2 = 2 ∓ √
1 − 3λ2

3
.

(13)

Therefore two roots and pair of saddle-node bifurca-
tions exist for λ < 1/

√
3 and do not exist otherwise.

At critical value λ = 1/
√

3 two saddle-node bifurca-
tion points coalesce, thus forming a typical structure
of a cusp catastrophe.

It is easy to see from (8) if only one solution of (11)
exists, it is stable with respect to time scale τ0. If there
are three solutions, two of them are stable (nodes) and
one is unstable (saddle). Therefore at time scale τ0 the
phase point will be attracted to one of the nodes. In
fact, (9) defines slow invariant manifold (SIM) of the
problem. In the case λ < 1/

√
3 the fold lines N1,2:
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Fig. 1 Projection of the slow invariant manifold of the system
in accordance with (10), λ = 0.2. The unstable branch is de-
noted by dashed line. Arrows denote hypothetic “jumps” in the
regime of the relaxation oscillations. N1 and N2 denote the fold
lines, Nu and Nd the final points of the “jumps”

N(τ1) = Z
1/2
1,2 , θ(τ1) ∈ (0,2π) divide stable and unsta-

ble branches of the SIM. Figure 1 demonstrates projec-
tion of the two-dimensional SIM on the plane (N,C).
The fold lines correspond to the points of maximum
and minimum.

It is well known [17–19] that such structure of the
SIM may give rise to relaxation-type oscillations of
the system-the hypothetic “jumps” between the stable
branches are denoted by arrows at Fig. 1. Nu and Nd

denote the final points of jumps on the upper and lower
stable branches of the SIM respectively. Still, such mo-
tion is possible only if the system can reach the fold
lines N1,2 while moving on the SIM with respect to the
slow time scale. In order to assess this possibility, one
should investigate the behavior of Φ(τ1). For this sake,
we consider the ε1 term of multiple-scale expansion,
namely the second equation of (7). We are interested
in the behavior of the solution on the stable branches
of the SIM Φ(τ1) = limτ0→+∞ ϕ2(τ0, τ1). Taking the
limit τ0 → ∞ in the second equation of System (7)
and taking into account the asymptotic stability of the
points of the stable branches with respect to time scale
τ0, one obtains:

∂

∂τ1

[
λΦ

2
+ iΦ

2
− i

2
|Φ|2Φ

]
+ 1 − σ

4
|Φ|2Φ

+
[

σ

4
+ iλ(1 − σ)

4

]
Φ − iA1

4
= 0. (14)

Equation (12) can be written in the more convenient
form:
[
λ

2
− i

2
+ i|Φ|2

]
∂Φ

∂τ1
− i

2
Φ2 ∂Φ

∂τ1
= G,

G = − 1 − σ

4
|Φ|2Φ −

[
σ

4
+ iλ(1 − σ)

4

]
Φ

+ iA1

4
.

(15)

By taking complex conjugate of (13), it is possible to
extract the derivative ∂Φ

∂τ1
:

∂Φ

∂τ1
= 2[(λ − i + 2i|Φ|2)G + iΦ2G∗]

λ2 + 1 − 4|Φ|2 + 3|Φ|4 . (16)

Splitting the variable Φ to modulus and argument
Φ(τ1) = N(τ1) exp(iθ(τ1)), one obtains the equations
of the reduced flow in polar coordinates:

∂N

∂τ1
= −λN − A1N

2 cos θ + λA1 sin θ + A1 cos θ

2(λ2 + 1 − 4N2 + 3N4)
,

∂θ

∂τ1
= [

(1 − 4σ)N2 + (
σ − λ2(1 − σ)

)

− 3(1 − σ)N4 + 3A1N sin θ

+ A1(λ cos θ − sin θ)/N
]

× [
2
(
λ2 + 1 − 4N2 + 3N4)]−1

.

(17)

Denoting the numerators and denominator of the
right hand side of system (15) by f1(N, θ) for the first
equation, f2(N, θ) for the second equation and g(N)

for the denominator, system (15) is presented in the
following form:

∂N

∂τ1
= f1(N, θ)

g(N)
,

∂θ

∂τ1
= f2(N, θ)

g(N)
.

(18)

Rescaling the time by the function g(N) yields the
equations for a “desingularized” flow:

N ′ = f1(N, θ),

θ ′ = f2(N, θ).
(19)

Regular points of the SIM are defined as those that
satisfy the inequality g(N) 
= 0. The fold lines Ni ,
i = 1,2 of the SIM are, by definition above, the sets
of points (N,θ ) where g(N) = 0.
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Fig. 2 Phase portrait of the slow invariant manifold for the case
A1 = 0, λ = 0.2, σ = 0

Let us start from particular case A1 = 0. In this
case, (15) are reduced to

∂N

∂τ1
= −λN

2(λ2 + 1 − 4N2 + 3N4)
,

∂θ

∂τ1
= (1−4σ)N2 + (σ − λ2(1−σ)) − 3(1−σ)N4

2(λ2 + 1 − 4N2 + 3N4)
.

(20)

Phase portrait of system (18) is presented at Fig. 2
(system parameters: λ = 0.2, σ = 0). Fold lines
N1,N2 are marked on the phase portrait as dashed
lines. It is clear from the first equation of (18), that the
phase trajectories on the upper stable branch are di-
rected toward the fold line, whereas the trajectories at
the lower stable branch cannot bring the slow flow to
the fold line. It means that the trajectory can “jump”
from the upper stable branch to the lower one, but
cannot jump back. It is trivial, since in the absence of
forcing the system should be damped out.

In order to allow the jumps from the lower stable
branch (and, therefore, to provide the necessary con-
dition for the relaxation oscillations) the slow flow in
the vicinity of the lower fold line should undergo some
bifurcations. Namely, the N ′ value for some points on
the lower fold should change sign from negative to
positive one. Consequently, we can state that for some
point or points on the lower fold the normal switch-
ing condition [19, 20] should be violated in the course
of the bifurcation. In order to investigate this mecha-
nism, we first compute the fixed points of the slow-
flow equation (17) for arbitrary A1.

Before, we proceed with the calculation of the equi-
librium points of (17) let us define the two differ-
ent types of these points. The first type is referred to
as ordinary fixed point. These are equilibrium points
of slow flow (17) which satisfy N ′ = θ ′ = 0 and
g(N) 
= 0. The second type is referred to as folded
singularities. Folded singularities satisfy both N ′ =
θ ′ = 0 and g(N) = 0. They can be classified as equi-
librium points of the two-dimensional flow (17) be-
longing to the fold lines.

Equilibrium points of the slow-flow system are
found from (17) by setting both time derivatives equal
to zero, thus providing

f1(N, θ) = 0,

f2(N, θ) = 0.
(21)

System (19) can be presented in the following matrix
form:
(

α11 α12

α21 α22

)(
cos θ

sin θ

)
=

(
β1

β2

)
, (22)

where

α11 = 1

4
λA1; α12 = −1

4
A1 + 3

4
N2A1;

α21 = 1

4
A1 − 1

4
N2A1; α22 = 1

4
λA1;

β1 = 1

4
Nσ + 1

4
N3 + 1

4
Nλ2σ − 3

4
N5

− N3σ − 1

4
Nλ2 + 3

4
N5σ ;

β2 = −1

4
Nλ.

As was mentioned before, system (20) has two dif-
ferent types of solutions. The first type is obtained by
solving (20) and assuming that the α matrix determi-
nant does not vanish (α11α22 − α21α12 
= 0). Thus the
first type of solution is calculated from:

[
λ2 + σ 2

(1 − σ)2

]
N2

0 + 2σ

1 − σ
N4

0 + N6
0

= A2
1

(1 − σ)2
;

θ0 = tan−1
(

σ

λ(1 − σ)
+ N2

0

λ

)
.

(23)
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It is easy to derive that

α11α22 − α21α12 = A2
1

16

(
1 + λ2 − 4N2 + 3N4)

= A2
1

32
g(N);

then nullification of g(N) brings to the simultane-
ous nullification of α11α22 − α21α12. Therefore, solu-
tion (21) describes the ordinary fixed points. This solu-
tion also coincides with the solution for fixed points of
initial equation (5). This is rather obvious since fixed
points of the global flow quite naturally belong to the
slow invariant manifold.

The second type of solution obeys the following
condition:

g(N) = 3N4 − 4N2 + 1 + λ2 = 0

⇒ α11α22 − α12α21 = 0. (24)

Combination of (22) and (20) yields to the following
equality:

α11

α21
= α12

α22
= β1

β2
. (25)

Second type of solution is generated by (22) and by
one of the equations of (20) since another equation is
satisfied automatically due to (23). Thus, picking the
first equation of (20), one obtains the following solu-
tion for the folded singularities:

Θ1,2 = γ01 ± cos−1 λN1

A1

√
(1 − N2

1 )2 + λ2
,

Θ3,4 = γ02 ± cos−1 λN2

A1

√
(1 − N2

2 )2 + λ2
, (26)

γ0k = sin−1 λ
√

(1 − N2
k )2 + λ2

, k = 1,2.

The first pair of the folded singularities exists on the
lower fold and is given by (N1,Θ1), (N1,Θ2). The
second pair exists on the upper fold and is given by
(N2,Θ3), (N2,Θ4). The first pair of the folded singu-
larities exists if the following conditions hold:
∣∣∣∣

λ
√

(1 − N2
k )2 + λ2

∣∣∣∣ ≤ 1, (27a)

∣∣
∣∣

λN1

A1

√
(1 − N2

1 )2 + λ2

∣∣
∣∣ ≤ 1. (27b)

Condition (27a) holds for arbitrary values of λ. How-
ever, condition (27b) holds only if

A1 ≥ A11crit = λN1√
(1 − N2

1 )2 + λ2
. (28)

Similarly for the second pair of folded singularities the
solvability condition reads

A1 ≥ A12crit = λN2√
(1 − N2

2 )2 + λ2
. (29)

Therefore, it is easy to see that if the external forcing
is relatively small,

A < A1crit = λN1√
(1 − N2

1 )2 + λ2
(30)

there are no folded singularities at the SIM. Conse-
quently, the slow flow in the vicinity of both fold lines
remains qualitatively similar to that on Fig. 2, provid-
ing no possibility of the relaxation oscillations.

In order to illustrate the qualitative changes in the
reduced flow dynamics for the various forcing ampli-
tudes we construct several phase portraits for the sys-
tem (15). These phase portraits are plotted only for the
case of single ordinary fixed point. It is convenient to
pick zero frequency detuning σ = 0. Only the flow at
two stable branches of the SIM is presented. We start
with the case 0 < A1 < A11crit (A1 = 0.1, λ = 0.2).

An ordinary fixed point is marked on the phase por-
trait (lower stable branch of SIM) with rectangle. As
becomes clear from the phase portrait of Fig. 3 there
are no folded singularities for this case (0 < A1 <

A11crit) therefore we can see that all trajectories are
finally attracted to the ordinary fixed point and there
are no possibilities for relaxation oscillation. However,
as the forcing approaches the value A1 = A11crit, the
“saddle-node” bifurcation occurs at the lower fold line
at θ = γ01. The phase portrait of the SIM for the case
A11crit < A1 < A12crit = λN2√

(1−N2
2 )2+λ2

, A1 = 0.18 is

presented on Fig. 4.
Phase portrait presented on Fig. 4 contains both

ordinary fixed point on the lower branch of the SIM
(marked with rectangle on the figure) and folded sin-
gularities (of saddle and node types). The region on
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Fig. 3 Phase portrait of the slow invariant manifold for the case
0 < A1 < A11crit (only stable branches of the SIM are shown).
System parameters: A1 = 0.1, λ = 0.2, σ = 0. Ordinary fixed
point is marked (on the lower stable branch of SIM) with rec-
tangle

the phase portrait (Fig. 4a) bounded with a circle is
zoomed and is illustrated on Fig. 4b. Folded singu-
larities marked with the bold dots on the fold line
are clearly observed on Fig. 4b. The trajectory which
comes close to the separatrix of the saddle point is
marked with the bold solid line.

The following phase portrait (Fig. 5) is drawn for
the same region (A11crit < A1 < A12crit, A1 = 0.5) but
for the increased value of forcing.

As we can see on Fig. 5 system dynamics under-
goes some qualitative changes. It is important to em-
phasize that folded saddle propagates in the right di-
rection along folded line and the folded node propa-
gates in the left direction. The detailed study of the
bifurcations of the folded singularities was carried out
in [18].

Thus from Figs. 4 and 5 it is easy to see that once
the bifurcations occur some phase trajectories on the
SIM will bring the flow to the lower fold line N = N1,
thus providing a possibility for the jump to the up-
per stable branch. Then the flow can arrive to the up-
per fold line and jump down, thus closing the loop of
the relaxation oscillation period referred in literature
[17–21] as strongly modulated response (SMR). It is
interesting to mention that the values of A1crit do not
depend on the detuning parameter σ .

Still, from numerical simulations [16] it is known
that these relaxation oscillations corresponding to
strongly modulated response (SMR) exists only in
comparatively narrow vicinity of exact 1:1 resonance

Fig. 4 (a) Phase portrait of the slow invariant manifold for the
case A11crit < A1 < A12crit (only stable branches of the SIM are
shown). System parameters: A1 = 0.18, λ = 0.2, σ = 0. Ordi-
nary fixed point is marked (on the lower stable branch of SIM)
with rectangle. (b) Zoomed part of the phase portrait (marked
with a circle on (a), which contains folded singularities (saddle
and node)

Fig. 5 Phase portrait of the slow invariant manifold for the case
0 < A1 < A11crit (only stable branches of the SIM are shown).
System parameters: A1 = 0.5, λ = 0.2, σ = 0. Ordinary fixed
point is absent on the stable branches of SIM. Folded singulari-
ties are marked with diamonds

between the external force and the natural frequency
of the linear oscillator. It is clear therefore that the con-
dition (24) is necessary, but by no means sufficient. In
order to obtain the missing sufficient conditions, one
should investigate more delicate details of the system
dynamics.

The detailed study of the necessary and sufficient
conditions for the existence of SMR regime was car-
ried out in [18] via construction of one-dimensional
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maps and will not be brought herein for the case of
a single term excitation. In the following sections we
bring the detailed analysis of the slow-flow dynamics
on the SIM for the double term excitation case as well
as construction of the 2D maps for studying the bifur-
cations of SMR.

2.2 Analysis of the slow-flow dynamics on the stable
branches of SIM for the case of double term
excitation (A2 > 0)

We turn now to a systematic study of the full slow-
flow equation derived for a double term excitation (4).
Analysis of (4) is quite similar to the one for the case
of single term excitation (A2 = 0) and therefore only
final derivations are presented.

It may be easily demonstrated from the analysis
presented in the previous chapters that the structure of
SIM itself is not affected by an addition of the second
exciting force. This becomes apparent from the obser-
vation of the full slow-flow system (4). As one may
notice all the external forcing parameters are of order
O(ε) and therefore in the previously brought multi-
ple scales analysis can only affect the slow dynamics
on the stable branches of SIM. The reduced slow-flow
equation governing the motion on the stable branches
of SIM for the double forcing case will yield:

∂Φ

∂τ1
= 2[(λ − i + 2i|Φ|2)G + iΦ2G∗]

λ2 + 1 − 4|Φ|2 + 3|Φ|4 ,

G = −1 − σ

4
|Φ|2Φ −

[
σ

4
+ iλ(1 − σ)

4

]
Φ

+ i(A1 + A2 exp(iδ))

4
,

∂δ

∂τ1
= σ2.

(31)

As was already discussed in the previous subsection
(for the single term excitation case A2 = 0) there ex-
ist two possibilities for the flow depicted by reduced
slow-flow analysis. The first possibility is to stay on
one of the stable branches of SIM and to get attracted
by one of the fixed point of either lower or upper sta-
ble branches. Apparently the second possibility is to
exhibit consequent jumps from one stable branch to
another. The first possibility corresponds to the triv-
ial periodic-response regimes with constant amplitude
when the second possibility is related to the SMR
regime exhibited by the original system.

As was shown in the previous studies [17, 19, 21]
of similar systems with single exciting harmonic term;
these trivial periodic regimes are related to the regu-
lar fixed points of the upper stable branch of SIM and
may be disadvantageous for vibration mitigation. In
fact, these regimes bring about rather high-amplitude
oscillations of the primary mass, which is supposed to
be protected.

One of the possibilities to eliminate these responses
is to constantly perturb the system near these stable
fixed points of the upper stable branch of SIM in order
to cause it to jump down to the lower stable branch. If
there is another fixed point on the lower stable branch
the phase trajectory has a possibility to be attracted to
this fixed point or to perform another relaxation back
to the upper stable branch. Thus, the system trajec-
tory is left with only two possibilities of either be-
ing attracted by a certain stable attractive set of the
lower stable branch or to perform consequent relax-
ation jumps. Both possibilities are favorable in a sense
of vibration suppression [17, 19, 21]. If one assumes
relatively small additional forcing A2 and linearizes
(31) near a regular fixed point, one will obtain approx-
imate linear system with constant harmonic forcing.
This will result in limit cycles on the stable branches
of SIM encircling the fixed points of the upper stable
branches. Apparently these limit cycles will grow with
the increasing A2. It is also clear that all these trajec-
tories of the limit cycles may exist only if they do not
collide with one of the fold lines. Therefore, increasing
the amplitude of the limit cycle slightly above certain
threshold will result in the relaxation jump to the lower
stable branch. This also means that no stable attractors
on the upper stable branch will exist and thus only the
favorable responses will remain in the system.

As one may easily observe, system (31) contains
a time dependent term which means that the reduced
system (5) is not autonomous anymore and hence its
state space has dimensionality higher than 2. This also
means that we cannot proceed with the straightforward
studying of the complete phase portraits. In the present
work we restrict our attention to study of the afore-
mentioned limit cycles on the stable branches of SIM;
the latter encircle the regular fixed points correspond-
ing to A2 = 0. Numerical examples are presented at
Figs. 6a and 6b. Limit cycles of Fig. 6a are the steady-
state solutions of (5) on the upper stable branch and
those of Fig. 6b correspond to the lower one. For suf-
ficiently small values of A2 those limit cycles exist on
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Fig. 6a Limit cycles created on the upper branch of SIM for
(A2 = 0,0.1,0.3,0.5); the rest system parameters are A1 = 1.5,
λ = 0.2, σ = 0, σ2 = 0.1

Fig. 6b Limit cycles created on the lower branch of SIM for
(A2 = 0,0.01,0.03,0.05,0.07,0.09); the rest system parame-
ters are A1 = 0.1, λ = 0.2, σ = 0, σ2 = 0.1

the stable branches of SIM and are encircling the regu-
lar fixed points corresponding to the autonomous sys-
tem (A2 = 0).

It is clear from Figs. 6a, 6b that as the amplitude
of the second forcing term is increased the radius of
the limit cycles is constantly growing. Rather obvious
criterion for the existence of the limit cycles and their
annihilation may be established.

Let us denote the regular fixed point of the cor-
responding autonomous system (A2 = 0) by Φ0 and
the set of all points on the limit cycles of the stable
branches of SIM by γ (τ1) = R(τ1) exp(iϑ(τ1)) + Φ0.

Conditions for the existence of a stable limit cycle on
the stable branches of SIM may be formulated as fol-
lows:

1. |Φ0| ∈
{
x | 0 < x < N1,N2 < x

};
2. ∀ϑ(τ1) ∈ [0,2π],

R(τ1) <
∣∣|Φ0| − N2

∣∣, |Φ0| > N2,

∀ϑ(τ1) ∈ [0,2π],
R(τ1) <

∣∣|Φ0| − N1
∣∣, |Φ0| < N1.

(32)

If the two conditions are not satisfied simultaneously
then one would expect for any stable limit cycle on
the stable branches of SIM. In fact the first condition
of (32) requires for the regular fixed point of the au-
tonomous system to be situated at least on one of the
stable branches of SIM (not including the fold lines).
The second condition is rather naïve since it requires
for the entire set of the points of a limit cycle to be-
long completely to the stable branches of SIM. How-
ever if the limit cycle hits the fold lines of the SIM,
then, obviously, the phase trajectories escape from the
stable branches and the stable limit cycle ceases to ex-
ist. This point should be explained in details in order to
avoid possible ambiguity of definitions. When we say
that limit cycles cease to exist we refer to the particular
family of limit cycles localized on the stable branches
of SIM. However, as is clear from the previous dis-
cussions there can exist another family of limit cycles
which is not localized to a single branch of SIM and
is characterized by successive jumps from one stable
branch to another. At this point it would be appropri-
ate to make a classification of the two distinct families
of limit cycles. The first family of localized limit cy-
cles (their trajectories may be shrinked into a point by
gradually decreasing A2) refers to the weakly modu-
lated responses. The second family is related to a SMR
regime.

Analytical approximation of the limit cycles of the
first type can be derived by linearization around regu-
lar fixed points. Thus small deviations around a regu-
lar fixed point of an autonomous system (A2 = 0) are
introduced as follows:

Φ(τ1) = Φ0 + ξ(τ1), |ξ | � |Φ0|. (33)

Here we also assume that the magnitude of the addi-
tional harmonic force A2 is of the same order as ξ(τ1).
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Substituting (33) into (31) and collecting the terms of
the first order yields the following linear system:

dξ

dτ1
= α11(Φ0,Φ

∗
0 )ξ + α12(Φ0,Φ

∗
0 )∗ξ∗

+ β1(Φ0,Φ
∗
0 ) exp(iσ2τ1)

+ β2(Φ0,Φ
∗
0 ) exp(−iσ2τ1),

dξ∗

dτ1
= α11(Φ0,Φ

∗
0 )∗ξ∗ + α12(Φ0,Φ

∗
0 )∗ξ

+ β1(Φ0,Φ
∗
0 )∗ exp(−iσ2τ1)

+ β2(Φ0,Φ
∗
0 )∗ exp(iσ2τ1).

(34)

The full expressions for α11, α12, β1, β2 are presented
in Appendix. It is convenient to rewrite (34) in a matrix
form:

dξ

dt
= Bξ + F(τ1) (35)

where

ξ =
(

ξ

ξ∗
)

, B =
(

α11 α12

α∗
11 α∗

12

)
,

F (τ1) =
(

β1(Φ0,Φ
∗
0 ) exp(iσ2τ1) + β2(Φ0,Φ

∗
0 ) exp(−iσ2τ1)

β1(Φ0,Φ
∗
0 )∗ exp(−iσ2τ1) + β2(Φ0,Φ

∗
0 )∗ exp(iσ2τ1)

)

The system (35) possesses the well-known solution:

ξ(τ1) = cΨ (τ1) + Ψ (τ1)

∫
Ψ −1(τ1)F (τ1) dτ1, (36)

where: Ψ (τ1) is a matrix of fundamental solutions of
a corresponding homogeneous system.

Comparison of the steady-state solutions of (36)
and those of (4) is presented in Figs. 7a, 7b for upper
and lower branches respectively.

As it is evident from the results of Figs. 7a, 7b an-
alytical approximation becomes cruder with the grow-
ing values of the amplitude of a weak limit cycle.
However, the earlier formulated conditions (32) neces-
sary for the existence of weak limit cycles bring about
the possibility of predicting threshold values of A2TH

beyond which no weak limit cycles are possible and
therefore global flow is forced to the alternating jumps
between the two stable branch surfaces. The latter type
of motion is referred to as an aforementioned strongly
modulated response regime (SMR).

Fig. 7a Comparison of an analytical approximation of weak
limit cycle on the upper stable branch with the numerical solu-
tion of (5). The dashed line relates to an analytical approxima-
tion; the solid line relates to numerical solution of (5). System
parameters: A1 = 1.3, λ = 0.2, σ = 0, σ2 = 0.1

Fig. 7b Comparison of an analytical approximation of weak
limit cycle on the lower stable branch with the numerical solu-
tion of (4). The dashed line relates to analytical approximation;
the solid line relates to numerical solution of (4). System para-
meters: A1 = 0.1, λ = 0.2, σ = 0, σ2 = 0.1

2.3 Two-dimensional maps construction for a double
term excitation (A2 > 0)

In the present subsection we develop a semi-analytical
approach based on the two-dimensional maps con-
struction for finding special attractors of SMR and
their bifurcations for the case of a double term excita-
tion. As we have already noted in the previous sections
in the regime of relaxation oscillations, the phase tra-
jectory jumps from the lower fold to the upper branch
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of the SIM, then it moves along the line of the slow
flow until it hits again the upper fold line, then jumps
back to the lower stable branch of SIM and moves to-
ward the lower fold. The particular moment of the sec-
ondary piercing of the lower fold line by the trajectory
(initially started from the lower fold line) corresponds
to the completion of exactly one cycle by the SMR.
Thus, as will be shown below, recording the phase
space points (of the reduced order slow-flow model)
of consequent piercings of the lower fold line by the
trajectory in the regime of SMR makes it possible to
recover stable attractors of the SMR regime and to fol-
low their possible bifurcations-systematically. Unlike
the case of a single harmonic term excitation the re-
duced slow-flow model system (5) derived for a dou-
ble term excitation is non-autonomous and therefore
the dimensionality of the resultant map will increase.

Let us start the description of the construction of
the map for the SMR cycles from the definition of the
cross-section. We choose the lower fold (N = N1) as
a section of the map. As is clear from the analysis of
previous subsection each point of the phase space de-
scribe by the reduced order, slow-flow model (31) is
uniquely defined by Φ , δ. Thus rewriting Φ in a polar
form as:

Φ = N exp(iθ) we formally define the section of
the map as follows,

Σ = {|Φ| = N1
} ∩ {−π < θ < π}

∩ {
δ mod (2π)

}
. (37)

Thus the map will be defined as P : Σ → Σ . The
idea of constructing maps for the trajectories reaching
the lower fold line was developed earlier in [18] for
the case of single exciting term A2 = 0. However, the
previously developed maps were one-dimensional and
an interval between the two folded singularities of the
lower fold line was defined as the section of the map.
All the trajectories that left the lower branch (were
not attracted to any other stable attractor of the lower
branch) have pierced this interval (see [18] for details).
In the present paper we follow the same idea of using
the lower fold line as a section of mapping, however
it is clear that section (37) is two-dimensional, due to
the addition of time dependent forcing in the reduced
slow-flow system (31). This also means that we have
no convenient restrictions on the section interval as it
was in the single term excitation case A2 = 0, this is
why the section (37) by definition includes the entire
domain.

The function P of the defined two-dimensional
map (37) is calculated semi-analytically. In order to
construct the relevant map, we should consider sepa-
rately the “slow” and the “fast” parts of the mapping
cycle. As for the “slow” parts on the lower and the
upper branches of the SIM, we can use (4) and di-
rectly connect the “entrance” and “exit” points. Due to
the complexity of the equations, this part of the map-
ping should be accomplished numerically. As for the
“fast” parts, the function Φ should be continuous at
the points of contact between the “fast” and the “slow”
parts. Therefore, for “fast” parts of the motion one
obtains complex invariant C(τ1), defined by (10). It
is important to note that there is a place for possible
confusion since (10) corresponds to the part of analy-
sis developed for a single term excitation case. How-
ever, as one may notice directly from (8), (9), (10) that
none of the external excitation terms (A1,A2) enter the
equation in the zero order approximation (derived for
a fast time scale) and therefore (10) originally derived
for a single excitation term will be also valid for the
double excitation case.

Thus if one knows its value at the point of “start”
on the section Σ , it is possible to compute N and θ for
the point of “finish” unambiguously. As for the value
of δ in the point of ‘finish’ on the upper stable branch
one may easily see from the previous analysis that δ

is a slow time scale variable and therefore remains un-
changed (in the singular limit!) during the fast relax-
ation.

The procedure of numerical integration should be
performed twice-for two branches of the SIM. Two
invariants should be computed for two “fast” jumps,
in order to determine their final points. It should be
stressed that only one computation cycle of the map-
ping for each point of the initial domain is required.

In general, not every trajectory which starts from
the lower fold of the SIM will reach the initial starting
section Σ since it may be attracted to alternative at-
tractor at the upper or the lower branch of the SIM, if it
exists. Of course, only those points which are mapped
into the initial domain, can carry sustained relaxation
oscillations and are of interest in scope of the current
paper. The schematic construction of the return map
is illustrated at Fig. 8. Thus, starting from some ini-
tial point on section Σ one may compute the finite
set of consequent mappings P N : Σ → Σ . Moreover
we would like to point out that in the scope of the
current paper we are solely interested in finding at-
tractors of the SMR regime, hence in the following
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Fig. 8 Schematic construction of the return map. (θ0, δ0) is an
initial guess, (θn, δn) a limiting point

Fig. 9a Single periodic attractor captured by two-dimensional
map procedures. System parameters: A1 = 0.1, A2 = 0.2,
σ1 = 0, σ2 = 1

two-dimensional maps we skip the initial mappings
(i.e. (θ0, δ0), (θ1, δ1), . . . , (θn−1, δn−1)) and plot only
the final periodic attractors/invariant sets of the SMR
to which the series of mappings converge (see the
schematic example of a one-period attractor illustrated
on Fig. 8).

Example of 2D maps construction for some par-
ticular values of system parameters is illustrated in
Figs. 9a–9c. In this example we fix the value of the
amplitude A1 = 0.1 and vary the value of the second
amplitude A2.

As one may observe from the results of Figs. 9a–
9c the 2D maps undergo qualitative bifurcations as
the value of the second exciting term amplitude is in-
creased. At the relatively low value of the second ex-
citing force amplitude (A2 = 0.2) a single one-period

Fig. 9b Double periodic cycles captured by two-dimensional
map procedure. System parameters: A1 = 0.1, A2 = 0.7,
σ1 = 0, σ2 = 1

Fig. 9c Invariant set captured by two-dimensional map proce-
dure. System parameters: A1 = 0.1, A2 = 0.9, σ1 = 0, σ2 = 1

attractor may be observed for the SMR regime. As
the value of the second forcing amplitude becomes
higher, then there is a period doubling bifurcation As
becomes clear from Fig. 9b. Increasing the value of
A2 above additional threshold the map recovers an-
other invariant set (Fig. 9c). The latter observation of
the invariant set may be regarded as a phase unlock-
ing between the forcing phase and the phase of the re-
sponse (SMR) in terms of the two-dimensional map-
ping. It is worthwhile noting that no Feigenbaum cas-
cade (over the two periodic cycles) was observed in
the parametric scanning of rather high resolution. Ap-
parently this means that the system under investigation
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deserves additional study for gaining more rigorous
and complete understanding of the bifurcation struc-
ture observed herein.

3 Numerical simulations

3.1 Numerical verifications of the theoretical model

In the present section we are willing to provide numer-
ical confirmation for the analytically predicted phe-
nomena of the birth of weak limit cycles for some law
amplitudes of the second exciting term (A2) and their
bifurcations due to the increase in the amplitude lead-
ing to the excitation of the relaxation-type motions re-
ferred to as SMR regime. Before we proceed with the
numerical verifications of the semi-analytically pre-
dicted behavior on the stable branch of SIM we plot
the limit cycles of (5) (Fig. 10) on the upper branch
of SIM corresponding to the system parameters cho-
sen for the further numerical simulations. System pa-
rameters chosen for the simulations are as follows;
A1 = 1.3, λ = 0.2, ε = 0.01, σ = 0, σ2 = 1,A2 para-
meter is varied in the simulations. As one may observe
from the results of Fig. 10 weak limit cycles exist on
the upper stable branch for the limited range of A2 pa-
rameter (0 < A2 < 0.19).

Let us first start with the validations of the simple
periodic-response regimes corresponding to the fixed
points on the stable branches of SIM for the case of a
single exciting term (i.e. A2 = 0) (Fig. 11).

Time series of relative displacement between the
linear oscillator and the NES are illustrated in Fig. 11
for the single forcing case (A2 = 0.0). Initial condi-
tions for all the numerical simulation have been cho-
sen in correspondence with a regular fixed point on
the upper branch of SIM. Steady-state solution for the
slow flow on SIM is also plotted. Fairly good agree-
ment between the analytical model and numerical sim-
ulation of the original system (1) is observed. Inter-
estingly enough would be to validate the change in
the response of the original system with amplitude of
the second exciting term below the predicted threshold
(A2 < A2CRITICAL). Next simulation was performed
for the following set of system parameters: A1 = 1.3,
A2 = 0.1, λ = 0.2, ε = 0.01, σ = 0, σ2 = 1. The pre-
dicted threshold (for this particular set of system para-
meters) beyond which the bifurcation of weak limit cy-
cles occurs is: A2CRITICAL ≈ 0.19. Time series of rel-

Fig. 10 Limit cycles of the slow flow on upper branch of SIM
corresponding to (5). System parameters: A1 = 1.3, λ = 0.2,
σ = 0, σ2 = 1

Fig. 11 Time series of a simple periodic-response regime re-
lated to a regular stable fixed point of the upper branch of SIM.
Steady-state solution for the slow flow on SIM (5) is denoted
by a dashed line. Corresponding numerical solution of an orig-
inal System (1) is denoted by a thin curve. System parameters:
A1 = 1.3, A2 = 0.0, λ = 0.2, ε = 0.01, σ = 0

ative displacement is illustrated along with the steady-
state solution for the slow flow on SIM. Again spectac-
ular agreement of the results of numerical simulation
and analytical model (5) is evident from the results of
Fig. 12.

The next simulation (Fig. 13) was performed for an
amplitude value A2 higher than the predicted threshold
(A2 = 0.3 > Acr = 0.19) the rest system parameters
are left the same.

As one may observe from the last simulation; be-
yond the predicted threshold of A2—weak limit cy-
cles are annihilated and SMR regime is excited and is
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Fig. 12 Time series of a weakly modulated response regime re-
lated to a weak stable limit cycle of the upper branch of SIM (see
Figs. 8a, 9a). Steady-state solution for the slow flow on SIM (5)
is denoted by a dashed line. Corresponding numerical solution
of an original System (1) is denoted by a thin curve. System pa-
rameters: A1 = 1.3, A2 = 0.1, λ = 0.2, ε = 0.01, σ = 0, σ2 = 1

Fig. 13 Time series of the excited SMR regime A1 = 1.3,
A2 = 0.3, λ = 0.2, ε = 0.01, σ = 0, σ2 = 1

characterized by the alternating jumps from one stable
branch of SIM to another.

Similar numerical verification as for the slow-flow
limits cycles of the upper stable branch of SIM is per-
formed for the lower one. To this extent we plot again
the limit cycles of slow flow (5) on the lower stable
branch of SIM (Fig. 14). As one may observe from the
results of Fig. 14, weak limit cycles exist on the lower
stable branch for the limited range of A2 parameter
(0 < A2 < 0.19).

Fig. 14 Limit cycles of the slow flow on the lower branch
of SIM corresponding to (5). System parameters: A1 = 0.1,
λ = 0.2, σ = 0, σ2 = 1

Fig. 15 Time series of a simple periodic-response regime re-
lated to a regular stable fixed point of the upper branch of SIM.
Steady-state solution for the slow flow on SIM (5) is denoted
by a dashed line. Corresponding numerical solution of an orig-
inal System (1) is denoted by a thin curve. System parameters:
A1 = 1.3, A2 = 0.0, λ = 0.2, ε = 0.01, σ = 0, σ2 = 1)

Similar numerical simulations are performed to val-
idate the predictions on the lower stable branch of the
SIM. Again we start with a single forcing case A2 = 0
(Fig. 15). The rest system parameters are as follows:
A1 = 0.1, λ = 0.2, σ = 0, σ2 = 1, ε = 0.01.

The predicted threshold (for this particular set of
system parameters) beyond which the bifurcation of
weak limit cycles occurs is: A2CRITICAL ≈ 0.186.
Time series of relative displacement is illustrated
along with the steady-state solution for the slow flow
on SIM. Again spectacular agreement of the results of
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Fig. 16 Time series of a weakly modulated response regime
related to a weak limit cycle of the upper branch of SIM (see
Fig. 14). Steady-state solution for the slow flow on SIM (5) is
denoted by a dashed line. Corresponding numerical solution of
an original System (1) is denoted by a thin curve. System para-
meters: A1 = 0.1, A2 = 0.05, λ = 0.2, ε = 0.01, σ = 0, σ2 = 1

Fig. 17 Time series of SMR response regime for the values
of the second exciting term amplitude—higher than threshold
Acr = 0.186, (a) A2 = 0.2 (b) A2 = 0.7 (c) A2 = 0.9. The rest
system parameters: A1 = 0.1, λ = 0.2, ε = 0.01, σ = 0, σ2 = 1

numerical simulation and analytical model (5) is evi-
dent from the results of Fig. 15.

The next simulation (Fig. 17a–17c) was performed
for the amplitude values A2 higher than the predicted
threshold (A2 = 0.2,0.7,0.9 > Acr = 0.186) the rest
system parameters are left the same.

It is important to note that system parameters cho-
sen for the last simulations of SMR regime (Fig. 15)
are not arbitrary and correspond to those picked for the
two-dimensional maps example of previous section.

As is evident from the example of two-dimensional
maps, the mapping procedure predicts single SMR cy-
cle for A2 = 0.2, period doubling for A2 = 0.7 and
finally phase ‘unlocking’ for A2 = 0.9. As may be ob-
served from the results of Fig. 17 the predicted bifur-
cations are in agreement with the numerical simula-
tions.

3.2 System response to a random narrow-band
excitation

In the previous sections we provided analytical and
numerical study of the system (1) subject to deter-
ministic, quasi-periodic (weakly modulated) excita-
tion. There we have found that above a certain limit
of the amplitude of modulation of the incoming sig-
nal all the unpleasant, weakly quasi-periodic regimes
may be successfully annihilated and the SMR regime
is excited. The next question we would like to ad-
dress numerically is whether randomly modulated,
narrow-band excitation may cause the same effect of
the complete elimination of undesired response and
an alternative excitation of the SMR-like relaxation
cycles.

This random excitation is defined as follows:

F(t) = εA1 cos(t) + εA2 cos
(
t + γW(t)

)
, (38)

where A1, A2 are deterministic amplitudes, W(t) is
a standard Wiener process and γ ≥ 0 is a bandwidth
of the random excitation. Apparently for the purposes
of narrow-band excitation γ is assigned rather small
values. If A2 is essentially less than A1, the random
modulation of the exciting force defined in (38) can
still be regarded as weak.

In the present numerical study we are interested
in studying the system response for the case of ran-
dom amplitudes of modulation below the threshold
(A2 < A2threshold) (where according to the previous re-
sults of deterministic amplitude-modulated excitation
only weak limit cycles were excited) as well as above
the threshold A2 > A2threshold. The following system
parameters were chosen for the first numerical simula-
tion:

A1 = 1.3, A2 = 0.1, λ = 0.2,

γ = 0.1, ε = 0.05.
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Fig. 18 Random forcing input realization. System parameters:
A1 = 1.3, A2 = 0.1, λ = 0.2, γ = 0.1, ε = 0.05

Fig. 19 Time series of the system (1) response to the external
random excitation of Fig. 18

Two realizations of Wiener process were generated.
The first realization was generated for the lower am-
plitude of A2 = 0.1. The first random input for the first
realization is illustrated on Fig. 18.

Time series of the response of System (1) to the first
input realization (Fig. 18) is presented in Fig. 19.

As becomes clear from the results of Fig. 19 only
weak modulation may be observed (no bursts related
to a SMR regime).

In the next simulation we increase the value of the
second term amplitude A2 = 0.5. The following sys-
tem parameters were chosen for the second numeri-
cal simulation A1 = 1.3, A2 = 0.1, λ = 0.2, γ = 0.1,
ε = 0.05.

The second realization was generated for the higher
amplitude of A2 = 0.5. The second random forcing in-
put for the second realization is illustrated on Fig. 20.

Fig. 20 Random forcing input realization. System parameters:
A1 = 1.3, A2 = 0.5, λ = 0.2, γ = 0.1, ε = 0.05

Fig. 21 Time series of the system (1) response to the external
random excitation of Fig. 20

Time series of the response of System (1) to the
second forcing input realization (Fig. 20) is presented
in Fig. 21.

It is clear from the results of Fig. 21 that strongly
modulated, random beats are excited for higher value
of second exciting term amplitude. However, theo-
retical prediction of a threshold value above which
strongly modulated beats are excited for the case of
narrow-band random excitation is beyond the scope of
the present paper and will be published elsewhere.

4 Concluding remarks

Main conclusion from the results presented above is
that by adding relatively small excitation with close
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frequency or random narrow-band signal, one can ob-
tain rather strong modification of the response regimes
in the forced system with the NES. This result is not
totally unexpected, but the semi-analytic procedure
presented here allows one to predict such modifica-
tion and to design the system accordingly. In the con-
text of the absorption of the vibration, the amplitude
of additional signal necessary to eliminate the unde-
sired response regimes can be not so small. Still, no
optimization in any sense was performed in the pa-
per, so one can hope to enhance these results by using
more efficient NES [21]. From the other side, the pa-
per demonstrates in the first time that one can devise
the NES parameters in order to mitigate efficiently the
multi-frequency and even random external excitations.
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Appendix

α11 = −
(

(ϕ∗
0 − ϕ0)A1 + 1

2
iλ2(1 − σ) + 1

2
λ

+ 4i(σ − 1)|ϕ0|2 − 1

2
iσ + 9

2
i(1 − σ)|ϕ0|4

)

× (
1 + λ2 − 4|ϕ0|2 + 3|ϕ0|4

)−1

α12 = − (2iσϕ2
0 +A1ϕ0 +3i(1−σ)|ϕ0|2ϕ2

0 − 1
2 iϕ2

0)

1 + λ2 − 4|ϕ0|2 + 3|ϕ0|4 ,

β1 = 2iA2(λ − i + 2i|ϕ0|2)
4(1 + λ2 − 4|ϕ0|2 + 3|ϕ0|4) ,

β2 =
(

2A2ϕ
2
0

4(1 + λ2 − 4|ϕ0|2 + 3|ϕ0|4)
)

.

(A.1)
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