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Abstract This paper analyzes dynamical behavior of
a simply supported Euler–Bernoulli beam with a time-
varying mass on its surface. Though the system un-
der consideration is linear, it exhibits dynamics simi-
lar to a nonlinear system behavior including internal
resonances. The asymptotical solutions for the beam
displacement has been found by combining the clas-
sical Galerkin method with the averaging method for
equations in Banach spaces. The resonance conditions
have been derived. It has been proposed a method for
finding a number of possible resonances.Effect of the
beam parameters on its dynamical behavior is investi-
gated as well.

Keywords Time-varying mass · Beam · Internal
resonances

1 Introduction

Systems with a time-varying mass are found in physics
and engineering (robotic, conveyor systems, excava-
tors, chemistry) and fluid-structure interaction prob-
lems [1]. Oscillations of electric transmission lines
and cables of cable-stayed bridges with water rivulets
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on the cable surface can also be considered as time-
varying dynamic systems [2]. Usually, the stay cables
are mantled with polyurethane and have a nearly cir-
cular cross section. The cable can be considered as a
beam with a small bending rigidity. In instable cases,
water flowing round the cable causes generation of
one or two rivulets forming separation points of the
air flow around a dry cylinder oscillating at the same
frequency as the cable [3]. When the rivulets are sub-
jected to the action of various mechanical or structural
factors, they display interesting dynamical phenom-
ena such as wave propagation, wave steepening, and
development of chaotic responses. Macroscopic thin
rivulets are entities that should be taken into account
in biophysics, physics, and engineering, as well as in
natural settings. The rivulets can be composed of com-
mon liquids such as water or oil, rheologically com-
plex materials such as polymers solutions or melts. In
engineering, the rivulets serve in heat and mass trans-
fer processes to limit fluxes and to protect surfaces,
and they are applied in paints, adhesives, and mem-
branes. As this takes place, the rivulets often move
on beam surfaces. Work [4] presents the experimen-
tal study of the rivulet flow along the lower side of an
inclined cylinder upon a liquid jet supply. It has been
shown that in the range of the considered parameters
the magnitude of the wetter surface of the cylinder is
constant and it is not dependent on the flow rate. The
rivulet width also does not depend on the flow rate.
The data on the rivulet thickness and the wave charac-
teristics have been obtained experimentally. It follows
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from the experiment that the wavy regime is a typi-
cal rivulet regime. The fairly small width of the rivulet
leads to coincidence of the transverse dimensions of
the wave with the liquid flow width and, therefore,
quite certain types of waves are generated, namely pe-
riodic waves that are almost sinusoidal, soliton-like
waves, and waves with two humps and a very smooth
tail. The rivulet thickness in the steady-state region
as a function of time has been obtained. On the ba-
sis of this results it can be concluded that the thick-
ness of the rivulet and its mass in the transverse cross
section change with time. The rivulets can be blown
off the beam surface when the velocity of the wind
and acceleration of the beam become large enough
to do it. The system mass changes when the rivulet
is blown off. Papers [2, 5] have shown that even a
marginal change in the mass can lead to the cable in-
stability. The aforementioned papers have considered
a one-degree-of-freedom system with a time-varying
mass. This paper analyzes the dynamical behavior of
an Euler–Bernoulli beam with a time-varying mass on
its surface. We consider an initial stage of the beam
dynamics when the displacements are small. The in-
fluence of axial rigidity of the beam, 3-dimensional
motion of the structure, and large displacement are
not considered. The asymptotical solutions for the
beam displacement has been found by combining the
classical Galerkin method with the averaging method
for equations in Banach spaces (the classical Krylov–
Bogolyubov theorem and generalizations). The reso-
nance conditions have been derived. A method which
helps to find number of possible resonances is pro-
posed. Effect of the beams parameters on its dynami-
cal behavior is investigated as well.

2 Statement of problem

The following linear hyperbolic equation describing
the Euler–Bernoulli beam dynamics has been used:

Duxxxx − Kuxx + β0ut + (
M(x, t)ut

)
t
= 0, (1)

where u(x, t) is the beam displacement, t ≥ 0, x ∈
[0,L] and where D = EI is the rigidity coefficient,
E is the Young modulus, I is the beam inertia momen-
tum, K > 0 is the longitudinal force coefficient, β0 is
the positive coefficient, the term β0ut denotes dissipa-
tive effects. The boundary conditions are as follows:

u(x, t) = uxx(x, t) = 0, x = 0,L. (2)

The time-varying mass M(x, t) is assumed to have
the form

M(x, t) = m0
(
1 + δμ(x, t)

)
, (3)

where m0 is the constant part of the beam mass. Ex-
perimental data obtained in [4] give the following ex-
pression for μ(x, t):

μ = sin
(
γ0(x − Ω ′t)

)
. (4)

It should be noted that (1) can be transformed to a di-
mensionless form when the rescaling variables are in-
troduced.

For the rescaling, the following relations are used:
m0 = ρA0, where ρ is the beam density, A0 is the con-
stant part of the beam cross-section area. Let us intro-
duce c2

0 = E/ρ, c̄2 = K/(A0ρ) and then, for the vari-
ables ū, x̄, t̄ we have

ū = u/L, t̄ = c0t/L, x̄ = x/L.

Then (1) takes the form

aūx̄x̄x̄x̄ − būx̄x̄ + βūt̄ + (
M̄(x̄, t̄)ūt̄

)
t̄
= 0,

where a = I/A0L
2, b = (c̄/c0)

2, β = β0L/(ρc0A0),
M̄ = 1 + δμ̄(x̄, t̄). Then, x ∈ [0, L̄], L̄ = 1, and μ̄ =
sin(γ x̄ − Ωt̄) with γ = γ0L, Ω = γ0Ω

′L/c0. For
simplification, the bar is omitted and the final equation
takes the form

auxxxx −buxx +βut +
(
M(x, t)ut

)
t
= 0, x ∈ [0,1],

(5)

where M = 1 + δμ, μ = sin(γ x − Ωt).
The asymptotics of u(x, t) for small δ can be found

by combining the classical Galerkin method with the
averaging method for equations in Banach spaces (the
classical Krylov–Bogolyubov theorem and generaliza-
tions, see the Appendix).

3 Preliminary a priori energy estimate

Assume that 0 ≤ δ < 1. Then the function M1/2 is cor-
rectly defined, since M > 0. Let us introduce a func-
tional E associated with (5):

E[u] = 1

2

(
a‖uxx‖2 + b‖ux‖2 + ‖M1/2ut‖2). (6)
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Here we use the standard notation ‖v‖2 = ∫ L

0 v2 dx.
Let us derive an estimate for E having important phys-
ical and mathematical consequences. This functional
can be interpreted as an energy.

If δ = 0 and β = 0, then dE[u]/dt = 0 on solutions
of (5), i.e., the energy conserves. In a general case, let
us multiply (5) by ut and then one obtains

∫ L

0

(
auxxxxut − buxxut + Mututt + Mtu

2
t

)
dx

= −β

∫ L

0
u2

t dx.

We can rewrite it as
∫ L

0

(
auxxxxut − buxxut + Mututt + 1

2
Mtu

2
t

)
dx

= −
∫ L

0

(
βu2

t + 1

2
Mtu

2
t

)
dx.

Integrating it by parts, and taking into account that
boundary conditions must be satisfied at any time, one
has

d

dt

1

2

∫ L

0

(
au2

xx + bu2
x + Mu2

t

)
dx

= −
∫ L

0

(
βu2

t + 1

2
Mtu

2
t

)
dx.

Notice that the left-hand side of this relation is equal to
dE[u]

dt
. Thus, one obtains the main energetic estimate

dE[u]
dt

≤
(1

2
sup

x∈[0,L], t>0

∣∣Mt(x, t)
∣∣ − β

)
‖ut‖2. (7)

Now it is obvious that, if the dissipation is sufficiently
large, then, all solutions of (5) are stationary for large
times. In fact, there holds the following proposition.

Proposition 3.1 If 2β > supx,t |Mt(x, t)|, then solu-
tion oscillations are decreasing:

‖ut‖ → 0 as t → ∞.

This proposition follows from the standard argu-
ments. In fact, integrating (7) over [0, t] one has
E(t) = E[u(·, t)], it satisfies E(t) ≤ E(0) −
r
∫ t

0 ‖us‖2 ds. Designate

X(t) =
∫ t

0
‖us‖2 ds.

Since M > 0, there is a constant r1 such that r1‖ut‖2 ≤
E(t). Therefore,

r1
dX(t)

dt
= r1‖ut‖2 ≤ E(0) − rX

that entails X(t) ≤ E(0)/r + C0 exp(−rt).
Since X(t) is bounded as t → ∞, ‖ut‖ con-

verges to 0. Which proves our assertion. The assertion
shows that the most interesting cases are the following
(1) β and δ are of the same order, or (2) β 	 δ. Indeed,
according to Proposition 3.1, in the case when β 
 δ,
the solution time oscillations vanish for large times:
‖ut‖ → 0 as t → ∞. A new parameter κ = β/(2δ)

is introduced for the two cases under consideration.
Then another important estimate can be found for
0 < κ < C. Assume |Mt | < 2c1δ (c1 is a positive con-
stant). Then using (7), the following estimate is ob-
tained
∣∣∣∣
dE

dt

∣∣∣∣ ≤ (c1δ − β)‖ut‖.

Since β ≥ 0 and ‖ut‖2 ≤ E, the expression for E(t)

has the form

E(t) ≤ E(0) exp(c1δt), t > 0. (8)

This inequality shows that the oscillations can increase
with time t in an exponential manner, however, this
growth is weak (logE(t) ≈ const · δt). Below, it is
shown that, actually, such a behavior is possible, if the
frequency Ω and the other parameters are adjusted in a
special way to fulfill a resonance condition (see Sect. 5
below). Otherwise, the oscillations are bounded or
they are exponentially fading. The estimate (8) shows
that the solutions exist, they are unique and lie in the
corresponding Sobolev space, i.e., the problem is well
posed mathematically.

4 Eigenfunctions of non-perturbed problem

The boundary conditions (2), where L = 1 are con-
sidered. Let us set β = 0 (dissipation is removed) and
δ = 0. Let us denote by L the linear operator that de-
fines the left-hand side of (5). If a solution of (5) has
the form ψ(x) exp(λt), the parameter λ is a purely
imaginary number: λ = iω, ω ∈ R. Indeed, if

aψxxxx − bψxx = Lψ = −λ2ψ,
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then −λ2‖ψ‖2 = a‖ψxx‖2 + b‖ψx‖2 ≥ 0. The com-
plex eigenfunctions ψ̃n(x) of the linear operator L
have the form exp(kx), k ∈ C. By Lψ̃n = ω2

nψ̃n, one
has

k2± = (2a)−1
(
b ±

√
b2 + 4aω2

n

)
. (9)

Then k+ = k1 ∈ R and k− = ik2, k2 ∈ R, thus, the real
eigenfunctions ψ have the form

ψ = C1 sinhk1x + B1 coshk1x

+ C2 sink2x + B2 cosk2x,

and

ψxx = k2
1(C1 sinhk1x + B1 cosh k1x)

− k2
2(C2 sin k2x + B2 cosk2x).

Substituting x = 0 one has B1 + B2 = 0 and k2
1B1 −

k2
2B2 = 0, that gives B1 = B2 = 0. Now, to define the

frequency ωn we resolve the system

C1 sinhk1 + C2 sin k2 = 0, (10)

k2
1C1 sinhk1 − k2

2C2 sink2 = 0, (11)

Since nontrivial solutions are sought, this gives
sin k2 sinhk1 = 0, thus

k2(n) = k(n) = πn, ω2
n = aπ4n4 + bπ2n2. (12)

Therefore, the eigenfunctions take the form

ψn(x) = Cn sin(πnx), n = 1,2, . . . . (13)

Constants Cn are chosen such that ‖ψn‖ = 1. Note that
Cn = √

2.

5 Asymptotic solutions and main evolution
equation

In the non-perturbed case δ = 0 the solutions of (5) can
be expressed through the eigenfunctions from Sect. 3:

u =
∑

n∈Z

Xnψn(x) exp(iωnt),

where Xn are constant coefficients determining com-
plex amplitudes of oscillations such that X−n = X∗

n

(the star denotes complex conjugation). Here, it is for-
mally set that ωn = −ω−n.

A slow rescaling time τ = δt is introduced for small
δ > 0. Assuming that amplitudes Xn are unknown
functions of the slow time τ , the asymptotic ansatz
is used. This known mathematical idea admits a sim-
ple physical interpretation: a small perturbation gen-
erates slow oscillations of coefficients Xn. That situa-
tion is quite standard: the straightforward perturbation
method does not work here due to occurrence of sec-
ular terms, and for this reason the two time scale ap-
proach applied, as it was done in many previous works,
for example [6]. As a result, the principal term of our
asymptotical solution can be written as

u =
+∞∑

n=1

(
Xn(τ)ψn(x) exp(iωnt)

+ X∗
n(τ )ψn(x) exp(−iωnt)

)
. (14)

Substitute this solution into (5) that results in the com-
plicated equation where only the main terms of the or-
der δ are taken into account (the terms of the order 1
are mutually annihilated). Thus,
(
Xn(τ)ψn(x) exp(iωnt)

)
t t

= ψn(x) exp(iωnt)

(
−ω2

nXn(τ) + 2δiωn

dXn

dτ

)

+ O(δ)2, (15)

β
(
Xn(τ)ψn(x) exp(iωnt)

)
t

= −2κδiωnXn(τ)ψn(x) exp(iωnt) + O(δ)2, (16)

and the O(1)-order terms in (15) annihilate with the
same O(1)-order term generated by spatial deriva-
tives in (5). It is seen from (15), (16) that the main
non-vanishing terms are of order O(δ). They appear
from (15), (16) and the varying in time mass contribu-
tion δ(μ(x, t)ut )t , where ut can be approximated by

ut =
+∞∑

n=1

iωnψn(x)
(
Xn(τ) exp(iωnt)

− X∗
n(τ ) exp(−iωnt)

) + O(δ). (17)

Let us denote by 〈f,g〉 the scalar product in L2[0,1]:
〈f,g〉 = ∫ 1

0 f (x)g(x) dx. Then applying the standard
Galerkin procedure to (15), (16), (17) the following
infinite system is obtained

dXn

dτ
= −κXn+

∑

m∈Z,m �=0

Anm(t)Xm, t = τ/δ, (18)
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where n ∈ Z, n �= 0 and the entries

Anm(t) = (2ωn)
−1ωm exp(−iωnt)

〈(
sin(γ x − Ωt) exp(iωmt)

)
t
ψm(x),ψn(x)

〉

(19)

give the contribution of the time-varying mass. Re-
mind that Ω = γ0Ω

′L/c0.
In general case these entries are

Anm(t) = (2ωn)
−1ωm exp(−iωnt)

〈(
μ(x, t) exp(iωmt)

)
t
ψm(x),ψn(x)

〉
. (20)

To estimate these varying in time mass terms, the fol-
lowing lemma is used. For sufficiently general μ(x, t),

see the following lemma.

Lemma 5.1 Suppose the function μ(x, t) satisfies

sup
t,x

(∣∣μ(x, t)
∣∣ + |μx | + |μxx |

)
< C

and similarly for μt :

sup
x,t

(|μt + |μxt | + |μxxt |
)
< C1.

Then the entries Amn admit the estimate

|Anm| < C1
[(

1+|m−n|)−2 + (
1+|m+n|)−2]

, (21)

Proof In fact, |ωn| > c|n| for large n, where c > 0.
The identity 2 sina sinb = cos(a − b) − cos(a + b) is
used. Then

|Smn| =
∣∣∣∣

∫ 1

0
sin(πmx) sin(πnx)μ(x, t) dx

∣∣∣∣

= 1

2

∣∣∣∣

∫ 1

0

(
cos

(
π(m − n)x

)

− cos
(
π(m + n)x

))
μ(x, t) dx

∣∣∣∣.

If m �= n and m �= −n, the last integral is integrated by
parts and then,

|Smn| < C
[(

1 + |m − n|)−2 + (
1 + |m + n|)−2]

under our assumptions to μ estimate (18). For m = n

or m = −n, this estimate follows from assumptions
on μ. �

This lemma allows us to show that the main evo-
lution (15) defines a well-posed Cauchy problem in
an appropriate Banach space. Let us define this Ba-
nach space B. It consists of complex valued sequences
X = {Xn}, n ∈ Z such that

X−n = X∗
n, sup

n

∣
∣Xnn

2
∣
∣ < ∞.

The norm in this space is defined by

|X| = sup
n

∣∣Xnn
2
∣∣.

Lemma 5.2 The operator AX defined by

(AX)n =
∑

m∈Z

AmnXm

is a bounded in B linear operator.

The proof uses (21) and the asymptotics ωn =
O(n2) as n → ∞. Note that
∣∣∣∣
∑

m∈Z

AmnXm

∣∣∣∣ ≤ cn−2|X|
∑

m∈Z

((
1 + |n − m|)−2

+ (
1 + |m + n|)−2)

, c > 0.

Since
∑

(1 + |m|)−2 < C2 then,
∣∣∣∣
∑

m∈Z

AmnXm

∣∣∣∣ < n−2C3|X|.

Therefore, A is a bounded operator.
Due to this Lemma, evolution equation (18) can be

investigated by averaging theorems (see the Appendix).
It was obtained, that X(t) is close to the following av-
eraging solutions defined by averaging system (18):

dXn

dτ
= −κXn +

∑

m∈Z

ĀmnXm, (22)

where

Āmn = lim
T →∞T −1

∫ T

0
Amn(t) dt. (23)

It is not difficult to show by (19) that Āmn �= 0 only if
the following condition holds.

Resonance condition: There are n,m such that

|ωn ± ωm ± Ω| < a0δ, (24)
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where a0 is a positive constant independent of δ. Intro-
ducing a detuning parameter φ = δ−1|ωn ± ωm ± Ω|,
we can rewrite the resonance condition in the form
|φ| < a0. In the numerical simulations (see the next
section), we set a0 = 1. All the resonances belong to
two different types: “+” resonances, when the sign
in (24) is plus and “−” resonances when the sign
is minus. If the resonance condition holds for some
n = nr = N and mr = m(N), a weak exponential time
growth of |X| and the energy E is possible:

E(t) = exp(c̃δt)E(0), (25)

where c̃ is a positive constant. Note that c̃ < c2 since
inequality (8) always holds for the energy E. If the dis-
sipation is absent (κ = 0), the coefficient c̃δ is defined
by an eigenvalue λ0(R) of some matrix Ā. This eigen-
value λ0 has the maximal positive real part Reλ0. The
entries of a finite dimensional, constant in time matrix
Ā are defined by

Ānr ,mr = lim
T →+∞T −1

∫ T

0
Amrnr (t) dt. (26)

In the following sections, Ā is computed for some par-
ticular cases.

6 Resonance analysis

6.1 General properties of resonances

Under boundary conditions (2) for each Ω ′, the res-
onance is absent, or there is either a finite set of nat-
ural numbers mr,nr satisfying the resonance condi-
tion (24) with the sign “−”, or a finite set of natural
numbers satisfying “+” resonance condition (24). In
fact, ω2

n = a′n4 + b′n2 that follows from (12) (here
a′ = aπ4, b′ = bπ2 are positive constants). Then for
large n,m

|ωn ± ωm| > C3|n + m|, C3 > 0, (27)

where C3 is a constant independent of n,m. Our as-
sertion for “+” is obvious, since ωn → ∞ at n → ∞.
Therefore, it can be concluded that for each Ω the res-
onance condition holds only for some finite set R(Ω)

of natural n,m. This means that the problem of ampli-
tude growing reduces to a finite dimensional problem
on eigenvalues of a finite dimensional matrix.

The number of resonances increases to ∞ as rigid-
ity D → 0 for a fixed length L (after the rescaling
this means that a → 0). In fact, the limit case a = 0
gives b(n ± m) = ±Ω ′. If there are such n,m, then
all n′ = n + N,m′ = m + N also satisfy the reso-
nance condition, thus we have obtained an infinite set
of nr,mr (for the case if we take the sign “−” in the
left-hand side of (24)). Thus, the case of small dimen-
sionless rigidities a needs a special investigation, be-
cause it is impossible to take into account all these
resonances. We will consider this problem in the next
publication.

For some frequencies Ω, the resonances do not ex-
ist. Indeed, minn,m |ωn − ωm| = minn |ωn+1 − ωn| =
ρ(a, b) > 0. Then if Ω < ρ, the resonances are absent.
If D = a = 0, then ρ = b1/2. The case of the sign +
is simpler: since ωn,ωm > 0, results in minn,m |ωn +
ωm| ≥ 2ω1.

Moreover, if the dissipation exists, i.e., κ > 0, it
is possible that the resonances exist but the ampli-
tude |X| does not increase. In fact, the growth of X

is defined by the eigenvector of Ā with the eigen-
value λ0 (see above). If Reλ0 < κ , then |X(t)| and
E(t) are decreasing. The resonances can hardly be in-
vestigated better by an analytical approach, but com-
puter simulations should be applied. Some analytic re-
sults for resonances were obtained in the framework
of the KAM-theory [7, 8] that cannot be applied to
our problem. The KAM theory concerns with weakly
perturbed nonlinear Hamiltonian equations in finite di-
mensional spaces; Hamiltonian perturbations do not
depend on time. This paper studies a perturbed Hamil-
tonian equation in an infinite dimensional case; pertur-
bations depend on time and they are not Hamiltonian.
Suppose that the frequency Ω is a random parame-
ter uniformly distributed in some interval 0,ωmax. Let
us choose a small δ and let us compute a probability
that the resonance condition (24) holds for some m,n.
Here, we suppose that n,m run over some interval,
for example, m = 1,2, . . . ,Nmax, n = 1,2, . . . ,Nmax.
To compute this probability and to find the number
of resonances, we choose a random Ω and check the
resonance condition. This allows us to obtain an es-
timate of the probability that the relation (24) holds
with the help of the Monte-Carlo method. The numer-
ical results confirm the above analysis. The probabil-
ity P to be in the dangerous domain is a decreasing
function of the rigidity. Figure 1 illustrates the rela-
tion between the number of possible resonances and
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Fig. 1 Number of the
possible resonances for
parameters
b = 5,Ω = 30, δ = 0.1

Fig. 2 Number of
resonances for
b = 0.001, δ = 0.1,Ω = 0.5
parameters

a. The diagram in Fig. 1 shows that number of pos-
sible resonances grows with the decreasing bending
rigidity value a. The diagram has been plotted for pa-
rameters b = 5,Ω = 30, δ = 0.1. Figure 2 shows the
number of resonances for b = 0.001, δ = 0.1,Ω = 0.5
parameters. The calculations performed for the other
parameters have also revealed that with the increase of
the beam mass variation value δ the number of pos-
sible resonances grows providing that the other beam
parameters are fixed. By analogous numerical simula-
tions, admissible values of the rigidity a (D) have been
computed. We say that a is admissible, if there are no
resonances. Simulations show that the set of admis-

sible values has a complicated form for small a. For
larger a, the density of admissible values become suf-
ficiently close to 1 and with some critical ac , all the
values are admissible: no resonances for a > ac. The
last property can be formulated as follows.

Lemma 6.1 For each Ω, there is a value ac of the
parameter a such that for all a > ac a resonance con-
dition cannot be fulfilled whenever n,m.

The lemma can be derived by the following simple
arguments. Above, the function ρ(a, b) has been intro-
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Fig. 3 a−
c (Ω) found

numerically for different b

duced. The minimum of this function increases with a.
For some ac this minimum is larger than Ω .

In the next section, it will be shown that the solution
behavior may be quite different for the resonances of
different types. The critical values ac depend on the
sign in (24), thus there are two critical curves a±

c .
For a−

c , one has a rather complicated relation:

a−
c =

−rb +
√

r2
b − 4rarc

2ra
,

where

ra = 144π4, rb = 72bπ6 − 40Ω2,

rc = (
3bπ2 − Ω2)2 − 4Ω2bπ2.

The critical value a+
c results in a simpler formula:

a+
c = 0.25

(
Ω2π−4 − bπ−2).

a+
c (Ω) found numerically for different b has been

plotted in Fig. 3. The relation for ac can be obtained
as follows. Let us notice that the difference dn,m(a) =
ωn − ωm, where n > m, is a increasing function of
the both arguments n,m and also this difference is a
strictly increasing function of a. Thus, for a fixed a,
the minimal possible value ωn − ωm attains at n =
2,m = 1: dmin(a) = d2,1(a). The minimal possible
value of a, where the minus resonance is possible, is
defined, therefore, by relation dmin(a) = d2,1(a) = Ω

that gives a quadratic equation for a = a−
c . Resolv-

ing this equation, we obtain the above mentioned for-

mula. Based on diagrams presented in Fig. 3, the fol-
lowing conclusions can be drawn. Critical value a−

c

increases with the growth of the beam mass variation
frequency. The curve 1 in Fig. 3 corresponds to para-
meter b = 0.1, the dashed curve 2 corresponds to pa-
rameter b = 0.5 and the dotted curve 3 corresponds to
b = 1. Also, value a = a−

c increases with the longi-
tudinal force growth (i.e. b parameter). All values of
a = a−

c belongs to the bounded domain. The smaller b

parameter is, the narrower is the frequency band where
admissible values of beam rigidity exist. The critical
value a+

c results in a simpler formula:

a+
c = 0.25

(
Ω2π−4 − bπ−2).

Based on this formula, the following conclusions can
be drawn. Critical a+

c value increases with the growth
of the beam mass variation frequency Ω . At the lon-
gitudinal force growth (i.e. b parameter), a+

c value in-
significantly decreases. Finally, b parameter at which
a+
c = 0 diminishes with Ω decreasing. For analyzing

the resonance case solutions, some auxiliary relations
are derived.

6.2 Some auxiliary relations

When μ(x, t) is defined by (4), the entries Anm can
be computed explicitly by (19). When the rescaling
variables are introduced, one has μ = sin(γ x − Ωt),
where γ = γ0L, Ω = γΩ ′c̄/L.
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Let us introduce the matrices B, B̃ by

B̃nm =
∫ 1

0
sin(γ x)ψm(x)ψn(x) dx,

Bnm =
∫ 1

0
cos(γ x)ψm(x)ψn(x) dx,

(28)

where ψn are defined by (13). These entries can be
computed explicitly. A long but quite straightforward
calculation gives

Bnm = (−1)n−m γ sinγ

4

(
1

π(n − m)2 + γ 2

− 1

π(n + m)2 + γ 2

)
,

B̃nm = (−1)n−m γ cosγ

4

×
(

1

π(n + m)2 + γ 2
− 1

π(n − m)2 + γ 2

)
.

(29)

The matrices B, B̃ are symmetric and the entries
Bnm, B̃nm change the signs under change m → −m

or n → −n. Some auxiliary complex coefficients are
introduced in the form

Rnm = 1

2
(ωm + Ω)(iB̃nm − Bnm), i = √−1, (30)

R̃nm = 1

2
(ωm − Ω)(iB̃nm + Bnm). (31)

Using these relations and (20), one obtains

Anm = (2ωn)
−1ωm

(
Rnm exp(−iωnt + iωmt + iΩt)

+ R̃nm exp(−iωnt + iωmt − iΩt)
)
. (32)

Equation (32) is used to obtain averaged entries Ānm.

6.3 Analysis of “−” resonances, n �= m and detuning
parameter φ = 0

Since the entries Anm are decreasing in |n|, |m|, the
most essential resonances correspond to small |m|, |n|.
If m �= n, the simplest case is m = 2, n = 1. Let us
assume

ωm − ωn − Ω = 0, ωm > ωn, Ω > 0. (33)

Only contributions of the entries An′m′ with m′ =
±m,n′ = ±n can be taken into account, the rest entry

contributions vanish after the averaging procedure. Let
us consider the averages of these entries under the con-
dition (33). If δ is small enough, for a generic choice
of the beam parameters, only a single resonance (33)
exists. Equations (22) take the form

dXn

dτ
= −κXn + ĀnmXm,

dXm

dτ
= −κXm + ĀmnXn,

(34)

plus analogous complex conjugated equations for
X−n,X−m. Here,

Ānm = (2ωn)
−1ωmR̃nm,

Āmn = (2ωm)−1ωnRmn.
(35)

The eigenvalues λ1, λ2 of the 2 × 2-matrix Ā deter-
mines the solution large time behavior. These eigen-
values can be found by the relation

(κ + λ)2 = ĀnmĀmn. (36)

Using relations (35), (29), and (30), it can be found
that

ĀnmĀmn = −1

4
ωnωm

(
B̃2

nm + B2
nm

) = −σ 2. (37)

Finally, from (37), the following results of the solu-
tion behavior can be obtained. One has λj = ±iσ − κ ,
i.e. here we observe damping oscillations if κ > 0
(a small dissipation exists) and pure oscillations, if
κ = 0. This analytical result has been confirmed by
the numerical simulations for the case n = 1,m = 2.

6.4 Analysis of “−” resonances for detuning
parameter φ �= 0

Here, the − resonances with the detuning parameter
φ �= 0 are considered, i.e.:

ωm − ωn − Ω = δφ, ωm > ωn, Ω > 0. (38)

Here again, only contributions of the entries An′m′
with m′ = ±m,n′ = ±n are taken into account, their
remaining contributions vanish as a result of averag-
ing. Let us denote Ω0 = ωm −ωn, then Ω −Ω0 = δφ.

If δ is small enough, then (28) takes the form

dXn

dτ
= −κXn + Ānm exp(−iφτ)Xm,

dXm

dτ
= −κXm + Āmn exp(iφτ)Xn.

(39)
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Fig. 4 The detuning
parameter influence on
solution decreasing rate r

Let us introduce αnm,βnm by Ānm = αnm + iβnm, Āmn

= αmn + iβmn. By separating the imaginary and real
parts, we obtain the following system:

d ReXn

dτ
= −κ ReXn + (

αnm cos(φτ)

+ βnm sin(φτ)
)

ReXm

+ (
αnm sin(φτ) − βnm cos(φτ)

)
ImXm,

d ImXn

dτ
= −κ ImXn + (−αnm sin(φτ)

+ βnm cos(φτ)
)

ReXm

− (
αnm cos(φτ) + βnm sin(φτ)

)
ImXm,

d ReXm

dτ
= −κ ReXm + (

αmn cos(φτ)

− βmn sin(φτ)
)

ReXn

+ (−αnm sin(φτ) − βnm cos(φτ)
)

ImXn,

d ImXm

dτ
= −κ ReXm + (

αmn sin(φτ)

+ βmn sin(φτ)
)

ReXn

− (
αmn cos(φτ) − βmn sin(φτ)

)
ImXn.

This system has been investigated numerically by the
standard programs in MATLAB 2009a for the case
when n = 1,m = 2. Results obtained for small de-
tuning parameter values confirm the analytical con-
clusions, decreasing oscillations have been observed
when the damping coefficient κ > 0, for large κ de-

creasing solutions without oscillations have been ob-
tained. These analytical results are confirmed by the
numerical simulations for n = 1,m = 2. Figure 4 il-
lustrates the detuning parameter influence on solution
decreasing rate r defined by

r = − lim
t→+∞ t−1 log

∣∣X(t)
∣∣,

|X|2 = |ReXn|2 + |ImXn|2 + |ReXm|2 + |ImXm|2.
The parameter r defines the solution amplitude for
large times by |X| = c exp(−rt).

6.5 Analysis of “+” doubling resonances 2ωn = Ω

Similarly to Sect. 6.4, the (22) in this case take the
form:

dXn

dτ
= −κXn + Ān,−nX−n,

dX−n

dτ
= −κX−n + Ā−nnXn,

(40)

where

Ān,−n = −1

2
R̃n,−n,

Ā−n,n = −1

2
R−n,n.

(41)

The eigenvalues λi can be found from the relation

(κ + λ)2 = 1

4
ω2

n

(
B̃2

n,−n + B2
n,−n

) = σ̃ 2 > 0.
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Fig. 5 An exponential
growth of the solution for
“+” doubling resonances

Finally, the following behavior has been obtained:
λi = ±σ̃ − κ , i.e. here the exponentially decreasing
solutions at κ > σ̃ and exponentially increasing solu-
tions at κ < σ̃ are observed. These results are consis-
tent with the numerical simulations that also demon-
strate a solution exponential growth for sufficiently
small κ (for n = m = 1). The case of nonzero detun-
ing parameter values is investigated by simulations in
MATLAB 2009a, similar to Sect. 6.4. The results of
computations presented in Fig. 5 have shown a fast
growth of the solution.

6.6 Internal resonances

More complicated resonances are possible at a special
parameters choice, where we have an interaction of
three modes. These resonances occur if ωn − ωm =
±Ω and ωn + ωm′ = Ω .

To understand this situation, let us consider the sim-
plest case, where n = 1,m = 2,m′ = 1. Then one has
|ω1 − ω2| = 2ω1 that gives ω2

2 = 9ω2
1. Using relations

(12), one finds

7π2a = 5bπ2.

Therefore, to have such a resonance, we have to adjust
a and b in a special way.

Such resonances are more seldom than the sim-
plest cases investigated above, and here we can ap-
ply only numerical simulations. We do not consider
such resonances here. Notice, that if rigidity a is small

(for example, a = O(δ)), then we should take into ac-
count coexistence of many resonances ωn − ωm = Ω ,
ωn′ +ωm′ = Ω , where n′ −m′ = n−m, and this com-
plicated case needs other methods.

7 Conclusions

It has been shown that the problem of the Euler–
Bernoulli beam with a time-varying mass reduces to
a finite dimensional problem on eigenvalues of a finite
dimensional matrix.

All the resonances ωn + ωm = Ω can be studied
by the way described in the previous section and it is
finally obtained:

I. All the “+” resonances are dangerous: if the dis-
sipation is small enough, they lead to growing oscilla-
tions.

II. The “−” resonances result in slow harmonic
modulations of fast oscillation amplitudes. These fast
oscillations decrease slowly if a dissipation exists.
This decrease depends on detuning parameter values.

This paper has developed the asymptotic approach
for describing effects induced in an elastic beam with
a small time-varying mass. If dimensionless rigidity
a/b is not too small, the influence of the varying in
time mass can be computed by the known averaging
and asymptotic methods. It has been shown that the
problem is, in a sense, well computable. The number
of resonances in the system is limited and they can
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be analyzed as follows: firstly, a finite matrix is cal-
culated; secondly, the spectral analysis of the symmet-
ric matrix is performed. However, in some cases, for a
special choice of the beam parameters, a slow growth
of oscillations is observed. In the simplest case, when
only a single resonance exists, the problem admits a
complete analytical solution (see Sect. 6). The calcu-
lations performed for the beam parameters have also
revealed that with the increase of the beam mass varia-
tion value δ, the number of possible resonances grows
providing that the other beam parameters are fixed. If
the rigidity is large enough, the resonances do not ex-
ist and the oscillations are bounded. More complicated
resonances are possible at a special choice of para-
meters, where we have an interaction of three modes-
internal resonances.
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Appendix: Krylov–Bogolyubov theorem

The Krylov–Bogolyubov method of averaging is use-
ful in the nonlinear oscillation theory for studding os-
cillation processes. The method is based on the ex-
act differential equation approximation by an averaged
equation. Various averaging schemes (Gauss, Fatou,
Delone-Hill, etc.) were widely applied in the celestial
mechanics well in advance of the work of Krylov and
Bogolyubov. These two authors developed a general
algorithm and proved that the solutions of the averaged
system approximate the exact solutions ([9, 10]). Bo-
golyubov developed the rigorous theory of the method
with a comprehensive explanation of the general aver-
aging principle (see [11–13]). He showed that the av-
eraging method was correct when the transformation
of variables allowing us to eliminate the time from the
equations existed. He also established a relationship
between the solutions of the exact and averaged equa-
tions over an infinite time interval. These results were
later extended by Mitropol’skii and others (see [14–
16]). The standard form of the system of equations,
where this method of averaging can be applied, is:

dX

dt
= δF (t,X), X ∈ B, (42)

where t is the time and δ is the small positive parame-
ter. The main assumptions to F are as follows: F is a
smooth function of X satisfying

lim
T →+∞T −1

∫ T

0
F(t,X)dt = F0(X).

For example, F might be a periodic or almost-periodic
function of t . The approximation of the system (42)
solution is given by

X ≈ X0, (43)

where X0 is the solution of the “averaged” equation

dX0

dt
= δF0

(
X0), X ∈ B. (44)

An asymptotic series can be constructed

X = X0 + δX1 + · · · , (45)

where X0 are functions chosen so, that expression (45)
should satisfy (42) up to quantities of the order O(δm)

so that the functions should satisfy some recurrent
conditions. There is an iterative procedure to find the
functions Xm.

Unfortunately, results obtained in [9] and in [16]
can mainly be applied to the finite dimensional case.
However, the aforementioned method can be used for
the infinite dimensional problem under consideration
due to the very strong theorem about averaging meth-
ods correctness (see the book [17]):

Theorem 8.1 [17] Suppose S is a ball in the Banach
space B . Assume that F(t,X) is bounded for X ∈ S,
continuous in t and satisfies

∣∣F(t,X1) − F(t,X2)
∣∣ ≤ c|X1 − X2|. (46)

Moreover, for each X, the time average

lim
T →+∞T −1

∫ T

0
F(t,X)dt = F0(X)

exists. If Y(t), t ∈ [0, T0] is a solution of the averaged
equation

dY

dt
= F0(Y ), (47)

such that Y ∈ S for all t ∈ [0, T0], then for each η > 0
there is an δ0 > 0 such that for 0 < δ < δ0 solution
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X(t, δ) of (42) with initial data X(0, δ) = Y(0) admits
the estimate
∣∣X(t, δ) − Y(t)

∣∣ ≤ η (0 ≤ t ≤ T/δ).

It is clear that in our case the estimate (46) holds,
since A is a bounded linear operator. Moreover,
Y lies in a ball due to a priori estimate |Y(t)| ≤
C|Y(0)| exp(ct). Thus, this theorem can be applied to
our problem.
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