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Abstract Enhanced modal-based order reduction of
forced structural dynamic systems with isolated non-
linearities has been performed using the updated
LELSM (local equivalent linear stiffness method)
modes and new Ritz vectors. The updated LELSM
modes have been found via iteration of the modes
of the mass normalized local equivalent linear stiff-
ness matrix of the nonlinear systems. The optimal ba-
sis vector of principal orthogonal modes (POMs) is
found via simulation and used for POD-based order
reduction for comparison. Two new Ritz vectors are
defined as static load vectors. One of them gives a sta-
tic displacement to the mass connected to the periodic
forcing load and the other gives a static displacement
to the mass connected to the nonlinear element. It is
found that the use of these vectors, which are aug-
mented to the updated LELSM modes in the order
reduction modal matrix, reduces the number of modes
used in order reduction and considerably enhances the
accuracy of the order reduction. The combination of
the new Ritz vectors with the updated LELSM modes
in the order reduction matrix yields more accurate re-
duced models than POD-based order reduction of the
forced nonlinear systems. Hence, the LELSM modal-
based order reduction is enhanced via new Ritz vectors
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when compared with POD-based and linear-based or-
der reductions. In addition, the main advantage of us-
ing the updated LELSM modes for order reduction is
that, unlike POMs, they do not require a priori simu-
lation and thus they can be combined with new Ritz
vectors and applied directly to the system.

Keywords Nonlinear dynamic systems · Model order
reduction · Local equivalent linear stiffness · Smooth
nonlinearity · Proper orthogonal decomposition

1 Introduction

Various methods have been employed in approximat-
ing the response of n-dimensional linear and nonlin-
ear dynamic systems by an m(� n) dimensional dy-
namic system. The classical method for order reduc-
tion of linear systems is due to Guyan [1]. Extensions
of Guyan reduction have been proposed that include
inertial as well as stiffness effects in the order re-
duction transformation [2]. These linear-based Guyan-
like order reduction techniques have also been applied
to nonlinear dynamic systems with weak static and
damping nonlinearities [3–6].

Another method for order reduction is the invari-
ant manifold approach that has been used in reducing
the dimension of the nonlinear dynamic systems to a
reduced subspace of coordinates. It utilizes the nonlin-
ear normal modes (NNMs) that describe the nonlinear
motion of the system on a two-dimensional invariant
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manifold in the system phase space [7–10]. As a re-
sult, the NNM-based reduced models are obtained in a
subspace of the master coordinates [11, 12]. However,
the NNM-based reduced models become less accu-
rate than the linear-based reduced models at the inter-
nal resonance condition. The results of the frequency–
amplitude dependence in [4] showed that the NNM-
based reduced models were less accurate than the
linear-based reduced models of the nonlinear systems
with smooth nonlinearities for a range of parameters in
the vicinity of an internal resonance condition. The in-
variant manifold approach was also employed in time-
periodic systems [13] in which the use was made of
the Liapunov–Floquet transformation [14].

Principal orthogonal decomposition (POD) is also
a well-known technique that is used in modal analysis
of nonlinear structural systems [15–22]. POD-based
order reduction requires a priori simulation to form
a subset of the dominant proper orthogonal modes
(POMs) of the highest singular values. These optimal
bases form the columns of the POD-based order re-
duction transformation matrix. The technique was ap-
plied for order reduction of structural systems with
frictional excitation in [19] and for nonlinear dynamic
systems with smooth and non-smooth nonlinearities
in [20–22]. The POD-based reduced model was con-
siderably enhanced via augmentation of the optimal
bases of the POMs with a new type of Ritz vector
called Kumar–Burton or K–B vectors in [22] for dy-
namic systems with coupling nonlinearities. The Ritz
vector approach has also been applied in [23] in which
a single Ritz vector was employed for each isolated
nonlinearity along with a subset of linear basis func-
tions to obtain a more accurate reduced model than
that obtained only with the linear functions. However,
the use of Ritz vectors in enhancing the accuracy of
order reduction of dynamic systems is not a new topic.
The approach was previously applied in order reduc-
tion of linear forced dynamic systems [24, 25]. The
optimal Ritz vectors were augmented to a truncated
subset of eigenvectors of the modal matrix of the lin-
ear system to form the order reduction transformation
matrix. The load-dependent Ritz vectors were found
by assigning a spatial distribution of the dynamic load
to each substructure of the system [26, 27].

Another method that was developed for order re-
duction of linear structures by Hurty [28] and modi-
fied by Craig and Bampton in [29] has been extended
to be used for order reduction of structures that have

nonlinear components in [30]. In this study, the fixed-
interface component mode synthesis (CMS) was ex-
tended for producing a reduced order model through
utilizing the fixed-interface nonlinear normal modes
(NNMs). In [31], the effect of a non-smooth nonlin-
earity that appears due to friction element in a struc-
ture with a friction-based seismic base isolation sys-
tem was considered and added to the linear Craig–
Bampton reduced equations of motion.

Most recently, a new technique for order reduc-
tion of dynamic systems with static piecewise linear
nonlinearities was proposed based on previously de-
veloped methods for approximation of the NNM fre-
quencies and mode shapes via either an amplitude-
independent piecewise modal method (PMM) or an
amplitude-dependent local equivalent linear stiffness
method (LELSM) [6, 32, 33]. The technique was fur-
ther improved over the previously developed meth-
ods for order reduction of large degree-of-freedom un-
forced nonlinear systems with grounded nonlineari-
ties via iteration of the LELSM modes. The iterated
LELSM modes were found to be a good approxi-
mation to the POMs of the system. These updated
LELSM modes were found to be as efficient as POMs
in the order reduction of such systems [33].

The LELSM modal-based order reduction via up-
dated LELSM modes is enhanced in this study by us-
ing a new type of Ritz vector: the Sh-B vector. This
approach is applied to forced dynamic systems with
static grounded and coupling nonlinearities. The new
Sh-B vectors are augmented to the updated LELSM
order reduction matrix for such systems. These vectors
considerably enhance the order reduction of these sys-
tems over the POD-based and linear-based order re-
ductions.

2 Principal orthogonal decomposition

Consider the forced and damped n-degrees of freedom
dynamic system with static nonlinearity as shown in
Fig. 1 for which the equations of motion can be written
as

Mẍ + Cẋ + Kx + Fnl(x) = F(t), (1)

where x ∈ Rn is the vector of displacements, M is
the n × n mass matrix, K is the n × n stiffness
matrix, C is the n × n damping matrix, Fnl(x) =



Order reduction of forced nonlinear systems using updated LELSM modes with new Ritz vectors 823

Fig. 1 n-degrees-of-freedom spring–mass system with forcing and one cubic spring

[0 . . . 0 f
j

nl(xj ) 0 . . . 0]T is the nonlinear n × 1 force
vector which for 1 ≤ j ≤ n consists of grounded static
nonlinearities at j th degree-of-freedom, and F(t) =
[0 . . . 0 F

p

0 sin(Ωpt) 0 . . . 0]T is the n × 1 peri-
odic excitation force vector that acts on mass p for
1 ≤ p ≤ n.

The method of proper orthogonal decomposition
(POD) requires a priori simulation of the dynamic sys-
tem in (1) in space and time. The solution at m time
steps is written in matrix form as [20]

X = [x1 x2 . . . xn] =
⎡
⎢⎣

x11 . . . x1n

...
. . .

...

xm1 . . . xmn

⎤
⎥⎦ . (2)

The covariance matrix X is centralized to the mean
of data before applying the singular-value decompo-
sition (SVD). The SVD is used for determining the
POMs and the singular values σ 2

i of the system. For
the m × n matrix X in (2) the SVD can be written
as [20]

X = USV T, (3)

where the POMs are the column vectors of the ma-
trix V and the diagonal elements of matrix S are the
singular values of the system. The subset of POMs
that correspond to the higher singular values are se-
lected to form the order reduction modal matrix, which
physically means including the POMs with the great-
est amount of energy in the signal. The ratio of energy
in the first m POMs of highest singular values to the
total energy of the n POMs is given by [20]

RPOD =
∑m

i=1 σ 2
i∑n

i=1 σ 2
i

, (4)

where σ 2
i is the singular value corresponding to the

mode i and σ 2
1 > σ 2

2 > · · · > σ 2
n .

3 Local equivalent linear stiffness method

The local equivalent linear stiffness method (LELSM)
has been previously utilized in [6] and [32, 33]. This
method is used here for finding the local equivalent
linear stiffnesses of the nonlinear springs. Finding
such local equivalent stiffnesses yields the local equiv-
alent linear stiffness matrix Keq for the undamped and
unforced nonlinear dynamic system. It is desired to
find a local equivalent linear stiffness to the nonlin-
ear spring attached to the j th degree-of-freedom. If
F(t) = 0 and the nonlinear force Fnl(x) in (1) acts on
the j th degree-of-freedom, then the undamped equa-
tion of motion of the mass mj in Fig. 1 is given as

mj ẍj + (kj + kj+1)xj + εj x
3
j − kjxj−1 − kj+1xj+1

= 0. (5)

The LELSM requires setting the coordinates of de-
grees-of-freedom j − 1 and j + 1 to zero, which
yields the single degree-of-freedom system as shown
in Fig. 2a. The equation of motion of this system is
given as

mj ẍj + (kj + kj+1)xj + εj x
3
j = 0. (6)

Equation (6) can be rewritten as

ẍj + ω2
j

(
xj + βjεj

ω2
j

x3
j

)
= 0, (7)

where ω2
j =

√
kj +kj+1

mj
and βj = 1.
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Fig. 2 (a) The single degree-of-freedom nonlinear spring–mass system, (b) and (c) local equivalent linear systems of the nonlinear
system in (a)

An approximation for the nonlinear frequency
in (7) was found via harmonic balance method in [34]
to be

(keq)j = mjΩ
2
j

= mj

ω2
j

144

(
80 + 62

(
βjεj

ω2
j

)
X2

j

+
√√√√4096 + 5888

(
βj εj

ω2
j

)
X2

j +1684

(
βj εj

ω2
j

)2

X4
j

)
,

(8)

where j is the degree-of-freedom location and Xj is
the initial modal amplitude for that degree-of-freedom.

The equations of motions of the local equivalent
linear systems in Fig. 2b and c, respectively, are given
as

mj ẍj + (kj + kj+1 + k̂eq)xj = 0, (9)

mj ẍj + (keq)j xj ≡ 0, (10)

where kj + kj+1 + k̂eq = (keq)j = mjΩ
2
j and Ω2

j is
given in (8). Hence, the nonlinear equation of motion
of mj is rewritten in its equivalent linear form as

mj ẍj + (keq)j xj − kjxj−1 − kj+1xj+1 = 0. (11)

The updated stiffness matrix is therefore given by

Keq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1 0

. . .
. . .

. . .

−1 (keq)j −1
. . .

. . .
. . .

0 −1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

The updated global stiffness matrix in (12) is
symmetric, therefore yielding orthogonal LELSM
modes. This stiffness matrix is normalized as K̃eq =
M−1/2KeqM

−1/2 and the eigenvalue problem |K̃eq −
Ω2I |x = 0 yields the LELSM modes and their fre-
quencies. In the following, the LELSM methodology
is modified by updating the LELSM modes. If the
n-degrees-of-freedom system has the j th degree-of-
freedom attached to a nonlinear spring then the up-
dated LELSM modes are found via the following iter-
ation technique [33]:

1. Use arbitrary initial amplitude for x
(1)
j (0) or let

x
(1)
j (0) = φ

j1 where φ
j1 is the j th element of the

first linear mode of the system.
2. At k = 1 and x

(1)
j (0), find (keq)j to form (Keq)n×n,

then solve for the first LELSM mode shape φ̃(1)
1

to

get φ̃(1)
j1

.

3. At k = 2, set x
(2)
j (0) = (φ̃

(1)
j1 +x

(1)
j (0))

2 and solve for

φ̃(2)
1

to get φ̃(2)
j1

.

4. For each new value of x
(k)
j (0), find (keq)j to form

(Keq)n×n and solve for a new φ̃(k)
1

to get new value

of φ̃(k)
j1

.

5. Continue iteration up to k = m, then set x
(m)
j (0) =

(φ
(m−1)
j1 +x

(m−1)
j (0))

2 and solve for φ̃(m)
1

. If φ̃(m)
1

−
φ̃(m−1)

1
≤ e, then stop. Otherwise continue itera-

tion until the LELSM mode converges to a unique
shape. Hence, the updated LELSM modes are ob-
tained.

It is found that the POMs obtained by using the
first linear mode as the initial condition for the un-
forced nonlinear system are well-approximated by the
updated LELSM modes [33]. Figure 3 shows a com-
parison between the first POM and the first updated
LELSM mode for the undamped unforced nonlinear
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Fig. 3 Comparison between the first POM and the first updated LELSM mode for the nonlinear spring–mass system: (a) one cubic
spring of ε17 = 3 is attached to m17, (b) two cubic springs of ε17 = 2 and ε20 = 1 are attached to m17 and m20, respectively

20-degrees-of-freedom spring–mass system when the
first linear mode (also shown with the dotted line) is
used as the initial condition. The almost indistinguish-
able overlap between the first POM and the first up-
dated LELSM mode is clearly noticed in the figure.

The high degree of similarity between the POMs
and the updated LELSM modes is also verified using
the Euclidean angle cos(θi) and the static mode en-
ergy difference (	E)i between the updated LELSM
modes and the corresponding POMs. The ith POM
(φ̂i ) and updated LELSM (φ̃i ) modes are compared
via the Euclidean angle cos(θi(φ̂i , φ̃i )) and the sta-
tic mode energy difference (	E)i when the ith linear
mode φi is used as the initial condition:

(
(	E)i = φ̃T

i Keqφ̃i − φ̂T
i Keqφ̂i

) → 0 (minimum),

(13a)
(
cos

(
θi(φ̂i , φ̃i )

) = φ̃T
i φ̂i/

(∥∥φ̃T
i φ̃

∥∥∥∥φ̂T
i φ̂i

∥∥)) → 1

(maximum). (13b)

The angle θi(φ̂i , φ̃i ) and the energy difference
(	E)i are calculated for the example in Fig. 3b and
given in Table 1. It is shown that these quantities are
within 3 or 4 significant digits of their optimal val-
ues. Hence, the near optimality of the updated LELSM
modes is verified when compared with POMs, which
are themselves optimal with respect to energy content.

Furthermore, the updated LELSM modes Φ̃ =
{φ̃1, φ̃2, . . . , φ̃n} span the space D ∈ Rn×n that is

spanned by the dominant POMs Φ̂ = {φ̂1, φ̂2, . . . , φ̂n},
i.e., D = span(φ̂1, φ̂2, . . . , φ̂n). More specifically, there
exist a set of real vectors vi = Φ̃Tφ̂i , i = 1,2, . . . , n,
such that the ith POM is calculated as φ̂i = Φ̃vi

where Ri = ‖Φ̃vi − φ̂i‖ → 0. Therefore, the space
spanned by the dominant POMs can be closely ap-
proximated by a linear combination of the updated
LELSM modes.

For the example in Fig. 3b, the residual Ri is plotted
in Fig. 4a where |Ri | < 3 × 10−30 for i = 1,2, . . . , n.
Hence, the updated LELSM modes form a basis that
spans the space defined by the dominant POMs while
all POMs can be represented by a linear combination
of the updated LELSM modes.

Beside the close approximation of the POMs via
the updated LELSM modes discussed above, another
type of comparison can be made from the frequencies
of the updated LELSM modes. It is shown that when
the first linear mode is utilized as the initial condi-
tion for the unforced nonlinear 20-degrees-of-freedom
spring–mass system, the exact frequency of the full
model obtained via numerical simulation is found to
be well approximated by the first updated LELSM
mode frequency as shown in Fig. 4b. Otherwise, the
frequency of the LELSM mode before updating is not
an accurate approximation for the exact frequency of
the nonlinear system. It is shown here that the updated
LELSM modes and their frequencies are an efficient
approximation for describing the modal behavior of
the nonlinear dynamic systems considered here. This



826 M.A. AL-Shudeifat, E.A. Butcher

Table 1 Euclidean angle cos(θi(φ̂i , φ̃i ))and the energy difference (	E)i between the updated LELSM modes and the corresponding
POMs for the first 6 modes

1st 2nd 3rd 4th 5th 6th

mode mode mode mode mode mode

cos(θi (φ̂i , φ̃i )) 1.0000 0.9962 0.9926 0.9994 0.9999 0.9992

φ̃iKeqφ̃i 0.0153 0.0620 0.1497 0.2851 0.4647 0.6806

φ̂iKeqφ̂i 0.0153 0.0621 0.1500 0.2850 0.4647 0.6807

(	E)i 1.3 × 10−6 1.6 × 10−4 2.6 × 10−4 1.4 × 10−4 4.9 × 10−5 1.4 × 10−4

Fig. 4 (a) Residual Ri = ‖Φ̃vi − φ̂i‖ for the example of Fig. 3b, (b) approximation of the exact frequency of the first mode found via
numerical simulation of the full model by the frequency of the first updated LELSM mode

can be quantified by the difference between the fre-
quency content of the ith updated LELSM mode from
the frequency content of the ith linear mode as

δi = (ωi)LELSM − (ωi)Linear, (14)

where (ωi)LELSM is the ith updated LELSM mode fre-
quency and (ωi)Linear is ith linear mode frequency. For
(ωi)LELSM = (ωi)Linear, both updated LELSM and lin-
ear modes are similar where δi = 0. The percent de-
viation in the frequency content between the updated
LELSM modes and the corresponding linear modes is
quantified as

RLELSM =
∑m

i=1 |δi |∑n
i=1 |δi | . (15)

The percent deviation in the frequency content RLELSM

is used as a criterion to predefine the number of modes
that gives a reduced model which is comparable in ac-

curacy to the full model. This will be shown later in
the examples that are considered in this paper.

4 New Ritz vectors for order reduction

The updated LELSM modes have been found as ef-
ficient as POMs in reducing the order of the damped
unforced nonlinear dynamic systems with static non-
linearities [33]. The use of the updated LELSM modes
in reducing the order of such systems with periodic
forcing excitation, such as the system in Fig. 1, is
greatly aided through the simultaneous use of new Ritz
vectors that enhance the order reduction. These Ritz
vectors should have appropriate discontinuities at the
forcing and the nonlinearity locations. For this pur-
pose, a subset of new Ritz vectors is suggested and
augmented with the updated LELSM modes in the or-
der reduction transformation matrix for a forced non-
linear dynamic system. The new static load Ritz vec-
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tors are selected to be relevant to the nonlinear sys-
tem in Fig. 1. These new vectors are proportional to
the stiffnesses of the masses attached to the forcing
or nonlinear springs. If the forcing acts on the pth
degree-of-freedom and the nonlinear spring is attached
to the j th degree-of-freedom, the first new static load
Ritz vector is given as

R1 = α[0 . . . 0 − kp kp + kp+1 − kp+1 0 . . . 0]T

(16)

while the other new static load Ritz vector is given as

R2 = α[0 . . . 0 − kj (keq)j − kj+1 0 . . . 0]T

(17)

where α = 1 m−1 and R1 and R2 are of dimension n×
1. The corresponding static displacement Ritz vectors
are calculated as

r1 = K−1
eq R1, (18a)

r2 = K−1
eq R2. (18b)

This new type of Ritz vector is called an Sh-B vector.
These vectors are linearly independent but not neces-
sarily orthogonal to the updated LELSM vectors, and
have appropriate discontinuities at the forcing and the
nonlinearity locations. The augmentation of a conven-
tional basis set (i.e. the updated LELSM modes) with
these Sh-B vectors yields a basis that effectively cap-
tures the nature of the configuration space for the dy-
namic systems with localized nonlinearities and forc-
ing. The Sh-B vectors capture the effect of the non-
linearity and forcing and couple this to the remainder
of the coordinates, especially in the immediate vicin-
ity of the nonlinearity and forcing locations. Hence,
the augmentation of the updated LELSM modes with
Sh-B vectors is expected to enhance the reduced or-
der model for the forced nonlinear spring–mass sys-
tem with grounded nonlinearities.

5 Modal-based order reduction

It is desired to reduce the order of the forced nonlin-
ear n-degrees-of-freedom mass–spring system shown
previously in Fig. 1 to an equivalent m-degrees-of-
freedom system where m � n. Hence, the modal

based order reduction requires forming an n×m trans-
formation matrix Φ of the first m columns of the basis
of the n×n modal matrix of the POD modes, LELSM
modes or the linear modes of the system as

Φn×m = [φ1 φ2 . . . φm] . (19)

To enhance the modal-based order reduction of
the system with one forcing and one grounded cubic
spring, the new Sh-B displacement vectors r1 and r2

are augmented to the order reduction modal matrix Φ ,
which yields the enhanced transformation matrix Φ̃:

Φ̃n×m = [φ1 φ2 . . . φm−2 r1 r2]. (20)

This enhanced order reduction transformation matrix
is used to obtain an enhanced order reduction via Sh-
B vectors. The order reduction is performed by apply-
ing the transformation xn×1 = Φ̃n×mzm×1 to (1) and
premultiplying by Φ̃T, which yields

M̄z̈ + C̄ż + K̄z + fnl(z) = f (t), (21)

where Φ̃TMΦ̃ = M̄, Φ̃TCΦ̃ = C̄, Φ̃TKΦ̃ = K̄,

F̂ (z) = Fnl(Φ̃z), fnl(z) = Φ̃TF̂ (z), and f (t) =
Φ̃TF(t).

The reduced M̄, C̄ and K̄ matrices are all symmet-
ric even though the Sh-B vectors are augmented to
the order reduction modal matrix. The reduced model
stiffness matrix is normalized as




K= M̄−1/2K̄M̄−1/2

where the eigenvalue problem | 


K −(Ω2)rI |x = 0
yields the frequencies of the m modes of the reduced
model where m − 2 of these frequencies are exactly
the same as the first m − 2 frequencies of the updated
LELSM modes. Hence, the augmentation of the Sh-B
vectors does not affect the first m − 2 frequencies of
updated LELSM modes in the reduced model.

6 Order reduction of forced, damped and
nonlinear mass–spring systems

Three cases are considered to show the capability of
the new Sh-B vectors in enhancing the LELSM-based
order reduction of the forced nonlinear dynamic sys-
tem. The initial condition for all cases is the first lin-
ear mode x(0) = φ1 for the displacements and ẋ(0) =
0.1φ1 for the velocities.
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Fig. 5 Static load Sh-B vectors and their corresponding displacements of the masses of the 20-degrees-of-freedom spring–mass system
with forcing excitation acting on m4 and cubic spring attached to m16

Case 1 For the forced, damped and nonlinear system
in Fig. 1: all masses and stiffnesses are set to unity
at an appropriate units, n = 20; the periodic excita-
tion load amplitude is F 4

0 = 3N which acts on mass
m4; the cubic spring is attached to mass m16 where
f 16

nl (x16) = ε16x
3
16 for ε16 = 3; the forcing frequency

Ω4 is the average of the first three natural frequen-
cies of the linear system, and the damping matrix is
proportional to the stiffness matrix as C = γK where
γ = 0.04. The first static load Sh-B vector R1 dis-
places the forced mass m4 by a unit displacement and
keeps all other masses with zero displacements. The
second static load Sh-B vector displaces m16 by a unit
displacement and keeps all other masses with zero dis-
placements. These static load and displacement Sh-B
vectors are plotted in Fig. 5.

The phase plane portraits are plotted for m16 in
Fig. 6 and the results of this figure are summarized
in Table 2. It is shown that as the number of re-
tained modes in the reduced models increases, the ac-
curacy of the enhanced LELSM-based reduced model
increases faster than that of the POD-reduced model.
If the number of the retained modes in the POD-based
reduced model is increased from 9 to 10, the RPOD

changes from 0.9905 to 0.9931 as shown in Table 2,
which does not actually reflect the considerable en-
hancement between the 9 POMs and 10 POMs re-
duced models. As a result, RPOD (which is known as

a strong criterion for identifying the highest energy
modes) is found here to not necessarily distinguish the
minimum number of the retained modes to obtain a
reduced order model of an acceptable accuracy. The
criterion RLELSM is found to be a more reliable crite-
rion for predefining the necessary number of the re-
tained modes that reflects the required accuracy in the
reduced model than RPOD as shown in Table 2, which
reflects the smooth enhancement in the LELSM-based
reduced model as the number of the retained modes is
increased as shown in Fig. 6. In addition, the calcula-
tion of the accumulated least square error between the
simulations of the exact and the reduced models has
shown that the LELSM-based reduced model is almost
more accurate than both POD-based and linear-based
reduced models as shown in Table 3.

The reduced models obtained via updated LELSM
modes and two Sh-B vectors are shown in Fig. 7 for
different values of the nonlinearity coefficients at fixed
values of the forcing amplitude. In addition, Fig. 8
shows the reduced models of the system at fixed val-
ues of the nonlinearity coefficient for different val-
ues of the forcing amplitudes. Both figures show that
the LELSM modal-based order reduction via updated
LELSM modes and Sh-B vectors stays accurate for
different values of either forcing amplitudes or non-
linearity coefficients.
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Fig. 6 Phase plane portraits obtained via simulation of the system in case 1 up to t = 35 s, where the number of modes retained in the
reduced model is (a) 5, (b) 7, (c) 9, (d) 10, (e) 11, (f) 12

Case 2 A forced nonlinear 100-degrees-of-freedom
spring–mass system (n = 100) is considered here.

Two cubic springs of ε30 = 3 and ε60 = 1 are attached
to the masses m30 and m60, respectively, and a forc-
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Table 2 Comparison
between the POD-based
and the LELSM-based
reduced models

Figure No. POD-based RPOD LELSM-based RLELSM

Fig. 6a 5 POMs 0.9722 3 updated LELSM modes + 2 Sh-B vectors 0.6810

Fig. 6b 7 POMs 0.9836 5 updated LELSM modes + 2 Sh-B vectors 0.7338

Fig. 6c 9 POMs 0.9905 7 updated LELSM modes + 2 Sh-B vectors 0.7854

Fig. 6d 10 POMs 0.9931 8 updated LELSM modes + 2 Sh-B vectors 0.8289

Fig. 6e 11 POMs 0.9953 9 updated LELSM modes + 2 Sh-B vectors 0.8435

Fig. 6f 12 POMs 0.9965 10 updated LELSM modes + 2 Sh-B vectors 0.8438

Table 3 Least square error
between simulations of the
full and reduced models for
x16

No. of modes retained 6 7 8 9 10 11 12

Accumulated least square error for 100 seconds simulation

POD-based 1505.5 905.4 494 616.1 136.2 38.1 31.1

LELSM-based 558.7 512.6 312.1 362.1 34.2 32.3 6.95

Linear-based 828.4 561.2 392.7 405.9 37.2 35.7 7.34

Accumulated least square error for 500 seconds simulation

POD-based 10143 5418.5 3584.1 3390.3 1103 420.3 353.2

LELSM-based 14592 5595 2181 1944.8 1204.1 515.3 108.2

Linear-based 14173 6241 2304 2097.6 1281.6 522.1 116.6

Fig. 7 Simulations of the 16th degree-of-freedom of the full model and its reduced models for different values of the nonlinearity
coefficient ε for a fixed value of forcing amplitude F 4

0

ing of amplitude F 100
0 = 10 N acts on the right-end

mass m100. The system is similar to that in Fig. 1, ex-
cept that two cubic springs and one forcing location

are used here. For this example, three static load Sh-B
vectors are used with two of them (R1,R2) for the cu-
bic nonlinearities and one (R3) for the forcing. They
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Fig. 8 Simulations of the 16th degree-of-freedom of the full model and its reduced models for different values of the forcing ampli-
tudes F 4

0 at a fixed nonlinearity coefficient ε

are given for α = 1 m−1 as

R1 = α[0 . . . 0 − k30 (keq)30 − k31 0 . . . 0]T,

(22a)

R2 = α[0 . . . 0 − k60 (keq)60 − k61 0 . . . 0]T,

(22b)

R3 = α[0 . . . 0 − k100 k100]T. (22c)

The forcing frequency is selected to be equal to the
average of the first five linear mode frequencies and
the damping matrix is proportional to the stiffness ma-
trix as C = γK where γ = 0.01. The system is sim-
ulated up to 1000 s for finding the POMs where the
initial condition is the first linear mode x(0) = φ1 for
the displacements and ẋ(0) = 0.1φ1 for the velocities.
The high degree of similarity between the first POM
and the first updated LELSM mode of this system is
shown in Fig. 9. The LELSM-based reduced models
in Fig. 10 that result from the augmentation of the
updated LELSM modes with three Sh-B vectors are
found to be comparable to the POD-reducedreduced
models in Fig. 11. In this example, the validity of us-
ing more than two Sh-B vectors is demonstrated. In
addition, the least square error in Table 4 between the
simulations of m100 displacement in the full and re-
duced models shows that the enhanced LELSM-based

Fig. 9 Comparison between the first POM and the first updated
LELSM modes for case 2

reduced model via Sh-B vectors is comparable in ac-
curacy to the POD-based reduced model when 50 or
55 modes are retained in the reduced models. Similar
conclusions are also observed for the other degrees-of-
freedom in this example.

Case 3 In this case, a forced nonlinear 100-degrees-
of-freedom spring–mass system (n = 100) is also con-
sidered, while the two cubic springs of ε30 = 3 and
ε100 = 1 are attached to the masses m30 and m100,
respectively. For this case, the forcing of amplitude
F 60

0 = 10 acts on mass m60. Three static load Sh-B
vectors are used here where two of them (R1,R2) are
used for cubic nonlinearities and one (R3) is used for
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Fig. 10 Phase plane portraits of m60 obtained via numerical simulation of the full model and its reduced models up to t = 100 s:
(a) 47 updated LELSM modes combined with three Sh-B vectors, (b) 52 updated LELSM modes combined with three Sh-B vectors

Fig. 11 Phase plane portraits of m60 obtained via numerical simulation of the full model and its reduced models up to t = 100 s :
(a) 50 POMs, (b) 55 POMs

Table 4 Least square error
‘LE’ between simulations
of the full and reduced
models for x60

Simulation time 100 seconds 500 seconds

No. of modes retained 40 45 50 55 55

POD-based reduced model, LE = 149.54 15.07 0.299 0.122 420.5

LELSM-based reduced model, LE = 7.151 1.588 0.756 0.404 452.5

Linear-based reduced model, LE = 2.204 1.004 0.949 0.233 617.6

RPOD 0.9984 0.9988 0.9992 0.9994 0.9994

RLELSM 0.8229 0.8420 0.8612 0.8771 0.8771
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forcing. They are given for α = 1 m−1 as

R1 = α[0 . . . 0 − k30 (keq)30 − k31 0 . . . 0]T,

(23a)

R2 = α[0 . . . 0 − k100 (keq)100]T, (23b)

R3 = α[0 . . . 0 − k60 k60 + k61 − k61 0 . . . 0]T.

(23c)

The forcing frequency and the damping matrix are
selected to be similar to those in case 2. The system is
simulated up to 1000 s for the same initial condition
that was previously used in case 2. The high degree
of similarity between the first POM and the first up-
dated LELSM mode of this system is shown Fig. 12.
Similarly to case 2, the LELSM-based reduced mod-
els in Fig. 13 that result from the augmentation of the

Fig. 12 Comparison between the first POM and the first up-
dated LELSM modes for case 3

updated LELSM modes with three Sh-B vectors are
found to be comparable to the POD-reduced reduced
models in Fig. 14 when 50 or 55 modes are retained
in the reduced model. In this example, the least square
error in Table 5 between the simulations of the full and
the reduced models shows that the enhanced LELSM-
based reduced model via Sh-B vectors is more ac-
curate than both POD-based and the linear-based re-
duced models for 500 s of simulation. Furthermore,
the augmentation of the Sh-B vectors with the lin-
ear modes in the order reduction modal matrix gives
more accurate reduced model than the POD-based re-
duced model as shown in Table 5. Similar conclusions
are drawn for the other degrees-of-freedom of this dy-
namic system.

7 Order reduction of 20-dof mass–spring system
with coupling nonlinearity

The forced system with coupling nonlinear spring
is shown in Fig. 15. The coupling cubic nonlinear
spring is attached between masses mj and mj+1.
The equations of motion are the same as (1) ex-
cept for the nonlinearity force vector which is given
as Fnl(x) = [0 . . . 0 f

j

nl(xj ) f
j+1
nl (xj+1) 0 . . . 0]T

for 1 ≤ j ≤ n where f
j

nl(xj ) = εj (xj
− x

j+1)
3 and

f
j+1
nl (xj+1) = −εj (xj

− x
j+1)

3.

Fig. 13 Phase plane portraits of m60 obtained via numerical simulation of the full model and its reduced models up to t = 100 s:
(a) 47 updated LELSM modes combined with three Sh-B vectors, (b) 52 updated LELSM modes combined with three Sh-B vectors
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Table 5 Least square error
‘LE’ between simulations
of the full and reduced
models for x100

Simulation time 100 seconds 500 seconds

No. of modes retained 40 45 50 55 55

POD-based reduced model, LE = 2.1454 7.3397 3.3036 1.0455 2250.0

LELSM-based reduced model, LE = 2.5291 1.7293 1.8075 0.3501 1898.2

Linear-based reduced model, LE = 2.5225 1.7421 1.8115 0.3448 1955.9

RPOD 0.9979 0.9984 0.9988 0.9991 0.9991

RLELSM 0.8946 0.9113 0.9267 0.9385 0.9385

Fig. 14 Phase plane portraits of m60 obtained via numerical simulation of the full model and its reduced models up to t = 100 s:
(a) 50 POMs, (b) 55 POMs

Fig. 15 The forced and damped n-degrees-of-freedom spring–mass system with coupling nonlinearity

As before, the LELSM requires setting all degrees-

of-freedom to zero except those attached to the cou-

pling spring as shown in Fig. 16.

For the parameter set mj = mj+1 = m,kj =
kj+2 = k, kj+1, and zero damping coefficients, the

equations of motion of the system in Fig. 16 are sim-

plified to

mẍj + (k + kj+1)xj − kj+1xj+1 + εj (xj − xj+1)
3

= 0, (24a)

mẍj+1 − kj+1xj + (k + kj+1)xj+1 − εj (xj − xj+1)
3

= 0. (24b)
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Fig. 16 The equivalent
2-degrees-of-freedom
LELSM model of
degrees-of-freedom j and
j + 1

Subtracting the second equation from the first one
yields

m(ẍj − ẍj+1) + (k + 2kj+1)(xj − xj+1)

+ 2εj (xj − xj+1)
3 = 0. (25)

Letting (xj − xj+1) = zj , (25) is simplified to

z̈j + ω2
j0

(
zj + aj z

3
j

) = 0,

ω2
j0 = (k + 2kj+1)/m,

aj = 2εj /(k + 2kj+1).

(26)

The frequency equation of the system in (26) is
given as [34]

Ω2
j = ω2

j0

144

(
80 + 62ajZ

2
j0

+
√

4096 + 5888ajZ
2
j0 + 1684a2

jZ
4
j0

)
, (27)

where Zj0 = xj (0) − xj+1(0) is the initial amplitude
of the system in (26) which can be rewritten in the
following equivalent form:

z̈j + Ω2
j zj = 0. (28)

In addition, the system in Fig. 16 is assumed to be
equivalent to the system in Fig. 17 of which the equa-
tion of motion in term of zj is given by

mz̈j + (
k + 2(keq)j

)
zj = 0. (29)

Hence, from (28) and (29) the local equivalent stiff-
ness is given by

(keq)j = (
mjΩ

2
j − k

)
/2. (30)

For n = 20, j = 15, and unity stiffnesses and
masses of the system with appropriate units, the same
system as in [22] is considered here. The global stiff-
ness matrix K is updated to Keq as

Keq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1

−1 2 −1 0

. . .
. . .

. . .

−1 (1 + keq)15 −keq

−keq (1 + keq)16 −1

0
. . .

. . .
. . .

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(31)

By following the same iteration technique for
grounded nonlinearities, the updated LELSM modes
of this system are obtained.

The previously used K–B (Kumar–Burton) [22]
and Milman–Chu [35] vectors with a system simi-
lar to that in Fig. 16 for enhancing the POD-based
and linear-based reduced models are found to be ef-
ficient in enhancing the LELSM-based reduced model
for such dynamic systems. These vectors are plotted
in Fig. 18 where the vectors rk–b and rm–ch are cal-
culated based on the use of the linear stiffness matrix
while r̄k–b and r̄m–ch are calculated based on the use
of the local equivalent linear stiffness matrix Keq. The
small difference between these vectors is made clear in
Fig. 18. The use of Keq in calculating r̄k–b and r̄m–ch

was found to slightly enhance the order reduction over
the use of the linear stiffness matrix for finding rk–b

and rm–ch. This enhancement can be seen only if the
phase plane portraits are magnified.
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Fig. 17 The
2-degrees-of-freedom
sub-system of the
degrees-of-freedom j and
j + 1

Fig. 18 Static load K–B and Milman–Chu vectors and their
corresponding displacements of the masses of the 20-degrees-
of-freedom system with forcing excitation at m4 and cubic cou-

pling spring attached between m15 and m16: (a) and (b) K–B
static load and displacement vectors, (c) and (d) Milman–Chu
static load and displacement vectors

In the following example, the periodic excitation

load with F 4
0 = 5 acts on m4 and the cubic cou-

pling spring is attached between m15 and m16 where

ε15 = 3. The POD-based reduced models are plotted

in Fig. 19. It is shown in this figure and in Table 6 that

when the number of retained modes in the POD-based

reduced model increased from 9 to 10, RPOD changes

from 0.9980 to 0.9986. This does not actually reflect

the considerable enhancement between the 9 POMs

reduced model and the 10 POMs reduced model. Sim-

ilarly to the nonlinear system with grounded nonlin-

earity, the RPOD is found here to not necessarily dis-

tinguish the minimum number of the retained modes

to obtain a reduced order model of an acceptable ac-

curacy.

The updated LELSM modes are augmented with

one K–B and one Milman–Chu vector. It is found that

the use of one K–B and one Milman–Chu vector with

the updated LELSM modes gives a more enhanced

reduced model than the same POMs. Unlike POD-

based reduced model, a smooth enhancement in the

LELSM-based reduced models is clear from Fig. 20

and from the accumulated least square error in Table 6.

The enhanced LELSM-based reduced model is almost

found to be more accurate than the POD-based and the

linear-based reduced models for this example.
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Table 6 Least square error
‘LE’ between simulations
of the full and the reduced
models of m16

Simulation time 500 seconds

No. of modes retained 7 8 9 10

POD-based reduced model, LE = 2310 1069.3 771.2 391.9

LELSM-based reduced model, LE = 699.3 502.7 605.1 275.2

Linear-based reduced model, LE = 706.9 489.8 614.14 276

RPOD 0.9961 0.9971 0.9980 0.9986

Fig. 19 Phase plane portraits of m16 obtained via simulation of the full and the reduced models of the forced nonlinear system with
coupling nonlinearity: (a) 7 POMs, (b) 8 POMs, (c) 9 POMs, (d) 10 POMs

8 Conclusions

An order reduction technique for forced nonlinear dy-
namic systems with isolated nonlinearities is intro-
duced in this paper. The technique is based on using
a subset of the updated LELSM modes augmented to
a subset of new Ritz vectors (Sh-B vectors). These new

vectors are proportional to the stiffnesses of the masses
attached to the forcing or nonlinear springs. Unlike in
linear modes, the nonlinearity effect appears in these
updated LELSM modes. These new modes preserve
the nonlinear dynamics of the system. Hence, their
augmentation with the Sh-B vectors in the modal or-
der reduction transformation matrix for forced nonlin-
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Fig. 20 Phase plane portraits of m16 obtained via simulation of
the full and the reduced models of the forced nonlinear system
with coupling nonlinearity: (a) 5 updated LELSM modes com-
bined with one K–B and one Milman–Chu vector, (b) 6 updated

LELSM modes combined with one K–B and one Milman–Chu
vector, (c) 7 updated LELSM modes combined with one K–
B and one Milman–Chu vector, (d) 8 updated LELSM modes
combined with one K–B and one Milman–Chu vector

ear systems yields a reduced model that is comparable
to the POD-based reduced model for all dynamic sys-
tems that are considered in this study.

The augmentation of the new Sh-B vectors with a
subset of the updated LELSM modes was found to be
as accurate as the use of a subset of POMs of the same
dimension in reducing the order of a forced system
with cubic nonlinearities. In addition, the exact fre-
quencies of the nonlinear dynamic system with cubic
stiffnesses are well approximated by the frequencies
of the updated LELSM modes. The deviation between
the frequencies of the updated LELSM modes and the
linear modes allows for knowledge of the sensitivity of
the modes to the nonlinear spring location. For the ex-
amples that are considered in this study, the high simi-

larity between the POMs and updated LELSM modes
is observed when the first linear mode is used as ini-
tial condition for such nonlinear systems. For the dy-
namic system with a coupling nonlinearity, the aug-
mentation of the K–B and Milman–Chu vectors with
a subset of the updated LELSM modes in the order
reduction transformation matrix yields LELSM-based
reduced model as efficient as the POD-based reduced
model. Hence, Sh-B vectors were found to better en-
hance the LELSM-based reduced models of the forced
systems with grounded nonlinearities while K–B and
Milman–Chu vectors were found to better enhance the
LELSM-based reduced models of forced systems with
coupling nonlinearities.
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It was found that the optimal locations of the dis-
placements of the new Sh-B vectors are the masses
which are connected to the nonlinear springs and forc-
ing. The possibility of using more than two Sh-B
vectors is demonstrated in this study via two large
degrees-of-freedom systems with two cubic springs
and one forcing. The results of these examples have
shown that the use of three or more of the Sh-B vec-
tors still produces a comparable LELSM-based re-
duced model to the POD-based reduced model. It is
shown that the Sh-B vectors can be used for differ-
ent locations of the nonlinear springs and forcing and
yield comparable reduced models to POD-based re-
duced models. The main advantage of using the en-
hanced LELSM-based order reduction via a subset of
the Sh-B vectors of the systems that are considered in
this study is that, unlike POD-based order reduction,
no a priori simulation of the full model is required and
thus it can be applied directly to the model.
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