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Abstract This paper examines the modeling and solu-
tion of large-order nonlinear systems with continuous
nonlinearities which are spatially localized. This local-
ization is exploited by a combined component mode
synthesis (CMS)—dynamic substructuring approach
for efficient model reduction. A new ordering method
for the Fourier coefficients used in the Harmonic Bal-
ance Method (HBM) is proposed. This allows the cal-
culation of the slave dynamic flexibility matrix, us-
ing simple analytical expressions thus saving consid-
erable computational effort by avoiding inverse cal-
culation. This procedure is also capable of handling
proportional damping. A hypersphere-based continua-
tion technique is used to trace the solution, and hence
track bifurcations since it has the advantage that the
augmented Jacobian matrix remains square. The re-
duced system is also solved using a time-variational
method (TVM) which generates sparse Jacobian ma-
trices when compared with HBM. Several systems in-
cluding those with parametric excitation and internal
resonances are solved to demonstrate the capability of
the proposed schemes. A comparison of these tech-
niques and their effectiveness in solving extremely
strong nonlinear systems with continuous nonlinear-
ities is discussed.
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Nomenclature
HBM Harmonic Balance Method
TVM Time Variational Method
DOF Degrees-of-Freedom
M Mass matrix
C Damping matrix
K Stiffness matrix
ẍ Acceleration vector
Px Velocity vector
t Time
x Displacement vector
f(x, ẋ) Nonlinear force vector
F(t) External excitation vector
xk(t) Approximated Fourier series expansion of

displacement vector for kth DOF
x̃k0 DC term of the Fourier series expansion

of displacement kth DOF
x̃c
kn Coefficient of the cosine term of Fourier

series expansion of displacement kth
DOF

x̃s
kn Coefficient of the sine term of Fourier

series expansion of displacement kth
DOF

Fk(t) Approximated Fourier series expansion of
external force vector applied on kth DOF
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F̃k0 DC term of the Fourier series of external
force vector kth DOF

F̃ c
kn Coefficient of the cosine term of Fourier

series of external force vector kth DOF
F̃ s

kn Coefficient of the sine term of Fourier
series expansion of external force vector
kth DOF

fk(x, ẋ) Approximated Fourier series expansion of
nonlinear force vector kth DOF

f̃k0 DC term of the Fourier series of
expansion of nonlinear force vector kth
DOF

f̃ c
kn Coefficient of the cosine term of Fourier

series of nonlinear force vector kth DOF
f̃ s

kn Coefficient of the sine term of Fourier
series expansion of nonlinear force vector
kth DOF

fpk(x, ẋ, t) Approximated Fourier series expansion of
parametric excitation vector kth DOF

f̃pk0 DC term of the Fourier series of
expansion of parametric excitation vector
kth DOF

f̃ c
pkn Coefficient of the cosine term of Fourier

series of parametric excitation vector kth
DOF

f̃ s
pkn Coefficient of the sine term of Fourier

series expansion of parametric excitation
vector kth DOF

α Nonlinear/Parametric excitation
coefficient

R(γ ) Residue vector
Y Fourier/ Time variational Admittance

Matrix
Yss

−1 Slave Flexibility Matrix
J Jacobian matrix
ε Convergence tolerance
f̂ Nonlinear force TVM coefficients
x̂ Displacement TVM coefficients
F̂ External force TVM coefficients
U Eigen vector matrix
φ Retained Mode matrix
ψ Constraint mode matrix
ζ Damping ratio
ω Excitation frequency
�i ith Natural frequency
� Increment between iterations
c Hypersphere center
FM Full Model
MS Mode Superposition

PC Physical Condensation
CM Component Mode

Subscripts
ss Slave partition
sm Slave master partition
ms Master slave partition
mm Master master partition

1 Introduction

The nonlinearities in a significant number of mechan-
ical systems are localized. For example, squeeze film
dampers in a rotor-bearing system, rubbing between
the stator and rotor of gas turbine engines or inter-
face friction in turbine blades which generate nonlin-
ear forces are localized spatially. The mathematical
models for most of the above described mechanical
systems are developed using finite element techniques
with the resulting model size of the order of at least
a few thousands of degrees-of-freedom (DOF). Out of
these few thousand DOF, only very few will be non-
linear DOF for the class of problems described above.
Hence, it is a waste of storage and computational time
if the traditional nonlinear solution techniques are ap-
plied to all the DOF.

The reduction of model size for dynamic analysis is
well known in the case of linear systems. Most of the
commercial finite element packages use mode super-
position techniques for harmonic as well as transient
response calculations. The modal truncation error is
minimized by the use of mode acceleration method
or mode-displacement method. Other methods for the
model size reduction are static or dynamic conden-
sation. The condensation idea was first developed by
Guyan [1]. He used only static condensation for re-
ducing the system. Leung and Fung [2] extended the
dynamic sub-structuring technique to both linear and
nonlinear systems. The dynamic flexibility matrix is
expanded in terms of the fixed interface natural modes
of the system. They used the condensed dynamic stiff-
ness matrix as a function of the excitation frequency
and reduced the problem to only the nonlinear coordi-
nates. In his book, Qu [3] describes many methods for
the static and dynamic condensation.

Another commonly used method for the dynamic
analysis of the large structures is the component mode
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synthesis originally proposed Hurty [4] and then mod-
ified by Craig and Bampton [5]. Here, a complex struc-
ture is divided into distinct regions, or substructures.
Using modal truncation along with the geometric com-
patibility condition, a reduced model is built for the
complete structure. Another model reduction proce-
dure is based on the Krylov subspace method [6].
Here, the linear system is solved iteratively avoiding
matrix–matrix multiplications but using matrix–vector
multiplications.

Since the nonlinear system does not obey the prin-
ciple of superposition, its treatment requires entirely
different methods of solution. There are basically two
approaches to handle a nonlinear problem. First is a
qualitative technique concerned with the general be-
havior and stability of the system near the neighbor-
hood of a known solution, and second quantitative
techniques to find the solution to the differential equa-
tions developed from the nonlinear system, which may
not be available in closed form unlike linear theory.
The theory of nonlinear equations relies highly on
the approximations derived from the linear theory and
such approximations can be applied directly to the
nonlinear terms in the neighborhood of a fixed point
or an orbit. These approaches are usually grouped as
perturbation approaches with the strength of the non-
linearity being small; hence it cannot be applied to
strongly nonlinear systems. Another approach gener-
ally used by the nonlinear community is time inte-
gration of the governing differential equations based
on standard numerical methods [7, 8]. Generally, they
are computationally expensive as one has to start from
a set of initial conditions and then proceed in time
until the transients attenuate due to system damping
and a steady state response is finally obtained. The
time involved increases as the size of the model is in-
creased and if one has to chart out the multiple solu-
tions likely for a set of design parameters, then a large
initial condition map is required. Another disadvan-
tage of the numerical integration process is the “stiff-
ness” of the system (i.e., the condition number of the
state space matrix). If the system is too stiff then meth-
ods such as Backward Difference Formula (BDF) are
used, which are computationally more intensive than
traditional numerical integration methods.

A class of semianalytical procedures has been de-
veloped for the analysis of the nonlinear systems, sub-
jected to periodic excitation, using basis functions in
the time domain [9], frequency domain, or alternating

between both domains. Then the system is minimized
in a weighted residual sense using a variational ap-
proach. The main advantage of these methods is that
they are computationally less intensive than numeri-
cal integration. Urabe and Reteir [10] were the first to
formulate a Galerkin-based harmonic balance method.
The issues of convergence and uniqueness were ad-
dressed by them. In the following years, a number of
papers appeared with varying nomenclature such as
incremental harmonic balance method, trigonometric
collocation method, and Alternating Frequency-Time
(AFT) analysis [11–16]. But most of these techniques
are essentially similar in principle. Cameron and Grif-
fin [17] used this principle for the study of a friction
damper model subject to a three frequency excitation.
Blankenship and Kahraman [18] used the harmonic
balance method to find the steady state forced response
of a mechanical oscillator with parametric excitation
and clearance type nonlinearity. Steady state response
of a nonlinear system was found using the harmonic
balance method by Leung and Fung [2], but the ef-
fect of damping was neglected in their analysis. They
included damping for linear substructures in another
work [19].

Borri et al. [20] gave a comprehensive review of the
basic theory concerned with finite elements in time for
dynamics. Wang [21] proposed a finite element in time
method for analyzing the periodic stick-slip motion of
a SDOF model of frictionally damped turbine blades.
Later [22] he studied the dynamic response and stabil-
ity of a SDOF with unsymmetric piecewise linear non-
linear stiffness using finite element in time. Rook [23]
developed a variational approach which permits the
calculation of the steady-state time domain response
of nonlinear ordinary differential equations. Here, the
transients are avoided unlike numerical integration,
and unlike harmonic balance all calculations are per-
formed in the time domain. Though he developed a
framework for the solution of a multi-DOF system, the
examples used were only single DOF systems.

Most of these approximation methods yield a set
of nonlinear algebraic equations after transformation
and the major computational cost comes from the iter-
ative solution of these algebraic equations. The com-
mon method used is the Newton–Raphson method and
it has the advantage of quadratic convergence when the
initial guess is in the vicinity of the actual solution. For
a strongly nonlinear system, this usually becomes dif-
ficult, and hence the Newton method may fail. Another
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method generally used for solving these equations are
based on the quasi-Newton method or variations of the
same. Broyden [24] was the first person to propose
this method and this class of methods avoid computa-
tion of the Jacobian which is required for the Newton–
Raphson procedure. The Jacobian is calculated or ap-
proximated using finite difference and updated dur-
ing iteration by an approximation method. One such
method called the Powell hybrid method [25] along
with a line search algorithm has been reported to be
quite robust for the solution of the nonlinear algebraic
equations.

Regular numerical integration methods or the time/
frequency methods without continuation will not trace
the unstable solution branch during the solution phase.
Here, in this paper, a hypersphere based approach [26]
is used for tracing the entire solution curve (stable as
well as unstable). The main advantage of this method
is that the resulting Jacobian is a square matrix, and
hence the solution is straightforward and more accu-
rate than a rectangular Jacobian generated by regu-
lar homotopy/arc-length method, for which a pseudo-
inverse is required [27, 28].

Even though different methods have been proposed
by different authors for the solution of large systems,
the convergence properties of these techniques as a
function of strength of the nonlinear parameter(s) are
rarely reported in the literature. Comparison between
different techniques are also not available in the lit-
erature. In this paper, different model reduction tech-
niques such as mode superposition, dynamic conden-
sation, and CMS are used along with HBM and TVM.
Even though a dynamic condensation technique is
used to reduce the size of the dynamical system us-
ing above mentioned methods, the major disadvantage
of this method is the fact that at each iteration level
the frequency dependent slave system has to be in-
verted and that becomes an additional computational
burden. This can be successfully eliminated without
compromising the accuracy in the frequency domain
method (HBM) by component mode- based dynamic
condensation. A time domain approach for a multi-
DOF system using hat function as a basis function is
developed and implemented for MDOF systems. The
different solution methods for the Newton iteration us-
ing LU, QR, and SVD [29] are compared in this paper
and their usefulness is also discussed. A quasi-Newton
method called the Powell hybrid method along with a
line search algorithm is also used for the solution of

the nonlinear algebraic equations. Results from both
techniques are verified with those from numerical inte-
gration (Runge–Kutta–Fehlberg scheme). Numerical
integration is also carried out on the reduced model
using mode superposition. All the above methods are
coupled with the continuation algorithm based on the
hypersphere.

2 Model

Six different models are considered for the analysis,
two distinct 3 DOF models, an axially vibrating beam,
a beam undergoing bending vibration, an internal reso-
nance problem, and a beam with a spring, whose stiff-
ness is time-varying, attached at one end. A cubic non-
linear stiffness is attached to mass m1 along with the
linear stiffness for the first lumped parameter model as
shown in Fig. 1 and to mass m3 for the system shown
in Fig. 2. In the case of the axial or beam bending
problem or for the parametric excitation problem, the
nonlinear stiffness/time-varying stiffness is attached to
the free end as shown in Fig. 3. For the 3 DOF mod-
els, the external force is applied on the mass to which
the nonlinear spring is attached. The model details for
the 3 DOF models are given in Table 1. Since the
mass, damping, and stiffness matrix are symmetric,
only the upper triangular values are given. The axial,
beam bending vibration, and the parametric excitation
problem has been modeled using standard finite ele-
ment method and the details regarding the model are
shown in Table 2. The damping for the beam is as-
sumed to be proportional. For simulating the internal

Fig. 1 3 DOF model 1
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Fig. 2 3 DOF model 2

Fig. 3 Beam Axial, Bending, and with parametric excitation

resonance problem, a 9 DOF model is created with re-
peated eigenvalues as shown in Fig. 4. The model de-
tails are given in Table 3. The equations of motion of
for all the models considered can be written as

Mẍ + Cẋ + Kx + fp(x, ẋ, t) + f(x, ẋ) = Fext(t), (1)

where M, C, and K are the mass, damping, and stiff-
ness matrix of size N × N , f(x, ẋ) is the nonlinear
function of size N × 1, fp(x, ẋ, t) is the localized para-
metric excitation force defined in displacement, veloc-
ity (or both), and in time, of size N × 1. x, ẋ and ẍ
are the displacement, velocity, and acceleration vec-
tors, each of size N × 1, Fext(t) is the external excita-
tion force vector of size N × 1.

3 Model reduction

3.1 Mode superposition

Let UR and UL be the right and left eigenvectors
of the linear system (system assumed unsymmetrical
but with real eigenvalues) containing only the first m

modes. The physical coordinates x is transformed to
generalized coordinates z by x = URz. Premultiplying
the entire equation with UT

L yields

UT
LMUR z̈ + UT

LCUR ż + UT
LKURz + UT

Lfp(z, ż, t)

+ UT
Lf(z, ż) = UT

LF(t). (2)

The above equation will be of the size m×m which is
sufficiently smaller than the original size N . If the sys-
tem is symmetric (as is the case with all the examples
considered in this paper), then the left and right eigen-
vectors are the same, i.e., UL = UR . The frequency is
normalized to � = ω/ωn, where ωn is the first nat-
ural frequency of the system and the time variable
is nondimensionalized by the transformation τ = ωnt .
These transformations help to reduce the overall so-
lution time. This equation is solved using HBM and
TVM which are discussed in Sects. 3.4 and 3.5. The
disadvantage of this method is the spread of the non-
linear function from a few physical coordinates to all
the modal coordinates. Let f and fp are of the form
{0 fnl}T and {0 fpnl}T , but with the transformation UT

Lf
and UT

Lfp it becomes {f1nl f2nl}T and {f1pnl f2pnl}T .
There is a natural disadvantage, since for every itera-
tion the nonlinear force estimation alternates between
modal and physical coordinates as f and fp are defined
on the physical domain.

3.2 Dynamic substructuring

In this method, the assembled mass, stiffness, and
damping matrices are partitioned into master and
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Table 1 3 DOF model
properties Mass (kg) m11 = 5 m22 = 3 m33 = 1

Damping (Ns/m) c11 = 0.15 c22 = 0.15 c33 = 0.05

c12 = −0.10 c23 = −0.05

Stiffness (N/m) k11 = 6 k22 = 6 k33 = 2

k12 = −4 k23 = −2

Model 1

f1(x) = αx3
1 α = 0 α = 6 α = 100

F1(t) = F0 + F1 cosωt F0 = 0 F1 = 0.25 F1 = 1.0

Model 2

f3(x) = αx3
3 α = 0 α = 6 α = 100

F3(t) = F0 + F1 cosωt F0 = 0 F1 = 0.25 F1 = 1.0

Table 2 Beam model properties

Beam Axial Beam Bending Beam Parametric

Density (kg/m3) 2700 2700 2700

Young’s Modulus (GPa) 69 69 69

Cross section (mm × mm) 48 × 3 48 × 3 48 × 3

Length (mm) 370 370 370

DOF per node 1 2 2

Number of Elements 10 10 10

Total DOF 10 20 20

Rayleigh Damping Coeff. (Mass) 0.0245 2.45 2.45

Rayleigh Damping Coeff. (Stiffness) 1.75e–6 1.75e–3 5.25e–4

Nonlinear/Parametric Force knl(x) = αx3
1 knl(x) = αx3

1 Fp = kp(1 − α cos(2ωt))

Fext(t) = F0 + F1 cosωt F0 = 1.0e4; F1 = 6.07e3 F0 = 10.0, F1 = 6.07 F0 = 1.0e3, F1 = 6.07

Table 3 Details of model
with internal resonance Mass (kg) mi = 20, where i = 1 to 9

Stiffness (kN/m) ki = 1, where i = 2,3,4,7,8,10,11,12

k1 = k5 = k9 = 0.225

Damping Assumed Proportional

Rayleigh Damping Coeff (Mass) 0.25

Rayleigh Damping Coeff (Stiffness) 1.00e–3

f9(x) = αx3
9 α = 0; α = 1000 × 100; α = 1000 × 1000

F9(t) = F0 + F1 cosωt F0 = 10; F1 = 13.4

slave subsystems. The DOF where the nonlinearity is
present or where the external load is applied forms
the master system and rest are considered to be slave.
The mass, damping, and stiffness matrices in (1) are
partitioned as shown below:

M =
[

Mss Msm

Mms Mmm

]
; C =

[
Css Csm

Cms Cmm

]
;

(3)

K =
[

Kss Ksm

Kms Kmm

]
.

Equation (1) can then be rewritten as

[
Mss Msm

Mms Mmm

]{
ẍs

ẍm

}
+
[

Css Csm

Cms Cmm

]{
ẋs

ẋm

}
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Fig. 4 System with
internal resonance

+
[

Kss Ksm

Kms Kmm

]{
xs

xm

}
+
{

0
fp(xm, ẋm, t)

}

+
{

0
f(xm, ẋm)

}
=
{

0
Fm

}
, (4)

where xs and xm are the displacement DOFs associ-
ated with the slave and master partitions. The imple-
mentation details along with HBM and TVM are de-
scribed in Sects. 3.4.2 and 3.5.2.

3.3 Component mode synthesis

Another approach to reduce the problem size is us-
ing component mode synthesis. The beam models
analyzed are each divided into two substructures.
A Craig–Bampton type substructure with more num-
ber of DOF is represented using generalized coordi-
nates while the other substructure with nonlinearity
is modeled using physical coordinates. This avoids
the transformation from modal to physical coordinates
for nonlinear function evaluation. Then the assembled

system is partitioned into a slave and master, with
the generalized coordinates forming the slave and the
boundary as well as the nonlinear DOF forming the
master partition.

The constraint modes of the slave substructure
are defined by applying a unit displacement at each
boundary freedom in turn, with all other boundary
freedoms fixed and with all interior freedoms uncon-
strained. Equations of compatibility relate the dis-
placements of the adjoining substructures. The final
set of system generalized coordinates consists, of the
system boundary generalized coordinates plus gener-
alized coordinates for the substructure normal modes
of all of the substructures. Let the governing equation
of motion of the slave subsystem is given by

[
M1

ii M1
ij

M1
ji M1

jj

]{
ẍ1
i

ẍ1
j

}
+
[

K1
ii K1

ij

K1
ji K1

jj

]{
x1
i

x1
j

}
= 0. (5)

The stiffness and mass matrices of substructure 1 are
partitioned into interior i and junction j DOF. Ne-
glecting damping the normal mode of the above sys-
tem is found using eigenvalue analysis. The physical
coordinates of the slave system is transformed into a
set of normal mode and boundary degree using the
transformation
{

x1
i

x1
j

}
=
[

φR ψ

0 I

]{
u1

i

x1
j

}
, (6)

where φR is the matrix of retained right normal modes
of interior DOF of substructure 1 (boundary DOF
fixed) and ψ is the constraint mode matrix and given
by

ψ = −K−1
ii Kij . (7)

In this paper, proportional damping is assumed. Mass,
stiffness, and damping matrices are transformed into
new coordinates as

M̃1 =
[

φT
L 0

ψT I

][
M1

ii M1
ij

M1
ji M1

jj

][
φR ψ

0 I

]
;

K̃1 =
[

φT
L 0

ψT I

][
K1

ii K1
ij

K1
ji K1

jj

][
φR ψ

0 I

]
;

(8)

C̃1 =
[

φT
L 0

ψT I

][
C1

ii C1
ij

C1
ji C1

jj

][
φR ψ

0 I

]
;
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F̃1 =
[

φT
L 0

ψT I

]{
F1

i

F1
j

}
.

The output of this transformation K̃1 will lead to a di-
agonal matrix, where as mass M̃1 and the damping
matrix C̃1 will not be diagonal. The {F1

i F1
j }T is the

external force vector applied in the physical coordi-
nate of substructure 1 and the F̃1 is the force vector
transformed into the new coordinate system.

The governing equation of motion of the master
subsystem is partitioned but no transformation is ap-
plied:
[

M2
ii M2

ij

M2
ji M2

jj

]{
ẍ2
i

ẍ2
j

}
+
[

K2
ii K2

ij

K2
ji K2

jj

]{
x2
i

x2
j

}
= 0. (9)

The stiffness and mass matrices of substructure 2 are
partitioned into interior i and junction j DOF. For
this subsystem the physical coordinates are kept as the
same. To keep the procedure for the component mode
procedure the same an identity matrix transformation
is used.{

x2
i

x2
j

}
=
[

I 0

0 I

]{
u2

i

x2
j

}
. (10)

The mass, stiffness, and damping (proportional) ma-
trices are transformed into new coordinates as

M̃2 =
[

I 0

0 I

]T [
M1

ii M1
ij

M1
ji M1

jj

][
I 0

0 I

]
,

K̃2 =
[

I 0

0 I

]T [
K1

ii K1
ij

K1
ji K1

jj

][
I 0

0 I

]
,

C̃2 =
[

I 0

0 I

]T [
C1

ii C1
ij

C1
ji C1

jj

][
I 0

0 I

]
,

(11)

f̃2
p =

[
I 0

0 I

]T {
f2
pi

f2
pj

}
,

f̃2 =
[

I 0

0 I

]T {
f2
i

f2
j

}
,

F̃2 =
[

I 0

0 I

]T {
F2

i

F2
j

}
,

{f2
i f2

j }T is the nonlinear function at the physical co-

ordinate and f̃2 is the nonlinear function transformed

into the new coordinate system. {F2
i F2

j }T is the exter-
nal force vector applied in the physical coordinate of
substructure 2 and F̃2 is the force vector transformed
into the new coordinate system. The subsystem 1 and
subsystem 2 have a common interface. Physical dis-
placements at the interface are constrained by

x1
j = x2

j . (12)

The assembled coordinate transformation matrix is
given by

u =

⎧⎪⎨
⎪⎩

u1
i

x1
j

u2
i

⎫⎪⎬
⎪⎭=

⎡
⎢⎣

I 0 0 0

0 I 0 I

0 0 I 0

⎤
⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1
i

x1
j

u2
i

x2
j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= S

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1
i

x1
j

u2
i

x2
j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(13)

The transformed nonlinear function as well as the ex-
ternal and parametric excitation forces are

f =

⎧⎪⎨
⎪⎩

f1
i

f1
j

f2
i

⎫⎪⎬
⎪⎭= S

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

0

f2
i

f2
j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

;

fp =

⎧⎪⎨
⎪⎩

f1
pi

f1
pj

f2
pi

⎫⎪⎬
⎪⎭= S

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

0

f2
pi

f2
pj

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

; (14)

F =

⎧⎪⎨
⎪⎩

F1
i

F1
j

F2
i

⎫⎪⎬
⎪⎭= S

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1
i

F1
j

F2
i

F2
j .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

The assembled mass, damping stiffness, and the force
matrices are

M̃ =

⎡
⎢⎢⎢⎢⎣

M̃1
ii 0 0 0

0 M̃1
jj 0 0

0 0 M̃2
ii 0

0 0 0 M̃2
jj

⎤
⎥⎥⎥⎥⎦ ;

C̃ =

⎡
⎢⎢⎢⎢⎣

C̃1
ii 0 0 0

0 C̃1
jj 0 0

0 0 C̃2
ii 0

0 0 0 C̃2
jj

⎤
⎥⎥⎥⎥⎦ ; (15)
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K̃ =

⎡
⎢⎢⎢⎢⎣

K̃1
ii 0 0 0

0 K̃1
jj 0 0

0 0 K̃2
ii 0

0 0 0 K̃2
jj

⎤
⎥⎥⎥⎥⎦ .

The combined mass, damping, and stiffness of the sub-
structures are

M = ST M̃S; C = ST C̃S; K = ST K̃S. (16)

Combining (14) and (16), the final equation for the full
model is

Mü + Cu̇ + Ku + fp + f = F. (17)

The structure of the matrices M, C, and K will be
as follows and they are of size (nmode + nj + nn)

×(nmode + nj + nn). Where nmode is the number of
included modes of substructure 1, nj is the number of
boundary DOF, and nn is the number of DOF of the
substructure 2 (which contains the nonlinear DOF).

M =
[

Mss Msm

Mms Mmm

]
;

C =
[

Css Csm

Cms Cmm

]
; (18)

K =
[

Kss 0

0 Kmm

]
.

The assembled stiffness matrix is diagonal because
the static Green’s function solution which is used as
a constraint mode, diagonalizes the stiffness matrix,
but leads to an inertia coupling which is evident in the
mass matrix structure. So (17) can be rewritten as
[

Mss Msm

Mms Mmm

]{
üs

üm

}
+
[

Css Csm

Cms Cmm

]{
u̇s

u̇m

}

+
[

Kss 0

0 Kmm

]{
us

um

}
+
{

0

fp

}

+
{

0

f

}
=
{

Fs

Fm

}
. (19)

where us and um are the slave and master displace-
ment DOF. Slave DOF consists of only the included
modes of substructure 1 and the master DOF consists

of the boundary DOF and the physical DOF of sub-
structure 2.

Systems with internal resonances have eigenval-
ues (natural frequencies) which are integer multiples
of one or more eigenvalues. Only when a 1:1 inter-
nal resonance occurs, generalized eigenvectors need
to be generated for forming the complete independent
basis vectors. However, defective symmetric systems
are guaranteed to have orthogonal eigenvectors [29].
There are three possible scenarios with the modeling
strategy proposed. For the first case, the entire system
has a 1:1 internal resonance, but the slave system after
partitioning does not have an internal resonance. The
second scenario is where the slave system also has a
1:1 internal resonance, and finally the case where the
full system has no internal resonance but the slave par-
tition has an internal resonance. Since the first scenario
can be handled by the procedure outlined earlier, only
the second and third scenarios need to be examined.
One MDOF case is taken as an example case (Fig. 4),
where the slave system as well as the full system have
a nearly 1:1 internal resonance.

3.4 Harmonic balance method

In HBM, the kth element of the response vector, ex-
ternal force vector and the nonlinear function are ex-
pressed as a truncated Fourier series of n terms as
shown below

xk(t) = x̃k0 +
n∑

l=1

{
x̃c
kl cos(lωt) + x̃s

kl sin(lωt)
}
, (20)

Fk(t) = F̃k0 +
n∑

l=1

{
F̃ c

kl cos(lωt) + F̃ s
kl sin(lωt)

}
,

(21)

fk(x, ẋ) = f̃k0 +
n∑

l=1

{
f̃ c

kl cos(lωt) + f̃ s
kl sin(lωt)

}
,

(22)

fpk
(x, ẋ) = f̃pk0 +

n∑
l=1

{
f̃ c

pkl
cos(lωt) + f̃ s

pkl
sin(lωt)

}
,

(23)

where k = 1,2,3, . . . ,N with N being the number of
DOF. Substituting these into (1) leads to
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⎡
⎢⎢⎢⎢⎣

E11 E12 · · · E1N

E21 E22 · · · E2N

...
...

. . .
...

EN1 EN2 · · · ENN

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̃1

x̃2
...

x̃N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f̃p1

f̃p2

...

f̃pN

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f̃1

f̃2
...

f̃N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F̃1

F̃2
...

F̃N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= R(α), (24)

where R(γ ) is the residual error in the Fourier se-
ries truncation (as Fourier series is an infinite se-
ries) and x̃.., f̃.., F̃.. represents the vector containing the
Fourier coefficients arranged as constant term, cosine
term, and sine term in sequence for a particular DOF.
For example, x̃i is given by {x̃i0, x̃

c
i1, x̃

s
i1, x̃

c
i2, x̃

s
i2, . . . ,

x̃c
in, x̃

s
in}T . Eij will have the following structure and is

of size (2n + 1) × (2n + 1).

Eij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kij 0 0 · · · 0 0

0 kij − ω2mij ωcij · · · 0 0

0 −ωcij kij − ω2mij · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · kij − n2ω2mij nωcij

0 0 0 · · · −nωcij kij − n2ω2mij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

This residual is minimized as

m∑
n=1

⎡
⎢⎣
∫ 2π/ω

0
R(α)

⎛
⎜⎝

1

cos(nωt)

sin(nωt)

⎞
⎟⎠dt

⎤
⎥⎦= 0 (26)

leading to

Yx̃a + +f̃p + f̃ − F̃ = 0. (27)

The above algebraic equation is solved using Newton–
Raphson procedure. The initial value for x̃a is calcu-
lated from the linear equation and this value is used for
computing {x} and {ẋ} at discrete time points (say js),
over t ∈ [0,2π/ω] for a time step of �t = 2π/(js.ω).
Care should be taken while selecting the sample size
to avoid aliasing. From these displacement and veloc-
ity values, a Discrete Fourier Transform (DFT) is per-
formed to get the nonlinear function Fourier coeffi-
cients. The Newton–Raphson procedure requires the
calculation of the Jacobian for every iteration. The Ja-
cobian is given by

J = ∂(Yx̃a + f̃p + f̃ − F̃)

∂ x̃a
. (28)

The iteration is said to have converged when
‖�x̃i

a‖ < ε where i is the iteration number, ε is the
prescribed convergence tolerance. The L∞ norm is
used for checking convergence and the L2 norm of
the residue is also checked to assure complete conver-
gence.

3.4.1 Mode superposition with HBM

Here, mass, damping, and stiffness matrix are taken
from the reduced system given by (2). The rest of the
procedure is same as above. But in case of HBM, the
size of the problem will be increased by the number of
harmonics included in Fourier series. For example, let
the number of harmonics included in the Fourier series
be nhar . Then the total size of the problem for a N

DOF system will be increased to (N × 2nhar + 1) ×
(N ×2nhar +1) from its original size of N × N . This
is better than numerical integration, as in general the
Newton–Raphson will converge in fewer iterations.

3.4.2 Dynamic substructuring with HBM

The final nonlinear algebraic equation is given below.
Let x̃s represents the coefficients from HBM for the
slave DOF and x̃m represents the coefficients from
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HBM for master DOF and f̃ and F̃ are the coefficients
from HBM for nonlinear and external force terms.[

Yss Ysm

Yms Ymm

]{
x̃s

x̃m

}
+
{

0

f̃p

}
+
{

0

f̃

}
=
{

0

F̃

}
, (29)

which leads to

x̃s = −Y−1
ss (Ysmx̃m). (30)

Substituting this into the equation of x̃m gives

(
Ymm − YmsY−1

ss Ysm
)
x̃m + f̃p + f̃ = F̃. (31)

If only stiffness matrix is considered for condensa-
tion, then it is known as a static condensation, while in
the present paper dynamic condensation is carried out,
which includes both mass as well as damping. In the
present methods, while forming Yss and Ysm, damp-
ing is also included. This equation is smaller in size
compared to the original structure as it contains only
the nonlinear DOF (which will be less in number) and
external force DOF which also will be less in num-
ber. The negative side of this method is that it requires
inversion of the frequency dependent slave flexibility
matrix (size of which will be comparable) for every
iteration.

3.4.3 Component mode synthesis based dynamic
substructuring with HBM

Equation (19) represents the final assembled form of
the reduced system using CMS. Let ũsf represent the
Fourier coefficient displacement vector for slave DOF
and ũmf are Fourier coefficient displacement vector

for master DOF. The Fourier coefficient vectors f̃, F̃s,
and F̃m represent the nonlinear function and external
excitation terms of the slave and the master DOF, re-
spectively. Equation (27) can be written in the form

[
Yss Ysm

Yms Ymm

]{
ũsf

ũmf

}
+
{

0

f̃p

}
+
{

0

f̃

}
=
{

F̃s

F̃m

}
,

(32)

which leads to

ũsf = −Y−1
ss

(
F̃s − Ysmũmf

)
. (33)

Substituting this into the equation of x̃mf gives

(
Ymm − YmsY−1

ss Ysm
)
ũmf + f̃p + f̃

= F̃m − YmsY
−1
ss F̃s. (34)

This equation will be of very small size compared to
the original structure as it contains only the nonlin-
ear substructure DOF (which will be less in number)
and the boundary DOF which also will be less in num-
ber. The only disadvantage of this method is that it
requires inversion of the frequency dependent slave
flexibility matrix for every iteration. But this disad-
vantage is avoided in this paper by the arrangement
of Fourier coefficients as shown in Sect. 3.4. From
component mode synthesized matrix, the mass ma-
trix Mss and Kss will be diagonal, and Fourier coef-
ficients arrangement as above gives a structure for Yss

as Yss = [diag{H1,H2, . . . ,Hl}], where l is the num-
ber of kept modes of the substructure 1 and n is the
number of harmonics.

Hi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2
si 0 0 0 0 . . . 0 0

0 �2
si − ω2 2ζω�si 0 0 . . . 0 0

0 −2ζω�si �2
si − ω2 0 0 . . . 0 0

0 0 0 �2
si − 4ω2 4ζω�si . . . 0 0

0 0 0 −4ζω�si �2
si − 4ω2 . . . 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 . . . �2
si − n2ω2 2nζω�si

0 0 0 0 0 . . . −2nζω�si �2
si − n2ω2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (35)
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which is block diagonal and whose inverse can be eval-
uated analytically, hence avoiding the inverse calcula-
tion for each iteration; where �si th is the natural fre-
quency for ith natural mode of the substructure 1. The
only cost involved is in the evaluation of this matrix
in addition to the evaluation of Yss. The inverse of the
Yss is given as Y−1

ss = [diag{B1,B2, . . . ,Bl}], where l

is the number of kept modes of the substructure 1

B−1
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1/�2
si 0 0 0 0 . . . 0 0

0 B11
i −B12

i 0 0 . . . 0 0
0 B12

i B12
i 0 0 . . . 0 0

0 0 0 B21
i −B22

i . . . 0 0
0 0 0 B22

i B21
i . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 0 0 . . . Bn1
i −Bn2

i

0 0 0 0 0 . . . Bn2
i Bn1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(36)

where �si is the ith natural frequency and n is the
number of harmonics.

B
j1
i = �2

si − j2ω2

(�2
si − j2ω2)2 + (2jζω�si )2

;

B
j2
i = 2jζω�si

(�2
si − j2ω2)2 + (2jζω�si )2

.

(37)

The differential matrices for the continuation algo-
rithm also changes. They are calculated appropriately,
and given in Appendix B.1 Hence, the nonlinear prob-
lem can be solved accurately using less number of
DOF without losing accuracy and without explicitly
calculating the inverse for each iteration. It also avoids
the inverse update using the Sherman–Morrison ap-
proximation [29].

3.5 Time variational formulation (TVM)

The governing equations of motion given by (1) in
physical time is transformed to a nondimensional time
using τ = ωt , where ω is the excitation frequency. Ap-
plying the above time scaling into (1) leads to

ω2Mx′′ + ωCx′ + Kx + fp
(
x,x′, τ

)+ f
(
x,x′)= F(τ ),

(38)

where x′ and x′′ are the first and second derivatives
of x with respect to τ . Displacement, velocity, accel-
eration, nonlinear function, and external force are ex-
pressed in terms of the approximated basis functions

say �(τ). Unlike the HBM, where trigonometric func-
tions used have global support, these basis functions
will have only local support (like finite element shape
functions). Details of the type of basis functions and
its properties and structure of the differentiation ma-
trix can be obtained from the paper by Rook [23]. In
this paper, the hat function is used as a basis function.
As in harmonic balance, these variables are substituted
back into (38) and the resulting weak form residual is
formed as given below.

R(x̂) = [ω2(M ⊗ D(2)
)+ ω

(
C ⊗ D(1)

)+ (K ⊗ D(0)
)]

× {x̂} + f̂p(x̂) + f̂(x̂) − F̂, (39)

where ⊗ is the Kronecker product; D(2), D(1) are the
second and first derivative matrix of the basis function
matrix D(0). The nonlinear and external force values
evaluated at the discrete time points are given by f̂(x̂)

and F̂. Equation (38) can then be rewritten as

Yx̂ + f̂p(x̂) + f̂(x̂) − F̂ = 0. (40)

This leads to a set of nonlinear algebraic equation,
which can be solved using Newton–Raphson proce-
dure with the Jacobian calculated as

J = ∂

∂ x̃

{
Yx̃ + f̃p + f̃ − F̃

}
. (41)

The iteration is said to have converged when
‖�x̃i‖ < ε where i is the iteration number, ε is the pre-
scribed convergence tolerance. The main advantage of
this method is the sparse structure of the resulting Ja-
cobian due to the local support of basis vectors. Hence,
the solution can be carried out very fast using sparse
solvers.

3.5.1 Mode superposition with TVM

Here, mass, damping, and stiffness matrix are taken
from the reduced system given by (2). The rest of the
procedure is same as above. In case of time varia-
tional formulation with Np time points, total size of
the problem for a N DOF system will be increased
to (N × Np) × (N × Np) from its original size of
(N × N).

3.5.2 Dynamic substructuring with TVM

The final nonlinear algebraic equation is given below.
Let x̃s represents the coefficients from TVM for slave
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DOF and x̃m represents the coefficients from TVM for
master DOF and f̃ and F̃ are coefficients from TVM
for nonlinear and external force terms.[

Yss Ysm

Yms Ymm

]{
x̃s

x̃m

}
+
{

0

f̃p

}
+
{

0

f̃

}
=
{

0

F̃

}
, (42)

which leads to

x̃s = −Y−1
ss (Ysmx̃m). (43)

Substituting this into the equation of x̃m gives
(
Ymm − YmsY−1

ss Ysm
)
x̃m + f̃p + f̃ = F̃. (44)

In the present methods while forming Yss and Ysm,
damping is also included. This equation is smaller in
size compared to the original structure as it contains
only the nonlinear DOF (which will be less in number)
and the external force DOF which are also small in
number. The downside of this method is that it requires
the inverse of the frequency dependent slave flexibility
matrix (Yss) for every iteration (size of which will be
comparable to the full system). In addition, the Yss is
also discretized in time.

3.5.3 Component mode synthesis based dynamic
substructuring with TVM

Equation (19) represents the final assembled form of
the reduced system. Let ũsf represents TVM coeffi-
cients for slave DOF and ũmf are coefficients for mas-
ter DOF and f̃, F̃,s and F̃s are coefficients of the non-
linear function and coefficients of the slave and the
master DOF external force, respectively. Equation (40)
can be written in the form[

Yss Ysm

Yms Ymm

]{
ũsf

ũmf

}
+
{

0

f̃p

}
+
{

0

f̃

}

=
{

F̃s

F̃m

}
, (45)

which leads to

ũsf = −Y−1
ss

(
F̃s − Ysmũmf

)
. (46)

Substituting this into the equation of ˜xmf gives

(
Ymm − YmsY−1

ss Ysm
)
ũmf + f̃p + f̃

= F̃m − YmsY−1
ss F̃s. (47)

This equation will be of very small size compared to
the original structure as it contains only the nonlinear
substructure DOF (which will be less in number) and
the boundary DOF which also will be less in number.
The disadvantage of this method is that it requires the
frequency dependent slave flexibility matrix for every
iteration (involves an inverse calculation). As in the
case of dynamic substructuring, slave dynamic flexi-
bility matrix for every frequency iteration (involves an
inverse calculation), but the advantage is that the slave
dynamic flexibility matrix has a sparse structure.

3.6 Parametric continuation

As the solution of the above nonlinear problem con-
tains many solution branches for the given set of con-
ditions, it is important to trace all of them. Hence, for
a given amplitude of external force or for a particular
frequency of excitation, multiple solutions are possi-
ble which depends on whether the solution is in the
forward sweep or in the backward sweep. Regular nu-
merical integration procedures will not give the entire
solution due to the fact that it will converge only to the
stable solution. Hence, in order to trace the entire so-
lution space, a continuation method is necessary. The
most commonly used continuation method is the Ho-
motopy method, where the N nonlinear equations in
N nonlinear variables f(x) = 0 are converted into a
new system of equations by adding another variable
xN+1 = λ in addition to x = x1, x2, . . . , xN and define
a new system of equation h(x, λ) = 0 in N + 1 vari-
ables.This mapping h is called the homotopy mapping.
The algorithms used for the solution of above problem
are classified into two, one predictor-corrector algo-
rithms and the other piecewise linear algorithm. How-
ever, these curve tracing algorithms are not widely
used in practical applications because of many rea-
sons. One of the reasons is that the theory and the pro-
gramming of these algorithms seem to be difficult for
practical designers and scientists who are not famil-
iar with the curve tracing algorithms. Here, a sphere
based algorithm is used for the parametric continua-
tion. Equations (27) and (38) are of size N × N . Con-
sidering the excitation frequency ω as the continuation
parameter and adding the variable �ω to the existing
N variables thus making the equation a size N ×N +1.
�ω is calculated by taking ∂/∂ω of (27) and (40). One
more equation is added to these existing N equations
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in N + 1 variables, which is the equation of a hyper-
sphere given by

(x1 − c1)
2 + (x2 − c2)

2 +· · ·+ (xN − cN)2 = r2, (48)

where r is the user given radius for the continuation
and c is the coordinates of the center of the sphere.
In this paper, a previous converged point is taken as
the center. This makes the size of the equations of mo-
tion (N + 1) × (N + 1). Thus, the regular matrix in-
verse/iteration methods can be used. Thus, the final Ja-
cobian form of (27) and (40) will be given by
[

dY11 dY12

dY21 dY22

]{
�x̃

�ω

}
=
{

R(x̃)

R′2

}
, (49)

where

dY11 = ∂(Yx̂ + f̂p(x̂) + f̂(x̂) − F̂)

∂ x̃
,

dY12 = ∂(Yx̂ + f̂p(x̂) + f̂(x̂) − F̂)

∂ω
,

dY21 = ∂((x1 − c1)
2 + (x2 − c2)

2 + · · · + (xN − cN )2 − r2)

∂ x̃
,

dY22 = ∂((x1 − c1)
2 + (x2 − c2)

2 + · · · + (xN − cN )2 − r2)

∂ω
,

and R′2 = ((x1 − c1)
2 + (x2 − c2)

2 + · · ·
+ (xN − cN)2 − r2).

3.7 Stability

As the entire solution curve is traced, stability of the
solution is also important. The stability can be found
in many ways and in this paper the method suggested
by Rook [23] is used for the stability calculation with
TVM and Groll and Ewins [30] for HBM. In this
method, perturbation is assumed to be periodic and the
perturbed equation is transformed to form a quadratic
eigenvalue problem. Such an eigenvalue problem is
solved and the real part of the resulting eigenvalues
determine the local stability of the solution. If all the
eigenvalues are negative, the system is considered to
be asymptotically stable, and if at least one of them is
positive the system is unstable.

3.8 Solution routines

In general, the Gauss elimination method (LU Decom-
position) is used for the solution of the linear system.

The least square solvers based on QR and SVD can be
used for solving square linear system. From the point
of view of number of operations, Gauss elimination is
the best way to solve a square linear system Ax = b by
reducing to an equivalent triangular system, so that it
can be solved easily. The solution to the original prob-
lem is found by a two step substitution process. If the
size of the matrix is N , then it takes 2N3/3 opera-
tions. When the condition number of the matrix is very
high, the Gaussian updates will be erroneous and lead
to wrong results.

QR Decomposition the matrix A of size M × N is
factored into A = QR where Q ∈ RM×M is orthogo-
nal and R ∈ RM×N is upper triangular.When the ma-
trix A becomes ill-conditioned, the QR gives an added
advantage over the Gauss elimination in terms of the
reliability of solution. In the case of nonlinear systems,
this factor is very important. If the size of the matrix is
N , then it takes 4N3/3 operations.

SVD Decomposition of a matrix A is defined as
follows. Let UT

�BV� = � = diag(σ1, σ2, . . . , σn) ∈
Rm×n, and by defining U = UBU� and V = VBV� ,
so that UT AV = � is the SVD of A. In case of ill-
conditioning, the orthogonal methods give an added
measure of reliability. SVD is superior for producing
meaningful solutions to a nearly singular system. The
number of operations involved in carrying out an SVD
is 12N3 for a matrix of size N .

In the Powell Hybrid (PH) method, the choice of
the step correction is carried out as a convex combina-
tion of the Newton and scaled gradient directions, and
updation of the Jacobian is carried out by the rank-
1 method of Broyden. The choice of the correction
guarantees (under reasonable conditions) global con-
vergence for starting points far from the solution and
a fast rate of convergence. The Jacobian is calculated
at the starting point, but it is not recalculated until the
rank-1 method fails to produce satisfactory progress.
In this method, a line search algorithm is used for
accepting and rejecting the step length. This method
seems to be more robust even though the number of
operations are higher. Additional computational bur-
den is balanced by the Broyden update of the Jacobian.

4 Validation

Dai et al. [31] used a piecewise-constant technique
(P-T) for the analysis of 2 DOF nonlinear system with
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Fig. 5 Validation model (2 DOF)

a 1:3 internal resonance. Two nonlinear oscillation
systems with quadratic and cubic nonlinearities are
solved to demonstrate the applications of the method.
The numerical methods proposed in this paper are val-
idated using the 2 DOF cubic nonlinear model from
the paper by Dai et al. [31]. The model used is as
shown in Fig. 5. The governing equations of motion
are given by
[

m1 0

0 m2

]{
ẍ1

ẍ2

}
+
[

c −c

−c c

]{
ẋ1

ẋ2

}

+
[

k10 + k12 −k12

−k12 k12

]{
x1

x2

}

+
{

k3(x1 − x2)
3

−k3(x1 − x2)
3

}
=
{

p cos(ωt)

0

}
(50)

with the parameters mentioned in the paper (51) be-
comes[

1.2 0

0 1

]{
ẍ1

ẍ2

}
+
[

0.2 −0.2

−0.2 0.2

]{
ẋ1

ẋ2

}

+
[

18.68 −2

−2 2

]{
x1

x2

}
+
{

0.02(x1 − x2)
3

−0.02(x1 − x2)
3

}

=
{

p cos(ωt)

0

}
(51)

and for three different values of p such as 1, 5, and 10.

4.1 Validation results

The validation is done with full TVM (without mode
superposition and master-slave partition) and with nu-
merical integration. As the model is two DOF, both the
DOF are compared for the validation, and are shown
in Figs. 6 and 7. From the figures, it is clear that the
present method agree very well with Dai et al. [31]

Fig. 6 Validation model, 1st DOF comparison

Fig. 7 Validation model, 2nd DOF comparison

paper. The method described by Dai et al. does not
have continuation algorithm, and hence in the pa-
per solution curves along jump are not traced. In the
present method, continuation is used to trace the solu-
tion curve along the jumps.
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5 Results

The full models were considered only for the 3 DOF
discrete system. The 3 DOF discrete system is solved
using numerical integration (without continuation),
HBM, and TVM with continuation. The beam axial
and beam bending is solved using numerical integra-
tion (without continuation) and harmonic balance and
time variational method with mode superposition (of
linear model). In the mode superposition methods, the
first two modes of the slave subsystem are used for
model reduction. The convergence due to more num-
ber of modes is evaluated for the linear case. The in-
fluence of higher modes is insignificant because of
well-separated eigenvalues, for both axial and bending
problems. Dynamic condensation is implemented us-
ing only two DOF as master (where the external force
is applied and the nonlinear DOF) and the rest as slave
DOF. Here, the frequency dependent dynamic flexi-
bility matrix of the slave system is evaluated for every
frequency. HBM is applied to the condensed model us-
ing component mode synthesis. The component mode
synthesis is implemented with TVM, though resulting
slave inverse is not analytically evaluated as in the case
of HBM. Hence, for every iteration, matrix inversion is
carried out. Though the Jacobian from TVM is sparse,
in the present paper, the sparsity is not exploited. In
component mode synthesis, the last element is consid-
ered as the nonlinear substructure (i.e., master subsys-
tem) and the other elements are assumed to be in the
slave subsystem which is linear. This reduced set of
equations are solved using HBM as well as TVM. In
both methods, the solution as well as the external load
vector is assumed to be periodic. Hence, these meth-
ods will not predict the aperiodic responses which can
occur in a nonlinear system. For HBM, 5 harmonics
are considered, while for TVM 32 sampling points are
considered. Plotted magnitudes are displacements of
the corresponding nonlinear DOF.

5.1 3-DOF discrete system

Three different nonlinear stiffness (α) values are used
for the dynamic response analysis of the system. Ef-
fect of mean load is also studied by applying a mean
load in addition to the harmonic excitation. The effect
on increase in the nonlinear stiffness on the system
(Fig. 1) response is shown in Fig. 8. Figure 9 shows
the effect of mean load on the dynamic response of

Fig. 8 3 DOF Model 1 effect of nonlinear stiffness

Fig. 9 3 DOF Model 1 effect of mean load

the system shown in Fig. 1. The effect of mean load is
evident from the figure that the curve initially softens
(bend backwards) and then stiffens (bend forward). In
the case of a system with no mean load, the system
exhibits hardening behavior with a positive nonlinear
stiffness value. Since the nonlinear values used are
very high compared to the linear stiffness value, the
response curve has sharp turning points. In the case of
the numerical integration process with out continua-
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Fig. 10 3 DOF Model 2 effect of mean load

tion, it will not be possible to trace these paths. The
present algorithm is very efficient in tracing this curve
with sharp turning points. The linear response of the
system shown in Fig. 2 is same as that of the system
shown in Fig. 1. In Fig. 10, the effect of mean load is
shown for the system shown in Fig. 2 when the non-
linear stiffness value is α = 6. The solution is sought
using HBM. The behavior of the system is observed
to be the same as that of in the previous case, and in
this case the forward frequency shifting is very evi-
dent due to the fact that the movement of the 3rd mass
is arrested in the presence of mean load, and hence in-
creasing the over all system stiffness, where as in the
case of the first system the 3rd mass is free to move,
and hence the over all stiffness increase will be mini-
mum. The effect of increase in the nonlinear stiffness
value is shown in Fig. 11. The forward leaning of the
response curve is increasing as the stiffness increases
and the response becomes more sharper. But the fre-
quency shifting is not evident due to the absence of
mean load.

5.2 Beam axial vibration

HBM and TVM methods are used in the reduced
model with mode superposition method, dynamic sub-
structuring, and component mode synthesis based dy-
namic substructuring approach. Two modes were used
for representing the slave system and 5 harmonics

Fig. 11 3 DOF Model 2 effect of nonlinear stiffness

Fig. 12 Beam axial mode linear comparison

are included in HBM, and 32 points were used for
the TVM. Figure 12 displays the results obtained by
using the different methods described in this paper.
The X-axis shows a normalized frequency with re-
spect to the fundamental frequency of the system and
Y -axis shows the amplitude. The linear results show
very good agreement with each other. This validates
the methodology. The base nonlinear stiffness value is
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Table 4 HBM, TVM Model Details

Model FM MS PC CM

DOF # of Modes (m) Master Slave Master Slave # of Slave modes (l)

Beam Axial 10 2 2 8 2 8 2

Beam Bending 20 2 2 18 4 16 2

Fig. 13 Effect of increase in nonlinear stiffness

taken as 100 times that of the largest coefficient in the
linear stiffness matrix and the nonlinearity is increased
from this value. Figure 13 displays the response of the
system with different nonlinear stiffness values. The
forward bending of the response curve is evident as
the nonlinear stiffness increases. The numerical con-
vergence properties are explained later in the paper.
Table 4 consolidates the model after reduction. Stabil-
ity of the solution is carried out as shown in Fig. 14.

5.3 Beam bending

Here, also, the model size is reduced using mode su-
perposition method and component mode synthesis
based dynamic substructuring approach. For both, the
methods master-slave partition-based dynamic con-
densation is also carried out. Here, the boundary DOF
will be 2 because beam has one vertical DOF and one
rotational DOF at the boundary. Figure 15 shows the
comparison between mode superposition based HBM,
TVM, component mode based dynamic substructur-

Fig. 14 Stability for beam axial α = 50

ing HBM method, and with numerical integration. All
these methods shows very good agreement with each
other. Here, also the graphs are plotted with normal-
ized frequency on the X-axis and amplitude on the
Y -axis. In the logarithmic graphs, even though the
scale is logarithm actual values are marked on the
Y -axis. Here, the base nonlinear stiffness is assumed
to be the stiffness of the clamped-pinned beam and the
nonlinear stiffness (α = 1 300 800) is varied as multi-
ple of the same. In Fig. 16, the HBM with the mode su-
perposition and the component mode synthesis results
are compared and an excellent agreement is observed.
In the same figure, the subharmonic responses can be
observed which is characteristic behavior of the non-
linear system. In Fig. 17, the effect of mean load on the
nonlinear response is plotted and the frequency shift-
ing is observed and peak amplitude is reduced. This
due to the fact that the boundary of the cantilever is
now not free to move as freely as the case with out
the mean load, thereby increasing the overall stiffness
which causes the frequency shift and the reduction in
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Fig. 15 Beam bending linear comparison

Fig. 16 Beam bending nonlinear model comparison

the overall amplitude. Figure 18 shows the effect of the
nonlinear stiffness in the response characteristics. The
forward bending of the response curve is increased by
increasing the stiffness. When the nonlinear stiffness is
as high as 50 times, all the solution techniques started
to diverge. Stability of the solution is carried out as
shown in Fig. 21.

The effect of kept modes on the dynamic response
is studied using the refined mesh (20 elements model).

Fig. 17 Beam bending effect of mean load

Fig. 18 Beam bending effect of nonlinear stiffness

The number of slave kept modes is varied from 1 to 10.
The results are shown in Fig. 20, from which it is clear
that increasing the number modes beyond 2 has no ef-
fect on the system response (The zoomed view shows a
difference but the difference in peak is less than 0.1%).
This is due to the fact that even though the system
is nonlinear, response near the first mode of the lin-
ear system is only considered in the analysis and the
higher mode frequencies are well separated. It is ex-
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Fig. 19 Convergence with number of elements

Fig. 20 Beam bending effect of kept modes; 20 elements,
40 DOF (α × 10)

pected to have more effects as the frequency of interest
changes to the higher modes of the linear system. Fig-
ure 19 shows the results of mesh convergence study.
Table 4 consolidates the model after reduction.

Fig. 21 Stability for beam bending α = 20

5.4 Beam parametric excitation

Component mode-based dynamic substructuring with
HBM is used for solving the problem. First, two modes
of the slave system are included in the solution with
the DOF associated with the time-varying stiffness be-
ing the master system. The system is subjected to an
external excitation with mean load along with the para-
metric excitation. Sixteen harmonics are included to
capture the higher order response components. Para-
metric excitation coefficient α is varied from 0.1 to
0.8 and the results are shown in Fig. 22. As the para-
metric excitation term has a frequency 2ω, all the even
frequency components are dominant, especially those
close to one-half the system natural frequencies. At
lower α values, the effect of higher order components
is not clearly visible; they become dominant as α in-
creases. At α = 0.8, the amplitude at ω1/2 is dominant
compared to that at ω1. So for a parametrically excited
system, in the presence of mean load, higher vibration
levels can occur even at frequencies other than the res-
onance frequency. Stability of the solutions can be cal-
culated as outlined in Sect. 3.7.

5.5 System with internal resonance

Component mode-based dynamic substructuring with
HBM is again used for the solution. The system is par-
titioned into a 7 DOF slave system, 1 boundary DOF,
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Fig. 22 Beam parametric excitation

and 1 DOF master system. The full system undamped
natural frequencies are {0.26,0.49,0.66,1.44,1.95,

1.98,1.99,2.04,2.07}T Hz. There is a near 1:1 in-
ternal resonance between the fifth and sixth natural
frequencies with ω6/ω5 = 1.005. The slave system un-
damped natural frequencies are {0.29,0.51,1.24,1.95,

1.98,2.00,2.06}T Hz. One can clearly identify that
there is a near 1:1 internal resonance between the
fifth and the sixth slave system natural frequencies.
All seven modes of the slave system are used in the
analysis to include the internal resonance effect. The
undamped natural frequencies of the final assembled
system are the same as that of the full system. For
this example, the dynamics of the system are captured
without any approximation. Figure 23 shows the re-
sponse of the system. As in the case of 3 DOF sys-
tem, forward bending can be observed in this system
as the nonlinear stiffness increases. Figure 24 shows
a zoomed view of the response in the low frequency
range, to show the presence of ω/3 components.

5.6 Numerical methods convergence

The numerical methods used for the solution methods
are taken from the numerical library SLATEC [32].
Tables 6, 7 and 8 consolidate the convergence proper-
ties obtained for the different cases tried for the beam
axial and beam bending problems. 3 DOF discrete sys-
tems are not listed in the comparison table because of

Fig. 23 MDOF system with internal resonance

Fig. 24 Zoomed view of internal resonance

the fact that the condition number of the matrix in-
volved is small as the matrix elements are of the same
order. In the case of the beam axial, the elements of
the matrix will be similar because the beam is having
only one DOF per node. In the case of beam bend-
ing, matrix elements will not be of the same order be-
cause of the presence of the rotation along with the
translational motion. This may be the reason for the
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convergence of system with a higher nonlinear stiff-
ness with TVM in the case of beam axial motion. The
TVM along with the Powell hybrid method showed
a good convergence property for both the problems.
This may be due to the fact that the analytical Jaco-
bian is used only in the first iteration and for the rest
of the iterations Broyden updates are used. In this pa-
per, the sparse structure of the Jacobian of the TVM
method is not utilized. The use of sparse routines may
reduce the solution time.

The HBM/TVM method along with mode super-
position show poor convergence. This is due to the
fact that modal transformation of the nonlinear forces
spreads the nonlinearity to all modal coordinates. The
number of modes and the interaction between the
modes required for the actual representation of the
nonlinear force may not be sufficient. Hence, the in-
crease in nonlinear stiffness causes poor convergence.
The global nature of the basis functions cause the
Broyden update of the Jacobian to be poor for HBM,
while for TVM local support basis functions helps the
Broyden update and hence aids convergence of the
Powell hybrid method. This is due to the fact that
Broyden update in the case of HBM is done on the
Fourier coefficients of the modal coordinates, and then
transformed back to the physical coordinates. Hence,
there are two levels of approximation. In the case
of TVM as the function is already in the time do-
main only, the modal transformation is required, and
hence Broyden approximation yields better conver-
gence properties.

For component mode synthesis-based dynamic
substructuring, the nonlinear DOF and the boundary
DOF are kept back in the physical coordinates and
the linear slave system is transformed into the modal
space. The slave inverse which needs to be carried
out for every iteration is performed using an analyt-
ical inverse calculation. Hence, a better convergence
is observed in case of HBM with the component mode
based dynamic substructuring. The component mode
based dynamic substructuring shows better conver-
gence properties for the beam case with TVM though
analytical expression of slave dynamic flexibility ma-
trix does not lead to a unique structure, and in most
of the cases it will be sparse. In the case of regu-
lar dynamic condensation, convergence is the same
as that of the component mode-based dynamic con-
densation; though it takes more solution time. This is

expected because the slave dynamic flexibility matrix
is frequency dependent and it is evaluated for each
iteration by an inverse. This can be reduced by do-
ing a Sherman–Morrison approximation type inverse
update. Standard preconditioning technique for the Ja-
cobian using the maximum value of each row does not
show much difference in convergence characteristics
of the system in all these cases. Hence, to improve the
convergence, some other preconditioning techniques
have to be adopted.

Computational effort required for HBM and TVM
with dynamic condensation is high, because of the
large size of slave dynamic flexibility matrix. For the
component mode based substructuring, let l be the
number of slave retained modes and n be the num-
ber of Fourier/TVM coefficients (If nhar is the num-
ber of harmonics considered, then n will be equal to
2nhar + 1 for HBM and will be equal to the sam-
pling points in the case of TVM). Then size of slave
flexibility matrix will be of l × n; so in the case of
HBM will be saving 2(l × n)3 matrix multiplications
as the inverse calculation is eliminated. This requires
a storage of 2(l × n)2 as full storage is required, while
if we use the sparse structure for TVM that will re-
quire only a storage of O(l × n), and by proper se-
lection of the inverse routine the multiplications can
also be of the same order. Hence, both the methods
applied along with dynamic condensation and com-
ponent mode will be computationally efficient. Ta-
ble 5 compares the computational requirements for
the HBM for dynamic condensation and dynamic con-
densation with component mode with out analytical
inverse and dynamic condensation with component
mode with analytical inverse. Let nh be the number
of harmonics, ns is the total number of slave DOF and
m the number of included modes of slave system. Let
N1 = (ns × (2nh + 1)) and N2 = (m × (2nh + 1)).

Table 5 Number of multiplications involved in computation

PC HBM CM HBM CM

numerical analytical

inverse inverse

Total Size N1 × N1 N2 × N2 N2 × N2

Storage N1 × N1 N2 × N2 N2 × N2

# of Operations (LU) 2N3
1 /3 2N3

2 /3 N2
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Table 6 Convergence comparison between different methods

Model α HBM MS TVM MS

Beam Axial 2 868 000 000 LU QR SVD PH LU QR SVD PH

Linear ×0 C C C C C C C C

Mean Load 0 ×10 C C C C C C C C

Mean Load 1E4 ×10 C C C C C C C C

Mean Load 0 ×20 D D D D D D D C

Mean Load 1E4 ×20 D D D D D D D C

Mean Load 0 ×50 D D D D D D D C

Beam Bending 1 300 800

Linear ×0 C C C C C C C C

Mean Load 0 ×10 D D D D D D D C

Mean Load 10 ×10 D D D D D D D C

Mean Load 0 ×20 D D D D D D D C

Mean Load 10 ×20 D D D D D D D C

Mean Load 0 ×50 D D D D D D D D

C—solution converged; D—solution diverged

Table 7 Convergence comparison between different methods 2

Model α HBM PC TVM PC

Beam Axial 2 8 68 000 000 LU QR SVD PH LU QR SVD PH

Linear ×0 C C C C C C C C

Mean Load 0 ×10 C C C C C C C C

Mean Load 1E4 ×10 C C C C C C C C

Mean Load 0 ×20 C C C D C C C C

Mean Load 1E4 ×20 C C C D C C C C

Mean Load 0 ×50 C C C D C C C C

Beam Bending 1 300 800

Linear ×0 C C C C C C C C

Mean Load 0 ×10 C C C C C C C C

Mean Load 10 ×10 C C C C C C C C

Mean Load 0 ×20 C C C D C C C C

Mean Load 10 ×20 C C C D C C C C

Mean Load 0 ×50 D D D D D D D D

C—solution converged; D—solution diverged

6 Conclusion

In the present paper though a cubic nonlinearity has
been considered (continuous and differentiable), con-
vergence difficulties appear when the nonlinearity be-
comes very strong. Model order reduction techniques

along with HBM and TVM are studied to handle
a large system with strong localized nonlinearities.
The convergence properties of different solution tech-
niques have been investigated. The major contribu-
tion of this paper is the analytical calculation of the
slave dynamic flexibility matrix due to judicious par-
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Table 8 Convergence comparison between different methods 3

Model α HBM CM TVM CM

Beam Axial 2 868 000 000 LU QR SVD PH LU QR SVD PH

Linear ×0 C C C C C C C C

Mean Load 0 ×10 C C C C C C C C

Mean Load 1E4 ×10 C C C C C C C C

Mean Load 0 ×20 C C C D C C C C

Mean Load 1E4 ×20 C C C D C C C C

Mean Load 0 ×50 C C C D C C C C

Beam Bending 1 300 800

Linear ×0 C C C C C C C C

Mean Load 0 ×10 C C C C C C C C

Mean Load 10 ×10 C C C C C C C C

Mean Load 0 ×20 C C C C C C C C

Mean Load 10 ×20 C C C C C C C C

Mean Load 0 ×50 D D D D D D D D

C—solution converged; D—solution diverged

tition of the slave master system and arrangement of
the Fourier coefficients. This leads to a better con-
vergence rate as well as reduced solution time. The
hypersphere-based continuation uses regular matrix
inverse/iteration routines which are more robust than
the pseudo inverse routines. The use of QR and SVD
methods do not prove to be of much use in enhanc-
ing the convergence rate for both HBM and TVM.
This may be due to the Jacobian being square be-
cause of hypersphere-based continuation. LU decom-
position can be used with a better rate of convergence
for the component mode-based dynamic condensation
method. The Powell hybrid method along with mode
superposition shows good convergence properties only
for the beam axial case. In that case, the elements of
the stiffness and mass matrices are of same order, and
hence it will not have a large condition number.

Convergence of a nonlinear problem depends on
the machine precision. Even for a continuous non-
linearity, high condition number of the Jacobian ma-
trix, demands better than machine precision for con-
vergence. This limit depends on the technique associ-
ated with the solution. From this perspective, the com-
ponent mode synthesis based approach is better, since
only the lower order modes are used, leading to lower
condition numbers. In addition, this technique requires
one less matrix inverse which adds to its robustness.
For the TVM method, sparsity of the Jacobian struc-

ture has to be utilized further to enhance the conver-
gence and reduce the solution time.

The regular dynamic condensation also has a good
convergence rate. The advantage of this method is that
the slave system is not approximated as it is not trans-
formed into the modal space. The disadvantage is its
requirement of computing the slave dynamic flexibil-
ity matrix which involves an inverse calculation for
every iteration, leading to higher condition numbers
and possible convergence issues.

There are a few limitations for using the described
method in the paper. If gyroscopic effects are present
in the slave system, then one will have to use fre-
quency dependent mode shapes for transforming the
system. But if the gyroscopic effects are only at dis-
crete locations, then these locations can be moved into
the master system and the procedure proposed in this
paper can be applied. In all these cases, the damping is
assumed to be proportional for analytical inverse cal-
culation.

Appendix A: Dynamic substructuring

To include the parametric continuation along with the
master slave reduction, the derivative of (31) with re-
spect to the excitation frequency ω is needed. The
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equations given below will give the corresponding dif-
ferentiation matrices.

∂(.)

∂ω
= ∂(Ymm − YmsY−1

ss Ysm)

∂ω
x̃m. (52)

The differentiation is given by

∂(Ymm − YmsY−1
ss Ysm)

∂ω

= ∂(Ymm)

∂ω
−
(

∂(Yms)

∂ω
Y−1

ss Ysm

+ Yms
∂(Y−1

ss )

∂ω
Ysm + YmsYss−1

∂(Ysm)

∂ω

)
. (53)

which requires
∂Y−1

ss

∂ω
, and is calculated as follows:

∂Y−1
ss

∂ω
= −Y−1

ss
∂Yss

∂ω
Y−1

ss . (54)

Appendix B: Dynamic substructuring with
component mode

Derivative of the (34) with respect to the excitation fre-
quency ω is required. The following equations give the
corresponding differentiation matrices:

∂(.)

∂ω
= ∂(Ymm − YmsY−1

ss Ysm)

∂ω
x̃mf

+ ∂(YmsY−1
ss Ysm)

∂ω
F̃s. (55)

The differentiation of the first term is given by

∂(Ymm − YmsY−1
ss Ysm)

∂ω

= ∂(Ymm)

∂ω
−
(

∂(Yms)

∂ω
Y−1

ss Ysm

+ Yms
∂(Y−1

ss )

∂ω
Ysm + YmsY−1

ss
∂(Ysm)

∂ω

)
(56)

and the differentiation for the second term is given by

∂(YmsY−1
ss Ysm)

∂ω

=
(

∂(Yms)

∂ω
Y−1

ss Ysm + Yms
∂(Y−1

ss )

∂ω
Ysm

+ YmsY−1
ss

∂(Ysm)

∂ω

)
. (57)

The differentiation matrix of Ymm,Ysm, and Yms will
be of same structure.

∂(Y..)

∂ω
= 2ω[M].. + [C].. (58)

B.1 Harmonic balance

For HBM because of the special arrangement of co-
efficients and the differentiation matrix of the B−1

i is
given by for the ith DOF

∂B−1
i

∂ω
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 . . . 0 0

0 dB11
i −dB12

i 0 0 . . . 0 0

0 dB12
i dB12

i 0 0 . . . 0 0

0 0 0 dB21
i −dB22

i . . . 0 0

0 0 0 dB22
i dB21

i . . . 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 . . . dBn1
i −dBn2

i

0 0 0 0 0 . . . dBn2
i dBn1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (59)

where �si is the ith natural frequency and n is the

number of harmonics.
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DR = (�2
si − (jω)2)2 + (2ζjω�si )

2,

dB
j1
i = −2j2ω

DR
+ (�2

si − (jω)2)((2jζ�si )
2(2ω) − (4j2ω)(�2

si − (jω)2))

DR2
,

dB
j2
i = (2jζ�siω)((2jζ�si )

2(2ω) − (4j2ω)(�2
si − (jω)2))

DR2
− 2jζ�si

DR
,

where n = 1,2,3, . . .m, where m is the number of
terms in the Fourier expansion.
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