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Abstract A system of three coupled limit cycle oscil-
lators with vastly different frequencies is studied. The
three oscillators, when uncoupled, have the frequen-
cies ω1 = O(1), ω2 = O(1/ε) and ω3 = O(1/ε2), re-
spectively, where ε � 1. The method of direct parti-
tion of motion (DPM) is extended to study the leading
order dynamics of the considered autonomous system.
It is shown that the limit cycles of oscillators 1 and 2,
to leading order, take the form of a Jacobi elliptic func-
tion whose amplitude and frequency are modulated as
the strength of coupling is varied. The dynamics of the
fastest oscillator, to leading order, is unaffected by the
coupling to the slower oscillator. It is also found that
when the coupling strength between two of the oscilla-
tors is larger than a critical bifurcation value, the limit
cycle of the slower oscillator disappears. The obtained
analytical results are formal and are checked by com-
parison to solutions from numerical integration of the
system.
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1 Introduction

The effects of high frequency excitation on nonlinear
mechanical systems have been extensively studied and
reviewed in recent years [1, 8, 14, 15]. These effects
include apparent changes in system properties such as
the number of equilibrium points, stability of equilib-
rium points, natural frequencies, stiffness, and bifurca-
tion paths [15]. Such problems can be analyzed using
standard perturbation methods such as the method of
multiple timescales or the method of averaging [15].
However, the method of direct partition of motion
(DPM) developed by Blekhman [1] serves to facili-
tate the study of such problems. Unlike the averaging
method or the method of multiple timescales, DPM of-
fers no systematic way to obtain higher order terms in
an asymptotic expansion of the solution, and instead
is limited to the leading order terms in a formal as-
ymptotic expansion for the dynamics of the system. In
return for this limitation, one gains efficiency in terms
of the required mathematical manipulations. Particu-
larly, DPM is most useful when the main interest is
in the leading order slow motion of the system that is
subject to the fast excitation.

More recently, Belhaq and his associates have used
DPM to study the effect of high frequency excitation
on systems possessing self-excited motions [2, 3, 6,
13]. It was shown that the fast excitation could lead to
the disappearance of the stable limit cycle [3].

A common feature of all the aforementioned works
is that the fast excitation is due to an external source,
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that is, all the systems considered are nonautonomous.
We assert that similar non-trivial effects could occur
even if the fast excitation is internal to the system, in-
stead of coming from an external source. An example
of such a case would be a nonlinear oscillator coupled
to a much faster oscillator.

Systems of coupled nonlinear oscillators with
widely separated frequencies have been investigated
in the literature [11, 16]. Often, the method of aver-
aging is used to study the dynamics. In this paper, the
standard DPM procedure is extended to study an au-
tonomous system of three coupled nonlinear oscilla-
tors with widely separated frequencies. When uncou-
pled, each of the oscillators possesses a limit cycle so-
lution with a frequency ω1 = O(1), ω2 = O(1/ε) and
ω3 = O(1/ε2), respectively, where ε � 1. We find that
the coupling between such oscillators causes a change
in the amplitude and frequency of the limit cycles of
oscillators 1 and 2, and if the coupling between the os-
cillators is strong enough then the stable limit cycle of
one of these two oscillators disappears. The limit cycle
of the fastest oscillator, to leading order, is unchanged
by the coupling.

Such a system in which several vastly different time
scales interact, is ubiquitous in the nervous system,
where rhythmically active subnetworks interact while
oscillating at widely different frequencies [9]. It has
been shown that a fast oscillatory neuron may regu-
late the frequency of a much slower oscillatory net-
work [9].

Models which involve widely separated time scales
also occur in astronomical applications. E.g. a study
of the vibratory motion of a planet included oscilla-
tions with periods of (a) the orbital motions of the
planets (tens and hundreds of years), (b) the secular or-
bital motions of the Solar System (tens and hundreds
of thousands of years), and (c) galactic perturbations
(tens and hundreds of millions of years) [10].

The system of equations, representing the coupled
oscillators studied here, is presented in Sect. 2. Sec-
tion 3 describes the key assumptions of the method
of direct partition of motion and presents the equa-
tions which the original system is transformed into
at the end of the DPM procedure. The details of the
DPM implementation are given in Appendix A. Sec-
tion 4 presents the approximate solution to the equa-
tions resulting from the DPM procedure, and the de-
tails of how the solution is obtained is given in Appen-
dix B. Section 5 discusses how varying the coupling

strengths affects the dynamics of the system. Finally,
Sect. 6 presents a comparison between the approxi-
mate solution obtained from DPM and that from nu-
merical integration.

2 Three coupled limit cycle oscillators

We will consider three van der Pol type limit cycle os-
cillators x, y, and z, which when uncoupled, are gov-
erned by the following equations:

d2x

dt2
1

+ x + (
a1 + b1x

2) dx

dt1
= 0

d2y

dt2
2

+ y + (
a2 + b2y

2) dy

dt2
= 0 (1)

d2z

dt2
3

+ z + (
a3 + b3z

2) dz

dt3
= 0

where

t1 = ω1t, t2 = ω2

ε
t, t3 = ω3

ε2
t, ε � 1

Here, ω1, ω2, and ω3 are O(1) quantities. We are in-
terested in values of ai and bi (i = 1,2,3) for which
each of the equations above for x, y, and z pos-
sesses a stable limit cycle solution that is an O(ε)
perturbation off of a simple harmonic motion. The
equations posed as such indicate that oscillation along
these latter limit cycles of x, y, and z occurs on
the time scales t1, t2, and t3, respectively, so z is a
much faster oscillator than y, which is in turn a much
faster oscillator than x. We will investigate the case
of nearest neighbor nonlinear coupling, as shown in
Fig. 1. Then the coupled system takes the following
form:

d2x

dt2
1

+ x + (
a1 + b1x

2) dx

dt1

= γ1
(
1 + g1x

2) dy

dt1

Fig. 1 Symbolic diagram for the three coupled oscillator sys-
tem. γ1 and γ2 are coupling coefficients; see (2)
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d2y

dt2
2

+ y + (
a2 + b2y

2) dy

dt2
(2)

= (
1 + g2y

2)
[
γ1

dx

dt2
+ γ2

dz

dt2

]

d2z

dt2
3

+ z + (
a3 + b3z

2) dz

dt3

= γ2
(
1 + g3z

2) dy

dt3

This particular form of coupling is inspired by the
work of Bourkha and Belhaq [3] in which the point
of suspension of a self-excited pendulum is subjected
to a horizontal parametric forcing. Various derivatives
of x, y, and z, with respect to the different time scales,
appear in (2); these are related to the corresponding
derivatives with respect to time t as follows:

dx

dt1
= 1

ω1

dx

dt
,

d2x

dt2
1

= 1

ω2
1

d2x

dt2
,

dx

dt2
= ε

ω2

dx

dt

dy

dt1
= 1

ω1

dy

dt
,

dy

dt2
= ε

ω2

dy

dt
,

dy

dt3
= ε2

ω3

dy

dt
,

d2y

dt2
2

= ε2

ω2
2

d2y

dt2

dz

dt2
= ε

ω2

dz

dt
,

dz

dt3
= ε2

ω3

dz

dt
,

d2z

dt2
3

= ε4

ω2
3

d2z

dt2

(3)

Without loss of generality, from now on, we will as-
sume ω1 = 1. Now, making use of these relations, with
the dot denoting differentiation with respect to time t ,
the coupled system becomes:

ẍ + x + (
a1 + b1x

2)ẋ = γ1
(
1 + g1x

2)ẏ

ÿ + ω2
2

ε2
y + ω2

ε

(
a2 + b2y

2)ẏ

= ω2

ε

(
1 + g2y

2)[γ1ẋ + γ2ż] (4)

z̈ + ω2
3

ε4
z + ω3

ε2

(
a3 + b3z

2)ż

= ω3

ε2
γ2

(
1 + g3z

2)ẏ

3 Direct partition of motion (DPM)

The method of direct partition of motion (DPM) has
been developed to study the nontrivial effects of fast
excitation on nonlinear systems [1, 8, 14]. Systems
previously studied in the literature using DPM tend to
be nonautonomous, like the classic problem of a pen-
dulum with a vibrating support [15]. Typically, the fast
excitation is due to an external harmonic forcer with a
frequency that is much larger than that of the free re-
sponse of the system. The main idea of DPM is that
for such problems, the solution is partitioned into a
slow motion and a fast motion. In other words, one as-
sumes that the solution can be written as a sum of two
functions: a function changing on the slow time scale
only, and another function changing on the fast time
scale as well as the slow time scale. Here, the slow
time scale refers to the time scale of the free response
of the system, while the fast time scale refers to that
of the fast excitation that the system is subjected to.
In such problems, one is mainly interested in the slow
dynamics, that is, the slow component of the solution,
and the fast component is interesting only in how it
affects the dynamics of the slow component. For the
system described by (4), the x oscillator can be consid-
ered to be subject to fast excitation by the y oscillator,
and similarly, the y oscillator can be seen to be sub-
ject to fast excitation by the z oscillator. Accordingly,
we will look for a solution partitioned in the following
manner:

x = X(t1) + εξ(t1, t2, t3)

y = Y(t2) + εη(t1, t2, t3) (5)

z = Z(t3) + εζ(t1, t2, t3)

We will use DPM to investigate the dynamics of the
leading order motions X, Y, and Z. We start by sub-
stituting (5) into (4). Terms of like powers of ε are col-
lected and then the key assumptions of DPM are uti-
lized [1, 8, 14]. These key assumptions can be stated
as follows:

1. ξ is periodic and has a zero average over the t2 and
t3 time scales.

2. η is periodic and has a zero average over the t3

timescale.
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These assumptions lead to the following conditions on
ξ and η:

〈ξ 〉2 =
〈
∂ξ

∂t2

〉

2
=

〈
∂2ξ

∂t2
2

〉

2

= 〈ξ 〉3 =
〈
∂ξ

∂t3

〉

3
=

〈
∂2ξ

∂t2
3

〉

3

= 〈η〉3 =
〈
∂η

∂t3

〉

3
=

〈
∂2η

∂t2
3

〉

3
= 0 (6)

Where the two operators 〈•〉2 and 〈•〉3 are defined to
be the average over one period of oscillations on the t2

and t3 time scales, respectively. Denoting those peri-
ods by T2 and T3:

〈•〉2 = 1

T2

∫ T2

0
•dt2, 〈•〉3 = 1

T3

∫ T3

0
•dt3

The calculations performed are algebraically compli-
cated and typical of DPM calculations [1, 8, 14]. We
present the details in Appendix A, with the result that
the coupled system in (4) is transformed to the follow-
ing equations governing X, Y , Z, and ξ , η, ζ :

d2X

dt2
1

+ X + (
a1 + b1X

2)dX

dt1

− 2γ1g1ω2X

〈
ξ
dY

dt2

〉

2
= 0 (7)

d2Y

dt2
2

+ Y + (
a2 + b2Y

2)dY

dt2

− 2γ2g2
ω3

ω2
Y

〈
η
dZ

dt3

〉

3
= 0 (8)

d2Z

dt2
3

+ Z + (
a3 + b3Z

2)dZ

dt3
= 0 (9)

∂2ξ

∂t2
2

− γ1

ω2

(
1 + g1X

2)dY

dt2
= 0 (10)

,
∂2η

∂t2
3

− γ2
ω2

ω3

(
1 + g2Y

2)dZ

dt3
= 0 (11)

d2ζ

dt2
3

+ ζ + (
a3 + b3Z

2) dζ

dt3
+ 2b3ζ

dZ

dt3
Z

− γ2

[(
ω2

ω3

dY

dt2
+ dη

dt3

)(
1 + g3Z

2)
]

= 0 (12)

Recall that our goal is to understand the motion of X,
Y, and Z. Note that (9) governing Z, is independent
of ζ , unlike (7) on X and (8) on Y which depend on
ξ and η, respectively. Thus, we will not need to solve
(12) on ζ , which we nevertheless list here for com-
pleteness.

4 Solving for X, Y and Z

The equations listed at the end of the previous sec-
tion can be tackled successively. First, we will seek
an approximate solution for the Z equation, since it
is uncoupled from X and Y . This allows us to solve
(11) for an expression of η in terms of Y and t3. Plug-
ging the expression for η and Z into (8) allows us to
evaluate the definite integral and solve for an approx-
imate expression for Y . Again, plugging the obtained
expression for Y in (10) provides an expression for ξ

in terms of X and t2. Then plugging the expression for
ξ and Y into (7) allows us to evaluate the correspond-
ing definite integral and solve for an approximate so-
lution for X. For the convenience of the reader, we
present the final results here, and give the details of
the described process in Appendix B.

• The limit cycle solution for the Z equation is ap-
proximated as:

Z(t3) ≈ C3 cos(t3), C3 = 2

√
−a3

b3
(13)

• The equation governing Y takes the following form:

d2Y

dt2
2

+ α2Y + β2Y
3 + (

a2 + b2Y
2)dY

dt2
= 0 (14)

where

α2 = 1 + γ 2
2 C2

3g2 = 1 − 4γ 2
2

a3

b3
g2,

β2 = γ 2
2 C2

3g2
2 = −4γ 2

2
a3

b3
g2

2

The latter equation admits an approximate steady
state solution that can be written as a Jacobi elliptic
function:

Y(t2) ≈ C2cn(A2t2, k2) (15)

where

A2
2 = α2 + β2C

2
2 , k2

2 = β2C
2
2

2A2
2

,
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α2 = 1 − 4γ 2
2

a3

b3
g2, β2 = −4γ 2

2
a3

b3
g2

2

Here, C2 is the amplitude of the solution, the coef-
ficient A2 affects the frequency of the solution, and
the modulus k2 affects both the amplitude and fre-
quency of the solution. The above expressions for
A2 and k2 in terms of C2 represent the frequency-
amplitude relation for the solution.

The amplitude C2 is a root of a Melnikov integral
and takes the value of the solution to the following
equation:

H2 = a2I1(k2) + b2C
2
2 I2(k2) = 0 (16)

where

I1(k2) = 1

3k2
2

[(
2k2

2 − 1
)
E(k2) + (

1 − k2
2

)
K(k2)

]

I2(k2) = 1

15k4
2

[
2
(
k4

2 − k2
2 + 1

)
E(k2)

− (
k4

2 − 3k2
2 + 2

)
K(k2)

]

k2 denotes the value of the modulus corresponding
to C2, K(k) is the complete elliptic integral of the
first kind and E(k) is the complete elliptic integral
of the second kind.

Such a limit cycle solution has a period T2 ex-
pressed as

T2 = 4K(k2)

A2

From (14) and (15), we can see that the steady state
behavior of Y depends only on a2, b2, a3, b3, g2,

and γ2.

It is worth noting that while the uncoupled y os-
cillator in (1) has only one equilibrium point at the
origin, (14) shows that Y can posses two additional
equilibrium points given by

Y = Y ∗ = ±
√−α2

β2
,

dY

dt2
= 0 (17)

Such a change of the number of equilibrium points
of a system is a well-known nontrivial effect of fast
excitation [15]. We can see that these equilibrium
points exist only if α2 and β2 have opposite signs.

• The equation governing X takes the following form:

d2X

dt2
1

+ α1X + β1X
3 + (

a1 + b1X
2)dX

dt1
= 0 (18)

where

α1 = 1 − 2γ 2
1 g1F, β1 = −2γ 2

1 g2
1F

F = 4C2
2

A2
2k

2
2T2

[(
1 − k2

2

)
K(k2) − E(k2)

]

Note that the equation governing X equation is anal-
ogous in form to the Y equation and is treated simi-
larly. Then an approximate steady state solution for
X can be written as

X(t1) ≈ C1cn(A1t1, k1) (19)

where

A2
1 = α1 + β1C

2
1 , k2

1 = β1C
2
1

2A2
1

,

α1 = 1 − 2γ 2
1 g1F, β1 = −2γ 2

1 g2
1F

where C1 is a solution to the following equation:

H1 = a1I1(k1) + b1C
2
1 I2(k1) = 0 (20)

with

I1(k1) = 1

3k2
1

[(
2k2

1 − 1
)
E(k1) + (

1 − k2
1

)
K(k1)

]

I2(k1) = 1

15k4
1

[
2
(
k4

1 − k2
1 + 1

)
E(k1)

− (
k4

1 − 3k2
1 + 2

)
K(k1)

]

The corresponding period of X in t1 is

T1 = 4K(k1)

A1

Again, while the uncoupled x oscillator in (1) has
only one equilibrium point at the origin, (18) shows
that X can posses two additional equilibrium points
given by

X = X∗ = ±
√−α1

β1
,

dX

dt1
= 0 (21)

These equilibrium points exist only if α1 and β1

have opposite signs.
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From (18) and (19), we can see that the steady
state behavior of X depends on the following para-
meters: ai and bi for i = 1,2,3, as well as gi and γi

for i = 1,2.

5 Bifurcation of limit cycles

Notice that there are many parameters in the obtained
results. In this section, we discuss the effect of vary-
ing the coupling strengths γ1 and γ2 while holding the
other parameters fixed.

From (14), we can see that the behavior of Y does
not depend on γ1. However, as γ2 is varied while the
other parameters are fixed, α2 and β2 vary. Detailed
analysis of the codimension two bifurcation that oc-
curs in a system of the form of (14) can be found in
the literature [7]. In particular, for certain parameter
values, there exists an unstable limit cycle solution, in
addition to the stable one [7]. This unstable limit cycle
is born through a Hopf bifurcation followed by a ho-
moclinic bifurcation [7]. When that unstable limit cy-
cle is first born, it encloses the origin and has a smaller
amplitude than the stable limit cycle. As parameters
are varied, the two limit cycles approach each other
until they suddenly coalesce and disappear [7]. Once
the cycles disappear, the only stable attractors for the
system are the two equilibrium points given in (17).

It is found that as γ2 is increased, the period of os-
cillation of the y oscillator increases, and for γ2 equal
to a critical value γ2cr , the limit cycle suddenly disap-
pears. That is, for γ2 ≥ γ2cr , (16) has no real solution.

Similarly, holding all other parameters fixed, as γ1

is increased, α1 and β1 in (18) vary. Then the equa-
tion governing X undergoes the same bifurcations as
the Y equation. It is found that as γ1 is increased the
period of the x oscillations increases and then the limit
cycle of x suddenly disappears for γ1 equal to a crit-
ical value γ1cr . That is, for γ1 ≥ γ1cr , (20) has no real
solution.

While the Y equation is independent of γ1, the X

equation depends on both γ2 and γ1. This is because
the X equation depends implicitly on the amplitude
and period of Y through the factor F , as expressed
in (18). Consequently, the value of γ1cr varies as γ2 is
varied.

The bifurcation diagram in Fig. 2 summarizes the
dependence of the existence of stable limit cycle solu-
tions for X and Y on the value of γ1 and γ2. The rest

of the parameters were fixed to the following typical
values:

a1 = a2 = a3 = −0.1

b1 = b2 = b3 = 0.5

g1 = g2 = g3 = −0.5

ω1 = ω2 = ω3 = 1

ε = 0.04

6 Numerical validation

In order to check the approximate formal solution to
(4) that we obtained, we start by fixing γ2 = 1 and
varying γ1. Throughout this section, the other parame-
ters are fixed to the set of values given in the previ-
ous section. Figures 3, 4, 5, and 6 show the approxi-
mate formal solution compared to that obtained from
numerical integration. In all these plots, dotted lines
correspond to the approximate formal solution of the
X, Y, and Z equations, and solid lines correspond to
numerical solutions of the full system in (4).

For a fixed γ2 = 1, as γ1 is increased, we can see
that the limit cycle of x disappears for γ1 = 1.73
(Fig. 4). Now, if instead, we fix γ1 = 1.73 but increase
γ2, x regains its limit cycle solution as shown in Fig. 5.
As γ2 is increased further, as in Fig. 6, the limit cycle
of the y oscillator disappears.

Thus, the appearance of limit cycles in the numer-
ical solution agrees well with the bifurcation predic-
tions obtained from the approximate formal solution.
The observed difference in oscillation period between
numerical and perturbation solutions (see, e.g., x in
Fig. 3 and y in Fig. 5) is due to the approximate na-
ture of the perturbation method, which involves a for-
mal expansion of frequency in a power series in ε, and
which produces inaccuracies due to the assumption
that ε � 1. Note that since the system is autonomous,
the phase of the steady state periodic solution is arbi-
trary, which accounts for the difference in phase be-
tween numerical and perturbation solutions when the
oscillation periods agree, e.g., y and z in Fig. 3.

7 Conclusion

The standard DPM procedure was extended to study
the dynamics of three coupled nonlinear oscillators.
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Fig. 2 Regions are
displayed in the γ1 ,γ2
plane for which different
steady state solutions exist.
The γ1cr and γ1cr curves are
the boundaries on which
bifurcations occur. ε = 0.04

The oscillators, when uncoupled, have a steady state
limit cycle solution due to a van der Pol type non-
linearity. The frequencies of these limit cycle solu-
tions are widely separated such that ω1 = O(1), ω2 =
O(1/ε) and ω3 = O(1/ε2), where ε � 1. To leading
order, the approximate motion of each of the oscilla-
tors is found to be only affected by the coupling to
a faster oscillator. So, the fastest oscillator with fre-
quency ω3 is unaffected by the coupling to the slower
oscillator, while the amplitude and the frequency of the
limit cycles of the other two oscillators with frequen-
cies ω1 and ω2 are found to vary as the strength of
the nearest neighbor coupling is varied. We note that
in a system of two such coupled oscillators, the faster
oscillator acts like a forcing function and the system
behaves like a forced single degree of freedom sys-
tem comparable to that studied by Bourkha and Bel-
haq [3].

The steady state limit cycle motions of oscillators
1 and 2 take the form of a Jacobi elliptic function. It
was shown that for coupling strength greater than cer-

tain critical values, such a stable limit cycle solution
of one of the oscillators disappears. It is worth not-
ing that since the fastest oscillator is unaffected by the
form of coupling used, replacing the fastest oscillator
by an external harmonic forcer of the same frequency
would lead to a nonautonomous system of two cou-
pled oscillators with a similar behavior to the system
considered here.

Finally, we note that the particular bifurcations that
occur in such a system are highly dependent on the
form of the coupling used. The coupling used here
had the form of (1 + gx2) that is reminiscent of the
linearization of the cosine function that often appears
multiplying a fast forcer function in problems of me-
chanics and leads to the birth of new equilibrium
points [15]. When the equation of a slow oscillator
is averaged over a faster timescale, any fast variable
present in that equation will average out to zero or a
constant unless it multiplies the slower variable. This
is because according to the DPM assumptions, any
fast component is to have zero average over that fast
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Fig. 3 Approximate formal
solution (dotted lines)
compared to that obtained
from numerical integration
of (4) (solid lines) for
γ2 = 1, γ1=1.72, ε = 0.04,
cf. Fig. 2

Fig. 4 Approximate formal
solution (dotted lines)
compared to that obtained
from numerical integration
of (4) (solid lines) for
γ2 = 1, γ1=1.73, ε = 0.04,
cf. Fig. 2

timescale. This leads to the need for a mixed nonlinear
coupling term in order for nontrivial effects to occur.

We expect different bifurcations to occur if different
forms of nonlinear coupling are used.
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Fig. 5 Approximate formal
solution (dotted lines)
compared to that obtained
from numerical integration
of (4) (solid lines) for
γ2 = 1.69, γ1 = 1.73,
ε = 0.04, cf. Fig. 2

Fig. 6 Approximate formal
solution (dotted lines)
compared to that obtained
from numerical integration
of (4) (solid lines) for
γ2 = 1.7, γ1=1.73,
ε = 0.04, cf. Fig. 2



140 H. Sheheitli, R.H. Rand

Acknowledgement We thank Dr. Si Mohamed Sah for shar-
ing with us references on the method of direct partition of mo-
tion and for reviewing the MS.

Appendix A: Details of direct partition of motion

The method of direct partition of motion (DPM) is
used to study the dynamics of the following system:

ẍ + x + (
a1 + b1x

2)ẋ = γ1
(
1 + g1x

2)ẏ

ÿ + ω2
2

ε2
y + ω2

ε

(
a2 + b2y

2)ẏ

= ω2

ε

(
1 + g2y

2)[γ1ẋ + γ2ż]

z̈ + ω2
3

ε4
z + ω3

ε2

(
a3 + b3z

2)ż = ω3

ε2
γ2

(
1 + g3z

2)ẏ

(22)

where we seek an approximate solution of partitioned
as follows:

x = X(t1) + εξ(t1, t2, t3)

y = Y(t2) + εη(t1, t2, t3) (23)

z = Z(t3) + εζ(t1, t2, t3)

The key assumption of DPM is that a fast component
of motion is periodic and has a zero average over that
fast time scale [1]. Such a condition on ξ and η and
their derivatives can be written as:

〈ξ 〉2 =
〈
∂ξ

∂t2

〉

2
=

〈
∂2ξ

∂t2
2

〉

2

= 〈ξ 〉3 =
〈
∂ξ

∂t3

〉

3
=

〈
∂2ξ

∂t2
3

〉

3

= 〈η〉3 =
〈
∂η

∂t3

〉

3
=

〈
∂2η

∂t2
3

〉

3
= 0 (24)

In addition, a slow function, that is, a function of one
time scale only, is assumed not to change significantly
over a period of a faster time scale, such that

〈X(t1)〉2 = X(t1), 〈X(t1)〉3 = X(t1),
(25)

〈Y(t2)〉3 = Y(t2)
〈
dX

dt1

〉

2
= dX

dt1
,

〈
d2X

dt2
1

〉

2
= d2X

dt2
1

,

〈
dX

dt1

〉

3
= dX

dt1
,

〈
d2X

dt2
1

〉

3
= d2X

dt2
1

〈
dY

dt2

〉

3
= dY

dt2
,

〈
d2Y

dt2
2

〉

3
= d2Y

dt2
2

The strategy is to make use of the assumptions in (24)
and (25), in order to derive equations that govern X,
Y , and Z. To that end, we perform the following steps:

• substitute (23) into the system in (22); the deriva-
tives are given by the following expressions:

ẋ = dX

dt1
+ ε

∂ξ

∂t1
+ ω2

∂ξ

∂t2
+ ω3

ε

∂ξ

∂t3

ẍ = d2X

dt2
1

+ ε
∂2ξ

∂t2
1

+ ω2
2

ε

∂2ξ

∂t2
2

+ ω2
3

ε3

∂2ξ

∂t2
3

+ 2ω2
∂2ξ

∂t1∂t2
+ 2

ω3

ε

∂2ξ

∂t1∂t3
+ 2

ω2ω3

ε2

∂2ξ

∂t2∂t3

ẏ = ω2

ε

dY

dt2
+ ε

∂η

∂t1

+ ω2
∂η

∂t2
+ ω3

ε

∂η

∂t3

ÿ = ω2
2

ε2

d2Y

dt2
2

+ ε
∂2η

∂t2
1

+ ω2
2

ε

∂2η

∂t2
2

+ ω2
3

ε3

∂2η

∂t2
3

+ 2ω2
∂2η

∂t1∂t2
+ 2

ω3

ε

∂2η

∂t1∂t3
+ 2

ω2ω3

ε2

∂2η

∂t2∂t3

ż = ω3

ε2

dZ

dt3
+ ε

∂ζ

∂t1
+ ω2

∂ζ

∂t2
+ ω3

ε

∂ζ

∂t3

z̈ = ω2
3

ε4

d2Z

dt2
3

+ ε
∂2ζ

∂t2
1

+ ω2
2

ε

∂2ζ

∂t2
2

+ ω2
3

ε3

∂2ζ

∂t2
3

+ 2ω2
∂2ζ

∂t1∂t2
+ 2

ω3

ε

∂2ζ

∂t1∂t3
+ 2

ω2ω3

ε2

∂2ζ

∂t2∂t3

• collect terms of O(1/ε4) in the z equation, this re-
sults in an equation governing Z(t3):

d2Z

dt2
3

+ Z + (
a3 + b3Z

2)dZ

dt3
= 0 (26)

• collect terms of O(1/ε3) in the y equation, this pro-
vides an expression for η in terms of Y and Z:

∂2η

∂t2
3

− γ2
ω2

ω3

(
1 + g2Y

2)dZ

dt3
= 0 (27)

• collect terms of O(1/ε2) in the y equation:

d2Y

dt2
2

+ Y + (
a2 + b2Y

2)dY

dt2
− 2γ2g2

ω3

ω2
Y

(
η
dZ

dt3

)
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+ ω3

ω2
Y 2

[
b2

∂η

∂t3
− γ2g2

∂ζ

∂t3
+ γ1g2

∂ξ

∂t3

]

+ ω3

ω2

[
a2

∂η

∂t3
− γ2

∂ζ

∂t3
− γ1

∂ξ

∂t3
+ 2

∂2η

∂t2∂t3

]
= 0

(28)

• Average (28) over the fastest time scale t3, making
use of (24) and (25), the result is an equation gov-
erning Y (t2):

d2Y

dt2
2

+Y +(
a2 + b2Y

2)dY

dt2
−2γ2g2

ω3

ω2
Y

〈
η
dZ

dt3

〉

3
= 0

(29)

• collect terms of O(1/ε3) from the x equation:

∂2ξ

∂t2
3

= 0 ⇒ ξ = ξ̃ (t1, t2) + t3ξ̂ (t1, t2)

⇒ ξ = ξ̃ (t1, t2) = ξ(t1, t2 only) (30)

We have set ξ̂ to zero, to abide by the assumption
that a fast component of motion is to be periodic
on the fast time scale. Note, however, that we have
not enforced the condition given in (24) which re-
quires that ξ is to have a zero average over a period
in t3, and that is because the periodicity restriction
we have just enforced has established that ξ is not
a function of t3, so ξ instead would be unchanged
under the operation of averaging over a period of t3.

• looking at O(1/ε2) terms in the x equation

∂2ξ

∂t2∂t3
= 0

we see that this condition is readily satisfied by the
result in (30).

• collect terms of O(1/ε) in the x equation:

∂2ξ

∂t2
2

− γ1

ω2

(
1 + g1X

2)dY

dt2

+ 2
ω3

ω2
2

X2
[
b1

∂ξ

∂t3
− γ1g1

∂η

∂t3

]

+ ω3

ω2
2

[
2

∂2ξ

∂t1∂t3
+ a1

∂ξ

∂t3
− γ1

∂η

∂t3

]
= 0 (31)

• substitute the expression for ξ from (30) in (31),
then average (31) over the fastest time scale t3, al-
ways using (24) and (25). We obtain an equation

governing ξ in terms of X and Y :

∂2ξ

∂t2
2

− γ1

ω2

(
1 + g1X

2)dY

dt2
= 0 (32)

• collect terms of O(1) in the x equation:

d2X

dt2
1

+ X + (
a1 + b1X

2)dX

dt1

+ X

[
2b1ω3ξ

∂ξ

∂t3
− 2γ1g1ω2ξ

dY

dt2

− 2γ1g1ω3ξ
∂η

∂t3

]

+ ω2X
2
[
b1

∂ξ

∂t2
− γ1g1

∂η

∂t2

]

+
[
a1ω2

∂ξ

∂t2
− γ1ω2

∂η

∂t2
+ 2ω2

∂2ξ

∂t1∂t2

]
= 0 (33)

• substitute (32) into (33) and then average (33) over
the fastest time scale t3, finally average the result-
ing equation over the t2 time scale. The result is an
equation governing X:

d2X

dt2
1

+X+(
a1 + b1X

2)dX

dt1
−2γ1g1ω2X

〈
ξ
dY

dt2

〉

2
= 0

(34)

Appendix B: Details of solving for X, Y , and Z

We start by finding an approximate solution for Z. We
rescale a3 and b3 so that the Z equation looks as fol-
lows:

d2Z

dt2
3

+ Z + ε
(
a3 + b3Z

2)dZ

dt3
= 0 (35)

We expand Z in an asymptotic series:

Z(t3) = Z0(t3) + εZ1(t3) + · · ·

First, we collect the leading order terms to get an equa-
tion for Z0:

d2Z0

dt2
3

+ Z0 = 0 ⇒ Z0 = C3 cos(t3)
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Then we substitute this expression for Z0 into the
equation we obtain from collecting the O(ε) terms
in (35). The result is an equation governing Z1:

d2Z1

dt2
3

+ Z1 − (
a3 + b3Z

2
0

)dZ0

dt3
= 0

⇒ d2Z1

dt2
3

+ Z1 = a3C3 sin(t3)

+ b3C
3
3 cos2(t3) sin(t3)

= a3C3 sin(t3) + b3C
3
3

4

[
sin(3t3) + sin(t3)

]

Removing secular terms provides the following values
for C3, the amplitude of Z0:

C3 = 0 or C3 = 2

√
−a3

b3

Hence, the limit cycle solution for the Z equation is
expressed as

Z(t3) ≈ C3 cos(t3), C3 = 2

√
−a3

b3
(36)

Substituting this in the equation governing η, we get

∂2η

∂2t3
+ γ2

ω2

ω3

(
1 + g2Y

2)C3 sin(t3) = 0

We solve for η by integrating twice over t3:

η = γ2C3
ω2

ω3

(
1 + g2Y

2) sin(t3) + c1(t1, t2)t3

+ c2(t1, t2)

Now, to satisfy the assumption that η is periodic and
has a zero average over t3, the functions c1 and c2 need
to be identically zero. So, the expression for η reduces
to

η = η(t2, t3) = γ2C3
ω2

ω3

(
1 + g2Y

2) sin(t3) (37)

The two expressions for Z and η in (36) and (37) are
substituted in the equation for Y which we restate here:

d2Y

dt2
2

+Y +(
a2 + b2Y

2)dY

dt2
−2γ2g2

ω3

ω2
Y

〈
η
dZ

dt3

〉

3
= 0

The definite integral that Z and η appear in can now
be evaluated as follows:
〈
η
dZ

dt3

〉

3
= 1

2π

∫ 2π

0
γ2C3

ω2

ω3

(
1 + g2Y

2) sin(t3)

× (−C3 sin(t3)
)
dt3

= − 1

2π
γ2C

2
3
ω2

ω3

(
1 + g2Y

2)
∫ 2π

0
sin2(t3) dt3

= −γ2C
2
3

2

ω2

ω3

(
1 + g2Y

2)

Then the equation governing Y becomes:

d2Y

dt2
2

+ Y + (
a2 + b2Y

2)dY

dt2

+γ 2
2 C2

3g2Y
(
1 + g2Y

2) = 0 (38)

This equation can be rewritten as

d2Y

dt2
2

+ α2Y + β2Y
3 + (

a2 + b2Y
2)dY

dt2
= 0 (39)

where

α2 = 1 + γ 2
2 C2

3g2 = 1 − 4γ 2
2

a3

b3
g2,

β2 = γ 2
2 C2

3g2
2 = −4γ 2

2
a3

b3
g2

2

We rescale a2 and b2 such that the equation becomes

d2Y

dt2
2

+ α2Y + β2Y
3 + ε

(
a2 + b2Y

2)dY

dt2
= 0

The global bifurcations that occur in such a system as
α2 and β2 are varied, are presented in the literature [7].
It is known that for a range of parameter values, the
system has a stable limit cycle, but as the parameters
are varied, this stable limit cycle could disappear after
colliding with an unstable limit cycle. After that, the
system will have two stable equilibrium points, other
than the origin which is a saddle for such parameter
values. Here, we will seek an expression for that stable
limit cycle solution, which we assume to be an O(ε)

perturbation off of a closed orbit of the conservative
system corresponding to ε = 0. These closed orbits are
known to take the form of Jacobi elliptic functions [5].
First, we rewrite the second order equation as a system
of two first order equations:

dY

dt2
= W,

dW

dt2
= −α2Y − β2Y

3 − ε
(
a2 + b2Y

2)W
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As we mentioned, the solutions of the ε = 0 system
can be written as

Y = Ccn(At2, k)

where A2 = α2 + β2C
2, k2 = β2C

2

2A2

Here, cn is one of the periodic Jacobi elliptic functions
which has a period in time t2 given by

T2 = 4K(k)

A

where K(k) is the complete elliptic integral of the first
kind. We can see that the period depends on the co-
efficient A and the modulus k, which in turn depend
on the amplitude C and the parameters α2 and β2

of the system. This relation captures the frequency–
amplitude dependence brought about by the cubic
nonlinearity that was introduced into the equation on
Y due to the coupling with Z.

When ε is nonzero, depending on the parameters
of the system, some of these closed orbits might per-
sist and turn into limit cycles. The amplitude of such a
limit cycle, when it exists, takes the values that make
the Melnikov integral around that orbit equal to zero
[12]. The Melnikov integral around these orbits can be
written as

M =
∫ T2

0
−(

a2 + b2Y
2)W 2 dt2

with

Y = Ccn(At2, k),

W = dY

dt2
= −CAsn(At2, k)dn(At2, k)

⇒ M = −
∫ T2

0
a2C

2A2sn2(At2, k)dn2(At2, k)dt2

−
∫ T2

0
b2C

4A2cn2(At2, k)sn2(At2, k)

× dn2(At2, k) dt2

where sn and dn are periodic Jacobi elliptic functions.
For a fixed set of parameter values: a3, b3, a2, b2, γ2,

and g2, we substitute the expressions for A and k in
terms of C into the above expression, and look for
values of C for which M = 0. These values give the
amplitude of the limit cycle of the nonzero ε system,

when such a limit cycle exists. We denote this special
amplitude by C2. The M = 0 condition, which deter-
mines C2, can be written concisely as

H2 = a2I1(k2) + b2C
2
2 I2(k2) = 0 (40)

where

I1(k2) = 1

3k2
2

[(
2k2

2 − 1
)
E(k2) + (

1 − k2
2

)
K(k2)

]

I2(k2) = 1

15k4
2

[
2
(
k4

2 − k2
2 + 1

)
E(k2)

− (
k4

2 − 3k2
2 + 2

)
K(k2)

]

where k2 denotes the value of the modulus correspond-
ing to C2 and E(k) is the complete elliptic integral of
the second kind. The expressions for I1 and I2 were
obtained by evaluating the definite integrals appearing
in the expression for M [4].

Hence, for each set of parameter values, (40) can
be solved numerically to give the value of C2 and then
the approximate expression for Y is given by

Y(t2) ≈ C2cn(A2t2, k2) (41)

where

A2
2 = α2 + β2C

2
2 , k2

2 = β2C
2
2

2A2
2

,

α2 = 1 − 4γ 2
2

a3

b3
g2, β2 = −4γ 2

2
a3

b3
g2

2

and this solution has a period T2 expressed as

T2 = 4K(k2)

A2

Note that for certain parameter values, (40) could have
more than one solution. Based on the knowledge of
the sequence of bifurcations that occur for such a sys-
tem [7], we know that the stable limit cycle always has
a larger amplitude than any unstable limit cycle that
might exist simultaneously. So, C2 is taken to be the
solution to (40) with the largest value. Also, for cer-
tain parameter values, there could be no solutions to
(40) and that would mean that no limit cycle solution
exists for the Y equation.

Substituting (41) into the equation governing ξ , we
obtain

∂2ξ

∂t2
2

− γ1

ω2

(
1 + g1X

2)dY

dt2
= 0
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⇒ ∂ξ

∂t2
= γ1

ω2

(
1 + g1X

2)Y + c3(t1)

⇒ ∂ξ

∂t2
= γ1

ω2

(
1 + g1X

2)Y (42)

We have set c3 to be identically zero in order to satisfy
the condition that ξ has a zero average over t2. Now,
we can use this result, along with (41), to evaluate the
definite integral that appears in the X equation:

〈
ξ
dY

dt2

〉

2
= 1

T2

∫ T2

0
ξ
dY

dt2
dt2

= 1

T2

[
(ξY )|T2

0 −
∫ T2

0

dξ

dt2
Ydt2

]

= − 1

T2

∫ T2

0

γ1

ω2

(
1 + g1X

2)Y 2 dt2

= − γ1

ω2

(
1 + g1X

2)

× 1

T2

∫ T2

0
C2

2cn2(A2t2, k2) dt2

⇒
〈
ξ
dY

dt2

〉

2
= γ1

ω2

(
1 + g1X

2)F

where F = 4C2
2

A2
2k

2
2T2

[(
1 − k2

2

)
K(k2) − E(k2)

]
(43)

The expression for F was obtained by evaluating the
definite integral of cn2 [4]. Note that we have set the
constant term generated by the integration by parts to
zero. This is because Y is assumed periodic in t2 with
period T2, then this would be also true for ξ as seen
from (42).

After substituting (43), the X equation becomes

d2X

dt2
1

+ X + (
a1 + b1X

2)dX

dt1

− 2γ 2
1 g1X

(
1 + g1X

2)F = 0

We rewrite this as

d2X

dt2
1

+ α1X + β1X
3 + (

a1 + b1X
2)dX

dt1
= 0 (44)

where

α1 = 1 − 2γ 2
1 g1F, β1 = −2γ 2

1 g2
1F

This equation has the same form as (39) and so it will
admit a similar solution to that given in (41). An ap-

proximate solution for X can then be written as

X(t1) ≈ C1cn(A1t1, k1) (45)

where

A2
1 = α1 + β1C

2
1 , k2

1 = β1C
2
1

2A2
1

,

α1 = 1 − 2γ 2
1 g1F, β1 = −2γ 2

1 g2
1F

F = 4C2
2

A2
2k

2
2T2

[(
1 − k2

2

)
K(k2) − E(k2)

]

C1 is determined by numerically solving the following
equation:

H1 = a1I1(k1) + b1C
2
1 I2(k1) = 0 (46)

with

I1(k1) = 1

3k2
1

[(
2k2

1 − 1
)
E(k1) + (

1 − k2
1

)
K(k1)

]

I2(k1) = 1

15k4
1

[
2
(
k4

1 − k2
1 + 1

)
E(k1)

− (
k4

1 − 3k2
1 + 2

)
K(k1)

]

The corresponding period of X in t1 is

T1 = 4K(k1)

A1

Again, we note here that the X equation will admit
such a limit cycle for a certain set of values of the pa-
rameters, only if these values allow a solution to (46).

Note that if parameters in the Y equation are such
that the only stable steady state solution is an equilib-
rium point, then Y takes on a constant value. In this
case, the term including dY

dt2
in (34) vanishes, and Y

has no influence on X, in which case the form of the
equation governing X reduces to that of (26) on Z, in
which case the X steady state solution becomes anal-
ogous to (36). That is, the limit cycle of X becomes

very close to a harmonic oscillation X ≈ 2
√−a1

b1
cos t1

which corresponds to the dotted X solution in Fig. 6.
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