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Abstract In this paper a boundary element method
is developed for the nonuniform torsional vibration
problem of bars of arbitrary doubly symmetric con-
stant cross section, taking into account the effects of
geometrical nonlinearity (finite displacement—small
strain theory) and secondary twisting moment defor-
mation. The bar is subjected to arbitrarily distributed
or concentrated conservative dynamic twisting and
warping moments along its length, while its edges
are subjected to the most general axial and torsional
(twisting and warping) boundary conditions. The re-
sulting coupling effect between twisting and axial dis-
placement components is also considered and a con-
stant along the bar compressive axial load is induced
so as to investigate the dynamic response at the (tor-
sional) postbuckled state. The bar is assumed to be ad-
equately laterally supported so that it does not exhibit
any flexural or flexural–torsional behavior. A coupled
nonlinear initial boundary value problem with respect
to the variable along the bar angle of twist and to an
independent warping parameter is formulated. The re-
sulting equations are further combined to yield a single
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partial differential equation with respect to the angle of
twist. The problem is numerically solved employing
the Analog Equation Method (AEM), a BEM based
method, leading to a system of nonlinear Differential–
Algebraic Equations (DAE). The main purpose of the
present contribution is twofold: (i) comparison of both
the governing differential equations and the numeri-
cal results of linear or nonlinear free or forced vibra-
tions of bars ignoring or taking into account the sec-
ondary twisting moment deformation effect (STMDE)
and (ii) numerical investigation of linear or nonlinear
free vibrations of bars at torsional postbuckling config-
urations. Numerical results are worked out to illustrate
the method, demonstrate its efficiency and wherever
possible its accuracy.

Keywords Shear deformation · Secondary twisting
moment deformation effect · Independent warping
parameter · Bar · Beam · Boundary element method ·
Nonuniform torsion · Nonlinear vibrations · Torsional
vibrations · Torsional postbuckling · Primary
resonance

1 Introduction

When arbitrary torsional boundary conditions are ap-
plied either at the edges or at any other interior point
of a bar due to construction requirements, this bar un-
der the action of general twisting loading is leaded
to nonuniform torsion. In this case, apart from the

mailto:cvsapoun@central.ntua.gr
mailto:tsipiras@gmail.com


968 E.J. Sapountzakis, V.J. Tsipiras

well-known primary (St. Venant) shear stress distribu-
tion, normal and secondary (warping) shear stresses
arise formulating the warping moment (bimoment)
and secondary twisting moment (bishear), respectively
[1, 2]. Warping shear stresses can be estimated by for-
mulating a boundary value problem with respect to a
secondary warping function [1, 3, 4] or by studying
the equilibrium equations of a small segment of an
elementary slice of the bar [5]. However, the afore-
mentioned techniques do not achieve to include the
warping shear stresses in the global equilibrium of
the bar and to perform an accurate analysis of bars
of closed shaped cross sections [6], that is to account
for the secondary twisting moment deformation effect
(STMDE). This effect generally necessitates the use of
an independent warping parameter in the kinematical
components of the bar (along with the angle of twist),
increasing the difficulty of the problem at hand.

Besides, since weight saving is of paramount im-
portance in many engineering fields, frequently used
thin-walled open sections have low torsional stiffness
and their torsional deformations may be of such mag-
nitudes that it is not adequate to treat the angles of
cross section rotation as small. In these cases, the study
of nonlinear effects on these members becomes essen-
tial, where this nonlinearity results from retaining the
nonlinear terms in the strain–displacement relations
(finite displacement—small strain theory). When finite
twist rotation angles are considered, the nonuniform
torsional dynamic analysis of bars becomes much
more complicated, leading to the formulation of cou-
pled and nonlinear torsional and axial equations of
motion. When the twist rotation angles of a member
are small, a wide range of linear analysis tools, such
as modal analysis, can be used and some analytical
results are possible. As these rotation angles become
larger, the induced geometrical nonlinearities result
in effects that are not observed in linear systems. In
such situations the possibility of an analytical solution
method is significantly reduced and is restricted to spe-
cial cases of boundary conditions or loading.

During the past few years, the linear static and
linear free vibration analysis of shear deformable
bars undergoing twisting or general deformations have
been thoroughly studied [6–20] and theoretical state-
ments and/or numerical comparisons between beam
theories ignoring or taking into account the STMDE
have been presented [6, 7, 9, 10, 19]. However, this
is not the case for vibration analysis of bars taking

into account both shear effects and geometrical non-
linearities. Cortinez and Piovan [21] and Machado and
Cortinez [22] performed buckling and vibration analy-
sis of composite beams of open and closed cross sec-
tions with orthotropic laminates, Minghini et al. [23]
analyzed pultruded FRP beams and frames by devel-
oping locking-free elements while Vo and Lee [24]
performed buckling and vibration analysis of compos-
ite beams of open cross sections with arbitrary lay ups.
However, in the aforementioned contributions the an-
alyzed cross sections are thin-walled ones, forced vi-
brations are not investigated and geometrical nonlin-
earities are considered only for static initial stresses
and deformations.

During the past few years, the nonlinear nonuni-
form torsional dynamic analysis of bars has received
a good amount of attention in the literature. Apart
from research efforts that neglect torsional warping
(Da Silva in [25, 26], Pai and Nayfeh in [27–29]),
Di Egidio et al. in [30, 31] presented a FEM solution
to the nonlinear flexural-torsional vibrations of thin-
walled open beams taking into account in-plane and
out-of-plane warpings and neglecting warping inertia.
In these papers, the torsional–extensional coupling is
taken into account but the inextensionality assumption
leads to the fact that the axial boundary conditions are
not general. Moreover, Simo and Vu-Quoc in [2] pre-
sented a FEM solution to a fully nonlinear (small or
large strains, hyperelastic material) three-dimensional
rod model based on a geometrically exact description
of the kinematics of deformation. Pai and Nayfeh in
[32] studied a geometrically exact nonlinear curved
beam model for solid composite rotor blades using
the concept of local engineering stress and strain mea-
sures and taking into account the in-plane and out-of-
plane warpings. In the last two research efforts, the
out-of-plane buckling of a framed structure and a he-
lical spring have been analyzed respectively, thus the
extensional–torsional coupling is not discussed. Re-
cently, Avramov et al. [33] analyzed flexural–flexural–
torsional free vibrations of twisted rotating beams em-
ploying nonlinear normal modes. Rozmarynowski and
Szymczak [34] and Sapountzakis and Tsipiras [35] fo-
cus to the problem of nonlinear torsional vibrations.
Nevertheless, dynamic analysis of bars at a torsional
postbuckled state, as this is presented for the static
case in [36], is not performed. Although free or forced
vibrations of bars at flexural postbuckling configura-
tions are well studied both numerically and experi-
mentally [37–40], however this is not the case for
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buckled bars at a torsional postbuckled state. To the
authors’ knowledge, only Mohri et al. [41] proposed
a FEM solution to the linear free vibration analysis
of pre- and postbuckled open thin-walled cross sec-
tion beams subjected to special boundary conditions,
neglecting warping inertia. In all of these research ef-
forts the angle of twist per unit length is considered as
a warping parameter with the exception of the afore-
mentioned research effort of Simo and Vu-Quoc [2]
who employed an independent one.

In this paper a boundary element method is devel-
oped for the nonuniform torsional vibration problem
of bars of arbitrary doubly symmetric constant cross
section, taking into account the effects of geometri-
cal nonlinearity (finite displacement—small strain the-
ory) and secondary twisting moment deformation. The
bar is subjected to arbitrarily distributed or concen-
trated conservative dynamic twisting and warping mo-
ments along its length, while its edges are subjected
to the most general axial and torsional (twisting and
warping) boundary conditions. The resulting coupling
effect between twisting and axial displacement com-
ponents is also considered and a constant along the
bar compressive axial load is induced so as to inves-
tigate the dynamic response at the (torsional) post-
buckled state. The bar is assumed to be adequately
laterally supported so that it does not exhibit any flex-
ural or flexural—torsional behavior. A coupled nonlin-
ear initial boundary value problem with respect to the
variable along the bar angle of twist and to an inde-
pendent warping parameter is formulated. The result-
ing equations are further combined to yield a single
partial differential equation with respect to the angle
of twist. The problem is numerically solved employ-
ing the Analog Equation Method [42], a BEM based
method, leading to a system of nonlinear Differential–
Algebraic Equations (DAE). The essential features
and novel aspects of the present formulation compared
with previous ones are summarized as follows.

i. The cross section is an arbitrarily shaped doubly
symmetric thin or thick walled one. The formula-
tion does not stand on the assumptions of a thin-
walled structure and therefore the cross section’s
torsional and warping rigidities are evaluated “ex-
actly” in a numerical sense.

ii. The beam is supported by the most general
boundary conditions including elastic support or
restraint.

iii. The trigonometric terms of the cross sectional
twisting rotations appearing in the displacement
field are retained without employing any simpli-
fying approximations.

iv. The present investigation focuses to torsional vi-
brations and provides a unified framework for
the theoretical statement and numerical compar-
ison between shear deformable and shear unde-
formable bars undergoing linear or nonlinear, free
of forced vibrations.

v. Nonlinear free vibrations at torsional postbuck-
ling configurations and primary resonance exci-
tations are numerically examined (in the second
part of this contribution) revealing several aspects
of nontrivial nonlinear phenomena.

vi. The adopted numerical procedure can efficiently
analyze torsional vibrations of bars at postbuck-
ling configurations without employing any as-
sumptions on the form of the modeshapes of de-
formation.

vii. The proposed method employs a BEM approach
(requiring boundary discretization exclusively for
the cross sectional analysis) resulting in line or
parabolic elements instead of area elements of the
FEM solutions (requiring the whole cross section
to be discretized into triangular or quadrilateral
area elements), while a small number of line el-
ements are required to achieve high accuracy.

2 Statement of the problem

2.1 Displacements, strains, stresses

Let us consider a prismatic bar of length l (Fig. 1), of
constant arbitrary doubly symmetric cross section of
area A. The homogeneous isotropic and linearly elas-
tic material of the beam cross section, with modulus
of elasticity E, shear modulus G and mass density ρ

occupies the two-dimensional multiply connected re-
gion Ω of the y, z plane and is bounded by the Γj

(j = 1,2, . . . ,K) boundary curves, which are piece-
wise smooth, i.e. they may have a finite number of
corners. In Fig. 1a Syz is the principal bending coor-
dinate system through the cross section’s shear center.
The bar is subjected to the combined action of the arbi-
trarily distributed or concentrated time dependent con-
servative axial load n(x, t) and twisting mt = mt(x, t)

and warping mw = mw(x, t) moments acting in the



970 E.J. Sapountzakis, V.J. Tsipiras

Fig. 1 Prismatic bar of an arbitrarily shaped doubly symmetric
constant cross section occupying region Ω (a) subjected to axial
and torsional loading (b)

x direction (Fig. 1b). The bar is assumed to be ade-
quately laterally supported so that it does not exhibit
any flexural or flexural—torsional behavior.

Under the aforementioned loading, the displace-
ment field of the bar accounting for large twisting ro-
tations is assumed to be given as

u(x, y, z, t) = um(x, t) + ηx(x, t)φP
S (y, z) (1a)

v(x, y, z, t) = −z sin θx(x, t)

− y
(
1 − cos θx(x, t)

)
(1b)

w(x,y, z, t) = y sin θx(x, t)

− z
(
1 − cos θx(x, t)

)
(1c)

where u,v,w are the axial and transverse bar displace-
ment components with respect to the Syz system of
axes [43]; θx(x, t) is the angle of twist; φP

S is the pri-
mary warping function with respect to the shear cen-
ter S [1]; ηx(x, t) and um(x, t) denote an indepen-
dent warping parameter [8] and an “average” axial dis-
placement of the bar’s cross section, respectively, that
will be later discussed. By dropping the displacement
and rotation components related to flexure of the dis-
placement field adopted in [2, 44], (1) are precisely
recovered. Moreover, by neglecting the time variation
of the defined quantities, adopting the approximations
of the linear theory of torsion (sin θx ≈ θx, cos θx ≈ 1)

and having in mind that only bisymmetrical cross sec-
tions of bars under axial and torsional loading condi-
tions are considered, the displacement field of the lin-
ear nonuniform warping beam theory can be obtained
[8].

Substituting (1) in the three-dimensional nonlinear
strain-displacement relations, the non-vanishing strain
resultants are obtained, after neglecting the nonlinear
terms of the axial displacement component [45–47], as

εxx = u′
m + η′

xφ
P
S + 1

2

(
y2 + z2)(θ ′

x

)2 (2a)

γxy = ηx

∂φP
S

∂y
− θ ′

xz (2b)

γxz = ηx

∂φP
S

∂z
+ θ ′

xy (2c)

where the second-order geometrically nonlinear term
in the right hand side of (2a) is often described as the
“Wagner strain” [48]. From (2b), (2c) it is observed
that shear strains are linear. However, if flexural effects
were considered, both the normal and shear strains
would be enriched with a series of nonlinear terms
[44].

Considering strains to be small, employing the sec-
ond Piola—Kirchhoff stress tensor, the Hooke’s stress-
strain law [5, 49] and (2), the work contributing stress
components are given as

Sxx = E

[
u′

m + η′
xφ

P
S + 1

2

(
y2 + z2)(θ ′

x

)2
]

(3a)

Sxy = SP
xy + SS

xy (3b)

§xz = SP
xz + SS

xz (3c)

where

SP
xy = Gθ ′

x

(
∂φP

S

∂y
− z

)
(4a)

SP
xz = Gθ ′

x

(
∂φP

S

∂z
+ y

)
(4b)

SS
xy = G

(
ηx − θ ′

x

)∂φP
S

∂y
(5a)

SS
xz = G

(
ηx − θ ′

x

)∂φP
S

∂z
(5b)

denote the well-known primary (St. Venant) shear
stress distribution accounting for uniform torsion [50]
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and the secondary (warping) shear stress distribution
accounting for nonuniform torsion, respectively.

2.2 Primary warping function φP
S , “average” axial

displacement um

The primary warping function is evaluated indepen-
dently by exploiting local equilibrium considerations
along the longitudinal x axis (after ignoring the iner-
tia and the nonuniform torsion theory terms) from the
solution of the following boundary value problem [1,
51]

∇2φP
S = 0 in Ω (6a)

∂φP
S

∂n
= zny − ynz on Γj (6b)

where ∇2 = ∂2/∂y2 + ∂2/∂z2 is the Laplace opera-
tor and ∂/∂n denotes the directional derivative nor-
mal to the boundary Γ . Since the problem at hand
has the Neumann type boundary condition, the evalu-
ated warping function contains an integration constant
(parallel displacement of the cross section along the
bar axis), which is evaluated following the procedure
presented in Sapountzakis [52]. The meaning of the
“average” axial displacement of the cross section of
the bar can now be explained as (1a) can be written as∫
Ω

udΩ = umA+ηx

∫
Ω

φP
S dΩ leading to the relation

um = ∫
Ω

udΩ/A.

2.3 Warping shear stress distribution, independent
warping parameter ηx

By substituting (1a) and (3) on the differential equa-
tion describing local equilibrium along the longitudi-
nal axis x [35]

∂Sxx

∂x
+ ∂Sxy

∂y
+ ∂Sxz

∂z
− ρü = 0

in Ω,∀x ∈ (0, l) (7)

it is easily concluded that this equation cannot be sat-
isfied. The same conclusion also holds for the asso-
ciated boundary condition of this equation, as this is
thoroughly discussed in [8] for the linear static case.
Observing (5a) and (5b), it comes up that adopting the
displacement field given in (1), warping shear stresses
follow the distribution of the derivatives of φP

S . More-
over, a warping shear stress distribution including a

secondary warping function φS
S is proved not to vio-

late both the aforementioned equation of motion (7)
and the associated boundary condition, as proposed in
[3]. Therefore, employing (5) to obtain accurate values
of warping shear stresses is of doubtful validity, espe-
cially near the boundary of the cross section. Never-
theless, the present formulation depending on an inde-
pendent warping parameter ηx and the angle of twist
θx , makes it possible to accurately analyze bars of ei-
ther closed or open shaped cross sections. This for-
mulation can also account for warping shear stresses
in global equilibrium, which has not been achieved
in previous research efforts [3] for the case of closed
shaped cross sections.

2.4 Equations of motion

In order to establish the equations of motion, the prin-
ciple of virtual work under a Total Lagrangian formu-
lation is employed as this is accomplished in [35]. Per-
forming the decomposition of shear strains into pri-
mary and secondary parts, as it is described for shear
stresses in (3b), (3c), (4), (5), the contribution of shear
stresses in the virtual work of internal forces can be
written as

I1 =
∫

V

(
SP

xyδγ
P
xy + SS

xyδγ
S
xy + SS

xyδγ
P
xy

+ SP
xyδγ

S
xy + SP

xzδγ
P
xz + SS

xzδγ
S
xz + SS

xzδγ
P
xz

+ SP
xzδγ

S
xz

)
dV (8)

Carrying out suitable integration by parts and exploit-
ing both (6a) and (6b), it is easily proven that the un-
derlined terms in the above equation vanish. The re-
maining terms can be written more conveniently as
I1 = ∫ l

x=0[MP
t δθ ′

x − MS
t (δηx − δθ ′

x)]dx where MP
t ,

MS
t are the primary and secondary twisting moments,

respectively [1], defined here as

MP
t =

∫

Ω

[
SP

xy

(
∂φP

S

∂y
− z

)
+ SP

xz

(
∂φP

S

∂z
+ y

)]
dΩ

(9a)

MS
t = −

∫

Ω

(
SS

xy

∂φP
S

∂y
+ SS

xz

∂φP
S

∂z

)
dΩ (9b)

Substituting (4)–(5) into (9), the above stress resul-
tants are given (with respect to the kinematical compo-
nents) as MP

t = GItθ
′
x,M

S
t = −GIS

t (ηx − θ ′
x) where
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It , I
S
t are the primary (St. Venant) [52] and secondary

[6] torsion constants, respectively given as

It =
∫

Ω

(
y2 + z2 + y

∂φP
S

∂z
− z

∂φP
S

∂y

)
dΩ (10a)

IS
t = Aθ

∫

Ω

(
−y

∂φP
S

∂z
+ z

∂φP
S

∂y

)
dΩ (10b)

with Aθ defined as the “effective shear area due to the
restrained torsional warping” [10]. The required alge-
bra to reach the above expressions starting from those
of (9) is presented in Appendix. Kim & Kim in [10]
propose an expression to evaluate Aθ of thin-walled
cross sections within the context of the stress resul-
tants defined in this paper, while Rubin [53] presents
expressions to evaluate the secondary torsion constant
IS
t of thin-walled cross sections. Numerical evalua-

tion of Aθ of arbitrarily shaped cross sections is pro-
posed in the recent developments of Kraus [54] em-
ploying the FEM and of Sapountzakis and Mokos [7]
employing the BEM, within the context of linear static
torsional loading conditions. Throughout the present
work it is assumed (unless otherwise mentioned) that
Aθ = 1, which evidently leads to the relation It =
IP − IS

t with IP denoting the polar moment of inertia.
It is worth mentioning here that the above relations
absolutely conform to the geometrically exact beam
theory of Simo and Vu-Quok [2] and the nonuniform
warping beam theory of El Fatmi [8].

It is also convenient to define the axial stress resul-
tant N and the warping moment Mw arising from nor-
mal stresses as in [35]. Substituting the stress compo-
nents given in (3), the strain ones given in (2) and the
displacement ones given in (1) to the principle of vir-
tual work, the governing partial differential equations
of motion of the bar are obtained after some algebra as

ρAüm − EAu′′
m − EIP θ ′

xθ
′′
x = n(x, t) (11a)

ρIpθ̈x − G
(
It + IS

t

)
θ ′′
x + GIS

t η′
x − 3

2
EIPP

(
θ ′
x

)
θ ′′
x

− EIpu′
mθ ′′

x − EIpu′′
mθ ′

x = mt(x, t) (11b)

ρCSη̈x − ECSη′′
x + GIS

t

(
ηx − θ ′

x

)

= −mw(x, t) (11c)

subjected to the initial conditions (x ∈ (0, l))

um(x,0) = ūm0(x) (12a)

u̇m(x,0) = ˙̄um0(x) (12b)

θx(x,0) = θ̄x0(x) (12c)

θ̇x(x,0) = ˙̄θx0(x) (12d)

ηx(x,0) = η̄x0(x) (12e)

η̇x(x,0) = ˙̄ηx0(x) (12f)

together with the boundary conditions at the bar ends
x = 0, l

α1N + α2um = α3 (13a)

β1Mt + β2θx = β3 (13b)

β̄1Mw + β̄2ηx = β̄3 (13c)

where N , Mt , Mw are the axial force, twisting and
warping moments at the bar ends, respectively given
as

N = EAu′
m + 1

2
EIP

(
θ ′
x

)2 (14a)

Mt = G
(
It + IS

t

)
θ ′
x − GIS

t ηx + EIP u′
mθ ′

x

+ 1

2
EIPP

(
θ ′
x

)3 (14b)

Mw = −ECSη′
x (14c)

while αi , βi , β̄i (i = 1,2,3) are time dependent func-
tions specified at the boundary of the bar. The geomet-
ric constants IPP , CS appearing in (11) and (14) are
given in [35], while the externally applied loads are
related to the components of the traction vector with
respect to the undeformed surface of the bar tx , ty , tz
as

n(x, t) =
∫

Γ

tx ds (15a)

mt(x, t) =
∫

Γ

ty(−z cos θx − y sin θx)

+ tz(y cos θx − z sin θx)ds (15b)

mw(x, t) = −
∫

Γ

txφ
P
S ds (15c)

The boundary conditions (13) are the most general
boundary conditions for the problem at hand, includ-
ing also the elastic support. It is worth here noting that
the terms of the boundary conditions of (13) are non-
linear by virtue of (14), while linear viscous damping
could also be included in (11) without any special dif-
ficulty. Moreover, from (11) it is concluded that all of
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the inertia terms are linear. However, if flexural effects
were considered, nonlinear inertia terms would arise
in the governing equations as well [44].

It is worth here noting that all the relations estab-
lished so far are completely analogous to those of
the Timoshenko beam theory, modeling the shear—
bending loading conditions of bars. The analogy of all
the kinematical and stress components with the ones of
the Timoshenko beam theory is thoroughly presented
in [6] for the linear static case.

The established initial boundary value problem is
a coupled and nonlinear one. A significant reduction
on the set of differential equations can be achieved
by neglecting the axial inertia term ρAüm of (11a),
a common assumption among dynamic beam for-
mulations. Ignoring this term, two partial differen-
tial equations with respect to two unknown displace-
ment components (θx(x, t), ηx(x, t)) can be obtained.
These equations can be further combined by perform-
ing similar algebraic manipulations as the ones de-
scribed in [55–58] so as to formulate a single par-
tial differential equation with respect to θx(x, t). This
equation can then be directly compared with the cor-
responding one presented in [35] that does not ac-
count for secondary twisting moment deformation ef-
fect (STMDE). In what follows, these procedures are
described in detail for the case of constant along the
bar axial load which is of great practical interest, es-
pecially in torsional postbuckling analysis of bars.

2.5 Reduced initial boundary value problem for
constant along the bar axial load

For the case of constant along the bar axial load, the
axial boundary conditions (13a) are written as

um(0, t) = 0 (16a)

N(l, t) = N̄(l, t) (16b)

Employing the aforementioned simplifications, (11a)
gives u′′

m = − IP

A
θ ′
xθ

′′
x , ∀x ∈ (0, l) which after subse-

quent integration and utilization of (16) yields u′
m =

− 1
2

IP

A
(θ ′

x)
2 + N̄

EA
,∀x ∈ [0, l]. Substituting the expres-

sions of u′′
m,u′

m into (11b), (14b) the reduced initial
boundary value problem is established as

ρIP θ̈x −
(

GIt + GIS
t + IP

A
N̄

)
θ ′′
x + GIS

t η′
x

− 3

2
EIn

(
θ ′
x

)2
θ ′′
x = mt(x, t) (17)

along with the governing (11c), the pertinent initial
conditions (12c), (12d), (12e), (12f) and boundary
conditions (13b), (13c). It is worth here noting that
(14a), (14c) hold, whereas (14b) is modified as

Mt =
(

GIt + GIS
t + IP

A
N̄

)
θ ′
x − GIS

t ηx

+ 1

2
EIn

(
θ ′
x

)3 (18)

where In is a nonnegative geometric cross sectional
property related to the geometrical nonlinearity ex-

pressed as In = IPP − I 2
P

A
.

The equations of motion (17), (11c) can be further
combined by performing similar algebraic manipula-
tions with those presented in [55–57] leading the ini-
tial boundary value problem to a single partial differ-
ential equation with respect to θx(x, t). More specif-
ically, (17) is solved with respect to η′

x and the ob-
tained expression is substituted in the differentiated
with respect to x version of (11c), resulting the follow-
ing governing partial differential equation with respect
to the angle of twist as

ρIP θ̈x − ρCS

(
1

κ
+ EIP

GIS
t

+ IP

GIS
t A

N̄

)
θ̈ ′′
x

− ρCS

EIn
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t

[
3
(
θ̇ ′
x

)2
θ ′′
x + 6θ̇ ′

x θ̇
′′
x θ ′

x + 3θ̈ ′
xθ

′
xθ

′′
x

+ 3θ̈ ′
x

(
θ ′
x

)2] + ECS

(
1

κ
+ IP

GIS
t A

N̄

)
θ ′′′′
x

−
(

GIt + IP

A
N̄

)
θ ′′
x − 3

2
EIn

(
θ ′
x

)2
θ ′′
x

+ EIn

ECS

GIS
t

[
3
(
θ ′′
x

)3 + 9θ ′
xθ

′′
x θ ′′′

x + 3

2

(
θ ′
x

)2
θ ′′′′
x

]

= mt + m′
w + ρCS

GIS
t

m̈t − ECS

GIS
t

m′′
t (19)

after neglecting the higher order term ρCS[ρIP /

(GIS
t )]....θ x . Equation (19) must satisfy the pertinent

initial conditions (12c), (12d) and boundary conditions
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(13b), (13c), where the independent warping parame-
ter ηx and the twisting and warping moments Mt , Mw

are given (at the bar ends x = 0, l) as

ηx = θ ′
x + ECS

GIS
t

(
1

κ
+ IP

GIS
t A

N̄

)
θ ′′′
x

+ ECS

GIS
t

EIn

GIS
t

[
3θ ′

x

(
θ ′′
x

)2 + 3

2

(
θ ′
x

)2
θ ′′′
x

]
(20a)

Mt =
(

GIt + IP

A
N̄

)
θ ′
x − ECS

(
1

κ
+ IP

GIS
t A

N̄

)
θ ′′′
x

+ 1

2
EIn

(
θ ′
x

)3
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EIn
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t
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3θ ′

x

(
θ ′′
x
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θ ′
x

)2
θ ′′′
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]
(20b)

Mw = ECS

(
1

κ
+ IP

GIS
t A

N̄

)
θ ′′
x

+ ECS

EIn

GIS
t

[
3

2

(
θ ′
x

)2
θ ′′
x

]
(20c)

In the above equations κ is an auxiliary geometric con-
stant related to the secondary twisting moment defor-
mation effect given as κ = IS

t /(It + IS
t ).

Comparing the formulated reduced initial bound-
ary value problem and the one presented in [35] where
the STMDE is not taken into account, it is concluded
that this effect alters the expressions of warping iner-
tia, warping stiffness and external loading and induces
higher order nonlinear inertia and stiffness terms in the
governing partial differential equation. Some nonlin-
ear stiffness terms are also induced in the kinematical
and stress components at the bar ends. If the STMDE
is neglected, the displacement field (1) must be up-
dated by substituting ηx = θ ′

x(and all the subsequent
equations accordingly) as well as (19)–(20) by substi-
tuting κ = 1 and dropping all the terms related to IS

t .

3 Integral representations—numerical solution

3.1 For the angle of twist θx

According to the precedent analysis, the nonlinear
nonuniform torsional vibration problem of shear de-
formable bars reduces to establishing the displacement
component θx(x, t) having continuous partial deriva-
tives up to the fourth order with respect to x and up to

the second order with respect to t , satisfying the non-
linear initial boundary value problem described by the
partial differential equation (19), the initial conditions
(12c), (12d) along the bar and the boundary conditions
(13b), (13c) at the bar ends x = 0, l. This problem is
solved using the Analog Equation Method [42]. Em-
ploying this method as this is presented in [35] and ap-
plying (19) to L collocation points, L semidiscretized
nonlinear equations of motion are formulated as

M{d̈} + K{d} + mnl(H1,H2, ḋ, d̈)

+ knl(H1,H2,H3,d) = f (21)

where d is a L + 8 generalized unknown vector,
mnl,knl are nonlinear generalized mass vector and
stiffness vector respectively and M, K, f are gener-
alized mass matrix, stiffness matrix and force vector
respectively, given as

{
mnl

}
i
= −ρCS

EIn

GIS
t

[
3
[{H1}i ḋ

]2({H2}id
)

+ 6
({H1}i ḋ

)({H2}i ḋ
)({H1}id

)

+ 3
({H1}i d̈

)({H1}id
)({H2}id

)

+ 3
({H1}i d̈

)[{H1}id
]2

]
(22a)

{
knl

}
i
= −3

2
EIn

[{H1}id
]2({H2}id

)

+ EIn

ECS
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t

[
3
[{H2}id

]3

+ 9
({H1}id

)({H2}id
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)
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2
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]2{d}i

]
(22b)

M =
[
ρIP H0

− ρCS

(
1

κ
+ EIP

GIS
t

+ IP

GIS
t A

N̄

)
H2

]
(22c)

K =
[
−

(
GIt + IP

A
N̄

)
H2

+ ECS

(
1

κ
+ IP

GIS
t A

N̄

)
I0

]
(22d)

f =
{

mt + m′
w + ρCS

GIS
t

m̈t − ECS

GIS
t

m′′
t

}
(22e)

In the above equations, {·}i denotes the (arbitrary) ith
row (i = 1,2, . . . ,L) of the matrix inside the brackets,
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Hj (j = 0,1,2,3) are L× (L+ 8) known matrices, I0
is an L×(L+8) rectangular matrix given as I0 = [I 0]
with I and 0 being the L × L identity matrix and the
L × 8 rectangular matrix with zero elements, respec-
tively, while mt,m′

w, m̈t,m′′
t are vectors containing

the values of the dynamic external loading at the L

nodal points. The elements of m′
w,m′′

t can be writ-
ten with respect to the values of mw(x, t),mt (x, t), re-
spectively at the collocation points by using appropri-
ate finite differences [59]. Equation (21) along with 8
algebraic equations constitute a system of simultane-
ous L + 8 Differential—Algebraic equations (DAE).
The details of the derivation as well as the solution al-
gorithm of this system of equations can be retrieved in
[35].

3.2 For the primary warping function φP
S

The integral representations and the numerical solu-
tion for the evaluation of the angle of twist θx pre-
sented in the previous section assume that the warp-
ing CS and the torsion It , I

S
t constants are already

established. The expressions of these constants indi-
cate that their evaluation presumes that φP

S at any in-
terior point of the domain Ω of the cross section of
the bar is known. Once φP

S is established, CS and It

constants are evaluated by converting the domain inte-
grals into line integrals along the boundary using the
corresponding relations presented in Sapountzakis and
Mokos [1], while the line integral expression of IS

t

constant is written as IS
t = ∫

Γ
φP

S (zny − ynz)ds.

4 Numerical examples

On the basis of the analytical and numerical proce-
dures presented in the previous sections, a computer
program has been written and representative examples
have been studied to demonstrate the validation, effi-
ciency and the range of applications of the developed
method. It is noted that the probability of the bar’s ex-
hibiting chaotic motion in its nonlinear response is not
investigated within the present study.

Example 1 (Small amplitude free vibrations, open
shaped cross section) In the first three examples, an
open thin-walled I-shaped cross section bar (E =
2.1 × 108 kN/m2, G = 8.1 × 107 kN/m2, ρ =
8.002 kN s2/m4) of length l = 4.0 m, having flange

and web width tf = tw = 0.01 m, total height and
total width h = b = 0.20 m has been studied, while
the numerical results have been obtained employ-
ing 21 nodal points (longitudinal discretization) and
400 boundary elements (cross section discretization).
The geometric constants of the bar are computed
as A = 5.800 × 10−3 m2, IP = 5.434 × 10−5 m4,
In = 1.631 × 10−7 m6, IPP = 6.722 × 10−7 m6,
It = 2.080 × 10−7 m4, IS

t = 5.413 × 10−4 m4, CS =
1.200×10−7 m6. The bar’s ends are simply supported
according to its torsional boundary conditions, while
the left end is immovable and the right end is sub-
jected to a compressive axial load according to its axial
boundary conditions.

In the first example, for comparison reasons, the
axial load—torsional fundamental natural frequency
relation of the aforementioned bar has been investi-
gated. Mohri et al. [41], without considering the sec-
ondary twisting moment deformation effect, proposed
analytical load—frequency relations by dropping the
higher order warping inertia term and assuming that
(i) the fundamental modeshape of vibration follows
a sinusoidal form sin(πx

l
) both in the pre- and post-

buckling region, (ii) the bar vibrates harmonically, (iii)
vibrations of small amplitude around a static equilib-
rium state are performed. These load (N̄)—frequency
(ωf ) relations for the pre- and postbuckling regions
are given, respectively, as

ω2
f = ω2

θ

(
1 − N̄

N̄cr,θ

)
(23a)

ω2
f = 2ω2

θ

(
N̄

N̄cr,θ

− 1

)
(23b)

where ωθ is the natural frequency for vanishing axial
load and N̄cr,θ is the torsional buckling load of the bar,
respectively given as [41]

ω2
θ = π2

ρl2IP

(
π2ECS

l2
+ GIt

)
(24a)

N̄cr,θ = A

IP

(
π2ECS

l2
+ GIt

)
(24b)

According to our results, the nonlinear initial
boundary value problem ((19), (12c), (12d), (13b),
(13c)) has been solved for several values of constant
axial load N̄ to obtain the response of the bar in the
time domain, taking into account or neglecting the
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Fig. 2 Axial load
N̄—torsional fundamental
natural frequency ωf

relation of (23) [41] along
with pairs of values
(ωf , N̄) obtained from
present study (Example 1)

STMDE. The fundamental natural frequency ωf is
then computed by exploiting the first few full cycles
of vibration. The computation is based on the Fast
Fourier Transform (FFT) of the time history, while
a Hanning data window is employed [60]. The free
vibrations are initiated by dropping all the torsional
loading terms and by employing the linear fundamen-
tal modeshape of the angle of twist as initial twisting
rotations θ̄x0(x) [35] along with zero initial twisting
velocities ˙̄θx0(x). In all cases, the STMDE is neglected
in the evaluation of θ̄x0(x). θ̄x0(x) is computed by em-
ploying the methodology presented in [35] and cor-
responds to the sinusoidal form assumed by Mohri
et al. [41]. In order to perform vibrations of small
amplitude, the initial midpoint angle of twist ampli-
tude θ̄x0(l/2) is chosen closely to the midpoint angle
of twist amplitude θ0(l/2) corresponding to the static
equilibrium state. Mohri et al. [41, 61] assuming that
the twisting deformation mode follows a sinusoidal
form sin(πx

l
) proposed the following analytical ex-

pression to evaluate θ0(l/2)

θ0(l/2) =

⎧
⎪⎪⎨

⎪⎪⎩

0, prebuckling region

±
√

8l2

3π2
IP

EAIn
(N̄ − N̄cr,θ ),

postbuckling region

(25)

In Fig. 2, the load–frequency relations of (23) are
presented along with pairs of values (ωf , N̄) obtained
from the proposed method, ignoring the STMDE. The
pairs (ωf , N̄) are computed by using the values of ini-
tial midpoint angle of twist amplitude θ̄x0(l/2), which
are given in Table 1 along with the corresponding val-
ues of θ0(l/2) computed from (25). From Fig. 2, the

Table 1 Axial load N̄ , midpoint angle of twist amplitude
θ0(l/2) corresponding to the static equilibrium state [41], along
with values of initial midpoint angle of twist amplitude θ̄x0(l/2)

used to initiate free vibrations of Example 1

|N̄ | (kN) θ0(l/2) (rad) θ̄x0(l/2) (rad)

0–3458 0.00 0.05

3500 0.22 0.27

4000 0.80 0.85

4500 1.11 1.16

5000 1.35 1.40

5500 1.55 1.60

6000 1.73 1.85

6500 1.90 2.00

7000 2.05 2.20

7500 2.19 2.35

8000 2.32 2.50

validity of the proposed method in predicting N̄–ωf

pairs of values of bars undergoing small amplitude
torsional vibrations is concluded. The higher discrep-
ancies between the two sets of solutions in the post-
buckling region as compared to the ones in the pre-
buckling region are attributed to the fact that the pre-
viously mentioned assumptions (i), (ii) are valid only
in the prebuckling region. To illustrate this point bet-
ter, in Figs. 3a, b the obtained time histories of the an-
gle of twist θx(l/2, t) at the midpoint of the bar for
a prebuckling (N̄ = −1000 kN) and a postbuckling
(N̄ = −5000 kN) axial loading are presented, respec-
tively, demonstrating that only the buckled bar under-
goes multifrequency vibrations. For comparison pur-
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Fig. 3 Time histories of
the angle of twist at the
midpoint of the bar of
Example 1, for a
prebuckling (N̄ = −1000
kN) (a) and a postbuckling
(N̄ = −5000 kN) (b) axial
loading

Table 2 Pairs of values N̄(kN)–ωf (s−1) taking into account or ignoring the STMDE and employing the linear or the nonlinear
fundamental modeshape as initial twisting rotations θ̄x0(x) for the free vibrations of Example 1

|N̄ | (kN) ωf (s−1)

θ̄x0(x): linear fundamental modeshape θ̄x0(x): nonlinear fundamental modeshape

With STMDE Without STMDE With STMDE Without STMDE

1000 180.48 180.70 – –

5000 199.77 199.46 199.98 199.67

poses, in Fig. 3b the time history of θx(l/2, t) employ-
ing the nonlinear fundamental modeshape of the an-
gle of twist as initial twisting rotations θ̄x0(x) (along
with zero initial twisting velocities ˙̄θx0(x)) is also in-
cluded (N̄ = −5000 kN), showing that the initiation
of free vibrations with the nonlinear modeshape does
not induce higher harmonics in the response of the
bar. Finally, in Table 2 the obtained results of pairs
of values (ωf , N̄) are presented taking into account
or ignoring the STMDE and employing either the lin-
ear or the nonlinear fundamental modeshape to initi-
ate the free vibrations, showing that in both pre- and
post- buckling regions, the STMDE does not affect the

fundamental natural frequency of bars of open thin-
walled cross sections undergoing small amplitude vi-
brations. The insignificance of the STMDE for linear
static loading conditions of bars of such cross sections
has already been reported in the literature [6].

Example 2 (Nonlinear free vibrations, open shaped
cross section) In the second example, the effect of
geometrical nonlinearity on the dynamic characteris-
tics of the bar under examination (bar of Example 1) at
a postbuckled state is investigated. The nonlinear ini-
tial boundary value problem ((19), (12c), (12d), (13b),
(13c)) has been solved for N̄ = −5500 kN (|N̄ | >

|N̄cr,θ |) for several values of initial midpoint angle of
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Fig. 4 Variation of the torsional fundamental natural frequency
ωf with respect to the initial midpoint angle of twist amplitude
θ̄x0(l/2) of the bar of Example 2 (N̄ = −5500 kN)

twist amplitude θ̄x0(l/2) to obtain the response of the
bar in the time domain, taking into account or ignor-
ing the STMDE. The free vibrations are initiated by
dropping all the torsional loading terms and by con-
sidering the linear fundamental modeshape of the an-
gle of twist as initial twisting rotations θ̄x0(x) along
with zero initial twisting velocities ˙̄θx0(x). In all cases,
θ̄x0(x) is evaluated numerically ignoring the STMDE
[35]. The fundamental natural frequency ωf and the
position around which vibrations are performed are
then computed by exploiting the first few full cycles
of vibration.

In Fig. 4, the variation of the torsional fundamental
natural frequency ωf with respect to the initial mid-
point angle of twist amplitude θ̄x0(l/2) of the bar is
presented for a range of values of θ̄x0(l/2), while in
Table 3 the positions θ̄x,m(l/2) around which vibra-
tions are performed are given for several values of
θ̄x0(l/2). It is concluded that the geometrical nonlin-
earity has a profound effect on both the natural fre-
quency of the bar and the positions around which vi-
brations are performed. From Table 3, it is observed
that these positions are non-constant ones and depend
on the initial amplitude of vibration, while for large
values of θ̄x0(l/2) they coincide with the static equi-
librium position of the prebuckling region. From Fig. 4
it is also concluded that the θ̄x0(l/2) − ωf relation is
rather complex and differs significantly from the one

Table 3 Initial midpoint angle of twist amplitudes θ̄x0(l/2) and
positions θ̄x,m(l/2) around which vibrations are performed of
the free vibrating bar of Example 2 (N̄ = −5500 kN)

θ̄x0(l/2) (rad) θ̄x,m(l/2) (rad)

1.60 1.60

1.75 1.60

1.85 1.58

1.95 1.55

2.00 1.53

2.05 1.50

2.15 1.41

2.20 1.34

2.22 1.23

2.25 0.00

2.35 0.00

2.50 0.00

3.50 0.00

4.50 0.00

of the prebuckling region. In the pre-buckled state, the
increase of initial amplitude of vibration always leads
to an increase of the bar’s stiffness and eventually an
increase of ωf (see also [35], and [34] for the case of
axially immovable ends and In = 0).

In Figs. 5, 6 the time histories of the angle of twist
θx(l/2, t) at the midpoint of the bar and of the ax-
ial displacement um(l, t) at the bar’s right end, re-
spectively, for two cases of the initial midpoint angle
of twist amplitude (θ̄x0(l/2) = 2.20 rad, θ̄x0(l/2) =
2.50 rad) are presented taking into account or ignor-
ing the STMDE. From these figures it is verified that
especially for the case of θ̄x0(l/2) = 2.50 rad, the fre-
quency of the axial displacement’s response is twice
as much as the one of the twisting rotation’s one. This
effect has already been documented in the literature
for nonlinear torsional vibrations of bars at prebuck-
ling configurations [35] and nonlinear flexural vibra-
tions of bars at prebuckling configurations with axi-
ally immovable ends [62]. Apparently, this is no longer
valid when vibrations at postbuckling configurations
are performed around positions with θ̄x,m(l/2)(rad) �=
0 (case of θ̄x0(l/2) = 2.20 rad). From Figs. 5, 6, it is
also observed that the STMDE does not influence the
kinematical components of buckled bars of open thin-
walled cross sections, undergoing large amplitude vi-
brations. This conclusion does not depend on the mag-
nitude of the initial midpoint angle of twist amplitude.
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Fig. 5 Time histories of the angle of twist at the midpoint
of the free vibrating bar of Example 2 taking into account
or ignoring the secondary twisting moment deformation effect
(θ̄x0(l/2) = 2.20 rad, θ̄x0(l/2) = 2.50 rad)

In Figs. 7, 8, the time histories of the primary twist-
ing moment MP

t (first two terms of (20b) including the
twisting moment caused by the axial load N̄), the lin-
ear secondary twisting moment MS

t,lin (third and fourth
terms of (20b)), the nonlinear twisting moment Mt,nl

(rest nonlinear terms of (20b)) and the total twisting
moment Mt = MP

t + MS
t,lin + Mt,nl at the bar’s left

end are presented taking into account the STMDE for
two cases of the initial midpoint angle of twist am-
plitude (θ̄x0(l/2) = 2.20 rad, θ̄x0(l/2) = 2.50 rad), re-
spectively. Finally, in Table 4 the extreme values of the
kinematical and stress components depicted in Figs. 5,
6, 7, and 8, obtained for the time interval 0.00 ≤ t ≤
0.12 (s) are presented taking into account or ignoring
the STMDE, for θ̄x0(l/2) = 2.20 rad. From this table it
is deduced that the STMDE influences negligibly both
kinematical and stress components of buckled bars of
open thin-walled cross sections undergoing large am-
plitude vibrations.

Example 3 (Primary resonance, geometrical nonlin-
earity, open shaped cross section) In the third exam-
ple, the forced vibrations of the bar under examina-
tion (bar of Example 1) at a pre-buckled state (N̄ = 0)

Fig. 6 Time histories of the axial displacement at the bar’s right
end of the free vibrating bar of Example 2 taking into account
or ignoring the secondary twisting moment deformation effect
(θ̄x0(l/2) = 2.20 rad, θ̄x0(l/2) = 2.50 rad)

are investigated to determine the effects of geometri-
cal nonlinearity and secondary twisting moment de-
formation. More specifically, the primary resonance
of the bar is studied by applying a concentrated twist-
ing moment Mt,ext at its midpoint given as Mt,ext(t) =
Mt0 sin(ωf,lint), where Mt0 = 5 kN m and ωf,lin =
214.23 s−1 (initial conditions θ̄x0(x) = 0, ˙̄θx0(x) =
0). ωf,lin is the fundamental natural frequency of the
bar undergoing linear torsional vibrations, ignoring
STMDE and is numerically evaluated by performing
modal analysis as this is presented in [63].

In Figs. 9, 10, the time histories of the angle of
twist θx(l/2, t) at the midpoint of the bar are presented
(with or without STMDE) for two cases of analysis,
namely ignoring or considering geometrical nonlinear-
ity, respectively. The linear analyses are carried out by
dropping all the nonlinear terms of (19), (20). As ex-
pected, only in the linear cases (Fig. 9) deformations
continue to increase with time. The beating phenom-
enon observed in the nonlinear response (Fig. 10) is
explained from the fact that large twisting rotations
increase the bar’s fundamental natural frequency ωf

(by increasing the stiffness of the bar), thereby caus-
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Fig. 7 Time histories of
various twisting moment
components at the left end
of the free vibrating bar of
Example 2 taking into
account the secondary
twisting moment
deformation effect for
initial midpoint angle of
twist amplitude
θ̄x0(l/2) = 2.20 rad

Fig. 8 Time histories of
various twisting moment
components at the left end
of the free vibrating bar of
Example 2 taking into
account the secondary
twisting moment
deformation effect for
initial midpoint angle of
twist amplitude
θ̄x0(l/2) = 2.50 rad

ing a detuning of ωf with the frequency of the exter-
nal loading (ωf,lin). After the angle of twist reaches
its maximum value, the amplitude of twisting defor-
mations decreases, leading to the reversal of the pre-
viously mentioned effects. Moreover, in Fig. 11, the
time histories of the primary twisting moment MP

t

(first two terms of (20b)), the linear secondary twist-
ing moment MS

t,lin (third and fourth terms of (20b)),
the nonlinear twisting moment Mt,nl (rest nonlinear

terms of (20b)) and the total twisting moment Mt =
MP

t + MS
t,lin + Mt,nl at the bar’s left end are presented

taking into account the STMDE and performing geo-
metrically nonlinear analysis. Finally, in Table 5 the
extreme values of the kinematical and stress compo-
nents depicted in Figs. 10, 11, obtained for the time in-
terval 0.00 ≤ t ≤ 0.30 (s) are presented taking into ac-
count or ignoring the STMDE. From Fig. 10 and from
Table 5 it is deduced that the STMDE influences neg-
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Table 4 Extreme values of
various kinematical and
stress components of the
free vibrating bar of
Example 2, obtained for
0.00 ≤ t ≤ 0.12 (s)
(θ̄x0(l/2) = 2.20 rad)

With STMDE Without STMDE

max θx(l/2) (rad) 2.307 2.304

min θx(l/2) (rad) 0.393 0.373

maxum(l) (m) −0.019 −0.019

minum(l) (m) −0.046 −0.046

maxMP
t (0) (kN m) −7.178 −6.796

minMP
t (0) (kN m) −59.927 −59.927

maxMS
t.lin(0) (kN m) 29.277 28.775

minMS
t.lin(0) (kN m) −16.208 −15.697

maxMt.nl(0) (kN m) 89.261 88.321

minMt.nl(0) (kN m) 0.144 0.129

maxMt(0) (kN m) 55.993 55.266

minMt(0) (kN m) −27.665 −26.828

ligibly both kinematical and stress components of bars
of open thin-walled cross sections undergoing forced
vibrations.

Example 4 (Linear forced vibrations, closed shaped
cross section)

In the last example, the (geometrically) linear re-
sponse of a bar (E = 2.1 × 108 kN/m2, G = 8.1 ×
107 kN/m2, ρ = 8.002 kN s2/m4, l = 5.0 m) of a
closed box-shaped cross section is studied. The cross
section is of total height h = 1.64 m, total width
b = 1.05 m, horizontal walls thickness th = 0.04 m
and vertical walls thickness tv = 0.05 m and is
identical to the box-shaped cross section studied by
Murín and Kutiš [6]. Throughout the entire numer-
ical example the geometric constants of the bar are
assumed to take the values presented in [6] (A =
0.240 m2, It = 0.089824 m4, IS

t = 0.001107 m4,
CS = 0,000193 m6), while the results have been ob-
tained employing 31 nodal points (longitudinal dis-
cretization). The bar’s left end is clamped, while its
right end is free and subjected to zero axial load,
zero warping moment and prescribed twisting moment
(N(l, t) = 0,Mw(l, t) = 0,Mt(l, t) = Mt).

In the beginning, for comparison purposes, the lin-
ear static loading conditions are investigated by drop-
ping all the inertia and nonlinear terms of (19), (20).
A concentrated twisting moment Mt = 32 kN m is ap-
plied at the bar’s right end and the computed results
of several kinematical and stress components taking
into account or ignoring the STMDE are presented in
Table 6 as compared wherever possible with those ob-
tained from a FEM solution [6]. The coincidence of

the results between the proposed and the FE methods
is remarked. Moreover, from the comparison of the
results obtained considering or ignoring the STMDE,
it is concluded that STMDE influences decisively the
stress components, while it exhibits a less pronounced
effect on the kinematical components. Thus, the sig-
nificance of STMDE in linear static analysis of bars of
closed shaped cross sections, already reported in the
literature [6], is verified.

Following the linear static loading conditions, the
linear forced vibrations are investigated by dropping
all the nonlinear terms of (19), (20). More specifically,
the resonance of the examined bar is studied by apply-
ing a distributed twisting moment mt,ext at 0 < x <

5 (m) given as mt,ext(x, t) = mt0 sin(ωf,lint), where
mt0 = 5 kN m/m and ωf,lin = 835.793 s−1 (Mt(l, t) =
0, vanishing initial conditions θ̄x0(x) = 0, ˙̄θx0(x) =
0). ωf,lin is the fundamental natural frequency of the
bar undergoing linear torsional vibrations, ignoring
STMDE and is numerically evaluated by performing
modal analysis as this is presented in [63]. In Fig. 12
the time histories of the secondary twisting moment
MS

t (0, t) at the bar’s left end taking into account or ig-
noring (scaled quantity MS

t (0, t) × 0,1) the STMDE
are presented demonstrating the decisive influence of
the aforementioned effect to this stress resultant. Fi-
nally, in Fig. 13 the time histories of the warping mo-
ment Mw(0, t) at the bar’s left end are depicted taking
into account or ignoring the STMDE. From Figs. 12,
13, the conclusions already drawn from Table 6 con-
cerning static analysis can be extended in linear dy-
namic analysis of bars of closed shaped cross sec-
tions.
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Fig. 9 Time histories of
the angle of twist at the
midpoint of the bar of
Example 3 taking into
account or ignoring
secondary twisting moment
deformation
effect—geometrically linear
case

5 Concluding remarks

In this paper a boundary element method is developed
for the nonuniform torsional vibration problem of sim-
ply or multiply connected cylindrical bars of arbitrary
doubly symmetric cross section, taking into account
the effects of geometrical nonlinearity and secondary
twisting moment deformation. The displacement com-
ponents are expressed so as to be valid for large twist-
ing rotations (finite displacement—small strain the-
ory), while the use of an independent warping para-
meter makes it possible to account for warping shear
stresses in global equilibrium of the bar. The main con-
clusions that can be drawn from this investigation are

a. The numerical technique presented in this investi-
gation is well suited for computer aided analysis of
cylindrical bars of arbitrarily shaped doubly sym-

metric cross section, supported by the most general
twisting and warping boundary conditions and sub-
jected to the combined action of arbitrarily distrib-
uted or concentrated time dependent conservative
axial and torsional loading.

b. The geometrical nonlinearity leads to coupling be-
tween the torsional and axial equations of mo-
tion and alters the modeshapes of vibration. Con-
sequently, the initiation of small amplitude free
vibrations of buckled bars with the linear funda-
mental modeshape as initial twisting rotations in-
duces higher harmonics in the bar’s response, but
its fundamental natural frequency is only slightly
affected.

c. Large twisting rotations have a profound effect on
both the positions around which vibrations are per-
formed and the fundamental natural frequency of
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Fig. 10 Time histories of
the angle of twist at the
midpoint of the bar of
Example 3 taking into
account or ignoring
secondary twisting moment
deformation
effect—geometrically
nonlinear case

Table 5 Extreme values of
various kinematical and
stress components of the
bar of Example 3, obtained
for 0.00 ≤ t ≤ 0.30 (s)

With STMDE Without STMDE

max θx(l/2) (rad) 1.378 1.376

min θx(l/2) (rad) −1.393 −1.388

maxMP
t (0) (kN m) 17.407 17.359

minMP
t (0) (kN m) −17.555 −17.537

maxMS
t,lin(0) (kN m) 12.464 12.205

minMS
t,lin(0) (kN m) −12.318 −12.491

maxMt,nl(0) (kN m) 19.199 18.887

minMt,nl(0) (kN m) −19.690 −19.474

maxMt(0) (kN m) 49.070 48.427

minMt(0) (kN m ) −49.545 −49.499
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Fig. 11 Time histories of
various twisting moment
components at the left end
of the bar of Example 3
taking into account the
secondary twisting moment
deformation effect
(geometrically nonlinear
analysis)

Table 6 Kinematical and stress components for linear static loading conditions of the bar of Example 4, taking into account or ignoring
the secondary twisting moment deformation effect

With STMDE Without STMDE

x = 0 x = l x = 0 x = l

FEM [6] Present study—AEM FEM [6] Present study—AEM Present study–AEM

MP
t (Nm ) 31,610.4 31,610.2 31,999.5 31,999.5 0 32,000.1

MS
t (Nm) 389.6 389.6 0.5 0.5 32,000.0 −0.1

Mw (Nm2) −263.95 −264.14 0 0 −2,397.12 0

θx (rad) 0 0 2.20 × 10−5 2.20 × 10−5 0 2.17 × 10−5

ηx(m−1)a 0 0 4.40 × 10−6 4.41 × 10−6 0 4.41 × 10−6

aWhen STMDE is ignored, ηx = θ ′
x

buckled bars undergoing large amplitude free vi-
brations. The computation of dynamic characteris-
tics of buckled bars differs from the one of bars at a
pre-buckled state where the increase of initial am-
plitude of vibration always leads to an increase of
the fundamental natural frequency.

d. The natural frequency of the axial displacement’s
response of buckled bars undergoing large ampli-
tude free vibrations is twice as much as the one of
the twisting rotation’s one, when vibrations are per-
formed around the static equilibrium position of the
prebuckling configuration.

e. As expected, geometrical nonlinearity bounds the
(twisting) deformations of bars at a pre-buckled

state subjected to primary resonance excitations.
A beating phenomenon is observed in the time his-
tories of kinematical and stress components.

f. The secondary twisting moment deformation af-
fects negligibly the kinematical and stress compo-
nents of bars of open shaped thin-walled cross sec-
tions undergoing free or forced vibrations of small
or large amplitude.

g. The secondary twisting moment deformation af-
fects the kinematical components of bars of closed
shaped cross sections undergoing linear vibrations.
Its effect is much more pronounced on stress com-
ponents, concluding that it cannot be neglected in
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Fig. 12 Time histories of the secondary twisting moment
MS

t (0, t) taking into account or ignoring (scaled quantity) the
secondary twisting moment deformation effect at the left end of
the bar of Example 4

Fig. 13 Time histories of the warping moment Mw(0, t) taking
into account or ignoring the secondary twisting moment defor-
mation effect at the left end of the bar of Example 4

linear dynamic analysis of bars of such cross sec-
tions.

The developed procedure retains most of the advan-
tages of a BEM solution over a FEM approach, al-
though it requires longitudinal domain discretization.

Appendix

Expression of the primary torsion constant It : Sub-
stituting (4) into (9a), the primary torsion constant of
(10a) is obtained as

It =
∫

Ω

[(
∂φP

S

∂y
− z

)2

+
(

∂φP
S

∂z
+y

)2]
dΩ = I1 + I2

(A.1)

where

I1 =
∫

Ω

(
y2 + z2 + y

∂φP
S

∂z
− z

∂φP
S

∂y

)
dΩ (A.2a)

I2 =
∫

Ω

[
∂φP

S

∂y

(
∂φP

S

∂y
− z

)

+ ∂φP
S

∂z

(
∂φP

S

∂z
+ y

)]
dΩ (A.2b)

Carrying out suitable integration by parts with respect
to y for the first term of (A.2b) and with respect to z

for the second term of (A.2b) and exploiting both (6a)
and (6b), I2 is proved to vanish. Consequently, It is
proven to be given from expression (10a).

Expression of the secondary torsion constant IS
t :

Substituting (5) into (9a), the secondary torsion con-
stant of (10b) is obtained as

IS
t = Aθ

∫

Ω

[(
∂φP

S

∂y

)2

+
(

∂φP
S

∂z

)2]
dΩ (A.3)

Carrying out suitable integration by parts with respect
to y for the first term of (A.3) and with respect to z

for the second term of (A.3) and exploiting (8), IS
t is

written as

IS
t = Aθ

∫

Γ

φP
S

∂φP
S

∂n
ds (A.4)

or by exploiting (6b)

IS
t = Aθ

∫

Γ

φP
S (zny − ynz)ds (A.5)

Using the Gauss divergence theorem, (A.5) yields the
exact formula of (10b).
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Finally it is worth here noting that the alternative
definitions of MP

t , MS
t as

MP
t =

∫

Ω

[
SP

xy(−z) + SP
xzy

]
dΩ (A.6a)

MS
t =

∫

Ω

[
SS

xy(−z) + SS
xzy

]
dΩ (A.6b)

can be easily proven to be identical to the ones pre-
sented in (9a), (9a).

Acknowledgements The authors would like to thank the Sen-
ator Committee of Basic Research of the National Technical
University of Athens, Programme “PEVE-2008”, R.C. No: 65
for the financial support of this work.

References

1. Sapountzakis, E.J., Mokos, V.G.: Warping shear stresses in
nonuniform torsion by BEM. Comput. Mech. 30, 131–142
(2003)

2. Simo, J.C., Vu-Quoc, L.: A geometrically-exact rod model
incorporating shear and torsion-warping deformation. Int.
J. Solids Struct. 27, 371–393 (1991)

3. Sapountzakis, E.J., Tsipiras, V.J.: Warping shear stresses in
nonlinear nonuniform torsional vibrations of bars by BEM.
Eng. Struct. 32, 741–752 (2010)

4. Schulz, M., Filippou, F.C.: Generalized warping torsion
formulation. J. Eng. Mech. 124, 339–347 (1998)

5. Vlasov, V.: Thin-walled elastic beams. Israel Program for
Scientific Translations, Jerusalem (1963)

6. Murín, J., Kutis, V.: An effective finite element for tor-
sion of constant cross-sections including warping with sec-
ondary torsion moment deformation effect. Eng. Struct. 30,
2716–2723 (2008)

7. Sapountzakis, E.J., Mokos, V.G.: Secondary torsional mo-
ment deformation effect by BEM. In: Proceedings of the
10th International Conference of Advances in Boundary El-
ement Techniques, Athens, Greece, pp. 81–88 (2009)

8. El Fatmi, R.: Non-uniform warping including the effects of
torsion and shear forces. Part I: A general beam theory. Int.
J. Solids Struct. 44, 5912–5929 (2007)

9. El Fatmi, R.: Non-uniform warping including the effects of
torsion and shear forces. Part II: Analytical and numerical
applications. Int. J. Solids Struct. 44, 5930–5952 (2007)

10. Kim, N., Kim, M.: Exact dynamic/static stiffness matrices
of non-symmetric thin-walled beams considering coupled
shear deformation effects. Thin-Walled Struct. 43, 701–734
(2005)

11. Back, S.Y., Will, K.M.: A shear-flexible element with warp-
ing for thin-walled open beams. Int. J. Numer. Methods
Eng. 43, 1173–1191 (1998)

12. Chen, H., Blandford, G.E.: A C0 finite element formula-
tion for thin-walled beams. Int. J. Numer. Methods Eng.
28, 2239–2255 (1989)

13. Hu, Y., Jin, X., Chen, B.: A finite element model for static
and dynamic analysis of thin-walled beams with asymmet-
ric cross-sections. Comput. Struct. 61, 897–908 (1996)

14. Saadé, K., Espion, B., Warzée, G.: Non-uniform torsional
behavior and stability of thin-walled elastic beams with
arbitrary cross sections. Thin-Walled Struct. 42, 857–881
(2004)

15. Gendy, A.S., Saleeb, A.F., Chang, T.Y.P.: Generalized thin-
walled beam models for flexural-torsional analysis. Com-
put. Struct. 42, 531–550 (1992)

16. Laudiero, F., Savoia, M.: Shear strain effects in flexure and
torsion of thin-walled beams with open or closed cross-
section. Thin-Walled Struct. 10, 87–119 (1990)

17. Laudiero, F., Savoia, M.: The shear strain influence on the
dynamics of thin-walled beams. Thin-Walled Struct. 11,
375–407 (1991)

18. Prokic, A., Lukic, D.: Dynamic analysis of thin-walled
closed-section beams. J. Sound Vib. 302, 962–980 (2007)

19. Kollár, L.P.: Flexural-torsional vibration of open section
composite beams with shear deformation. Int. J. Solids
Struct. 38, 7543–7558 (2001)

20. Park, S., Fujii, D., Fujitani, Y.: A finite element analysis
of discontinuous thin-walled beams considering nonuni-
form shear warping deformation. Comput. Struct. 65, 17–
27 (1997)

21. Cortinez, V.H., Piovan, M.T.: Vibration and buckling of
composite thin-walled beams with shear deformability.
J. Sound Vib. 258, 701–723 (2002)

22. Machado, S.P., Cortínez, V.H.: Free vibration of thin-
walled composite beams with static initial stresses and de-
formations. Eng. Struct. 29, 372–382 (2007)

23. Minghini, F., Tullini, N., Laudiero, F.: Vibration analy-
sis with second-order effects of pultruded FRP frames us-
ing locking-free elements. Thin-Walled Struct. 47, 136–150
(2009)

24. Vo, T.P., Lee, J.: Flexural-torsional coupled vibration and
buckling of thin-walled open section composite beams us-
ing shear-deformable beam theory. Int. J. Mech. Sci. 51,
631–641 (2009)

25. Da Silva, M.: Non-linear flexural-flexural-torsional-
extensional dynamics of beams—I. Formulation. Int. J.
Solids Struct. 24, 1225–1234 (1988)

26. Da Silva, M.: Non-linear flexural-flexural-torsional-
extensional dynamics of beams—II. Response analysis.
Int. J. Solids Struct. 24, 1235–1242 (1988)

27. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibra-
tions of composite beams—I. Equations of motion. Nonlin-
ear Dyn. 1, 477–502 (1990)

28. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibra-
tions of composite beams—II. Flapwise excitations. Non-
linear Dyn. 2, 1–34 (1991)

29. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vi-
brations of composite beams—III. Chordwise excitations.
Nonlinear Dyn. 2, 137–156 (1991)

30. Di Egidio, A., Luongo, A., Vestroni, F.: A non-linear
model for the dynamics of open cross-section thin-walled
beams—Part I: formulation. Int. J. Non-Linear Mech. 38,
1067–1081 (2003)

31. Di Egidio, A., Luongo, A., Vestroni, F.: A non-linear
model for the dynamics of open cross-section thin-walled
beams—Part II: forced motion. Int. J. Non-Linear Mech.
38, 1083–1094 (2003)

32. Pai, P.F., Nayfeh, A.H.: A fully nonlinear theory of curved
and twisted composite rotor blades accounting for warpings



Shear deformable bars of doubly symmetrical cross section under nonlinear nonuniform torsional 987

and three-dimensional stress effects. Int. J. Solids Struct.
31, 1309–1340 (1994)

33. Avramov, K.V., Galas, O.S., Morachkovskii, O.K., Pierre,
C.: Analysis of flexural-flexural-torsional nonlinear vibra-
tions of twisted rotating beams with cross-sectional depla-
nation. Strength Mater. 41, 200–208 (2009)

34. Rozmarynowski, B., Szymczak, C.: Non-linear free tor-
sional vibrations of thin-walled beams with bisymmetric
cross-section. J. Sound Vib. 97, 145–152 (1984)

35. Sapountzakis, E.J., Tsipiras, V.J.: Nonlinear nonuniform
torsional vibrations of bars by the boundary element
method. J. Sound Vib. 329, 1853–1874 (2010)

36. Szymczak, C.: Buckling and initial post-buckling behav-
ior of thin-walled I columns. Comput. Struct. 11, 481–487
(1980)

37. Emam, S.A., Nayfeh, A.H.: Nonlinear responses of buck-
led beams to subharmonic-resonance excitations. Nonlin-
ear Dyn. 35, 105–122 (2004)

38. Emam, S.A., Nayfeh, A.H.: On the nonlinear dynamics of a
buckled beam subjected to a primary-resonance excitation.
Nonlinear Dyn. 35, 1–17 (2004)

39. Nayfeh, A., Emam, S.: Exact solution and stability of post-
buckling configurations of beams. Nonlinear Dyn. 54, 395–
408 (2008)

40. Emam, S.A., Nayfeh, A.H.: Postbuckling and free vibra-
tions of composite beams. Compos. Struct. 88, 636–642
(2009)

41. Mohri, F., Azrar, L., Potier-Ferry, M.: Vibration analysis
of buckled thin-walled beams with open sections. J. Sound
Vib. 275, 434–446 (2004)

42. Katsikadelis, J.T.: The analog equation method. A
boundary-only integral equation method for nonlinear sta-
tic and dynamic problems in general bodies. Theor. Appl.
Mech. 27, 13–38 (2002)

43. Chen, G., Trahair, N.: Inelastic nonuniform torsion of steel
I-beams. J. Constr. Steel Res. 23, 189–207 (1992)

44. Machado, S.P., Cortínez, V.H.: Lateral buckling of thin-
walled composite bisymmetric beams with prebuckling and
shear deformation. Eng. Struct. 27, 1185–1196 (2005)

45. Ramm, E., Hofmann, T.J.: Stabtragwerke, Der Ingenieur-
bau. In: Mehlhorn, G. (ed.) Band Baustatik/Baudynamik.
Ernst & Sohn, Berlin (1995)

46. Rothert, H., Gensichen, V.: Nichtlineare Stabstatik.
Springer, Berlin (1987)

47. Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates and
Shells. McGraw-Hill, New York (1975)

48. Trahair, N.S.: Nonlinear elastic nonuniform torsion.
J. Struct. Eng. 131, 1135–1142 (2005)

49. Armenakas, A.E.: Advanced Mechanics of Materials and
Applied Elasticity. Taylor & Francis, New York (2006)

50. Sapountzakis, E.J.: Torsional vibrations of composite bars
by BEM. Compos. Struct. 70, 229–239 (2005)

51. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity.
McGraw-Hill, New York (1970)

52. Sapountzakis, E.J.: Solution of non-uniform torsion of bars
by an integral equation method. Comput. Struct. 77, 659–
667 (2000)

53. Rubin, H.: Wölbkrafttorsion von Durchlaufträgern mit kon-
stantem Querschnitt unter Berücksichtigung sekundärer
Schubverformungen. Stahlbau 74, 826–842 (2005)

54. Kraus, M.: Computerorientierte Bestimmung der Schubko-
rrekturfaktoren gewalzter I-Profile. In: Festschrift Rolf
Kindmann, pp. 81–98. Shaker Verlag, Aachen (2007)

55. Sapountzakis, E., Dourakopoulos, J.: Flexural-torsional
buckling analysis of composite beams by BEM including
shear deformation effect. Mech. Res. Commun. 35, 497–
516 (2008)

56. Sapountzakis, E., Dourakopoulos, J.: Shear deformation ef-
fect in flexural–torsional vibrations of beams by BEM. Acta
Mech. 203, 197–221 (2009)

57. Sapountzakis, E., Dourakopoulos, J.: Nonlinear dynamic
analysis of Timoshenko beams by BEM. Part I: Theory
and numerical implementation. Nonlinear Dyn. 58, 295–
306 (2009)

58. Prokic, A.: On fivefold coupled vibrations of Timoshenko
thin-walled beams. Eng. Struct. 28, 54–62 (2006)

59. Sapountzakis, E.J., Mokos, V.G.: Nonuniform torsion of
bars of variable cross section. Comput. Struct. 82, 703–715
(2004)

60. Brigham, E.: Fast Fourier Transform and Its Applications.
Prentice Hall, New Jersey (1988)

61. Mohri, F., Azrar, L., Potier-Ferry, M.: Flexural-torsional
post-buckling analysis of thin-walled elements with open
sections. Thin-Walled Struct. 39, 907–938 (2001)

62. Bhashyam, G., Prathap, G.: Galerkin finite element method
for non-linear beam vibrations. J. Sound Vib. 72, 191–203
(1980)

63. Sapountzakis, E., Mokos, V.: Dynamic analysis of 3-D
beam elements including warping and shear deformation
effects. Int. J. Solids Struct. 43, 6707–6726 (2006)


	Shear deformable bars of doubly symmetrical cross section under nonlinear nonuniform torsional vibrations-application to torsional postbuckling configurations and primary resonance excitations
	Abstract
	Introduction
	Statement of the problem
	Displacements, strains, stresses
	Primary warping function  phiSP, "average" axial displacement um
	Warping shear stress distribution, independent warping parameter etax
	Equations of motion
	Reduced initial boundary value problem for constant along the bar axial load

	Integral representations-numerical solution
	For the angle of twist thetax
	For the primary warping function phiSP 

	Numerical examples
	Concluding remarks
	Appendix
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


