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Abstract Oscillators control many functions of elec-
tronic devices, but are subject to uncontrollable per-
turbations induced by the environment. As a conse-
quence, the influence of perturbations on oscillators
is a question of both theoretical and practical impor-
tance. In this paper, a method based on Abelian inte-
grals is applied to determine the emergence of limit
cycles from centers, in strongly nonlinear oscillators
subject to weak dissipative perturbations. It is shown
how Abelian integrals can be used to determine which
terms of the perturbation are influent. An upper bound
to the number of limit cycles is given as a function of
the degree of a polynomial perturbation, and the stabil-
ity of the emerging limit cycles is discussed. Formulas
to determine numerically the exact number of limit cy-
cles, their stability, shape and position are given.
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1 Introduction

Oscillators are key components of many electronic de-
vices. For instance, they find application in wireless
communication systems for frequency translation of
information signals and for channel selection. In digi-
tal electronic systems, they are responsible to provide
a clock signal to synchronize operations.

An ideal oscillator would provide a perfect time
reference signal. Unfortunately, as any other physi-
cal system, electronic devices are corrupted by un-
desired perturbations such as thermal noise, supply
noise, and system–environment interactions. This is
often a key performance limiting factor in electronic
systems. Characterizing how perturbations affect os-
cillators is therefore of paramount importance in prac-
tical applications, since the characteristics of the local
oscillator affect the performance of the entire system.

Periodic oscillations in the time domain correspond
to limit cycles in the state space of the oscillator. Thus,
a related question of both theoretical and practical rel-
evance concerns the influence of perturbations on the
number, position and stability of limit cycles. Since its
formulation [1], this question, known as Hilbert’s six-
teenth problem, turned out to be one of the most elu-
sive and challenging problems in nonlinear dynamics,
with relevant implications into electrical engineering.
Arnold suggested a weakened version of Hilbert’s six-
teenth problem, asking to find a bound to the number
of limit cycles which bifurcate from a first order per-
turbation of a Hamiltonian system [2, 3].
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An approach to tackle the problem which has en-
joyed some popularity in the electrical engineering
community is Melnikov’s method [4–8]. Making use
of the computable solutions of the unperturbed system,
Melnikov’s method defines an integral function which
measures the distance between two consecutive inter-
sections of the perturbed orbit and a suitable cross sec-
tion [9]. For autonomous systems Melnikov’s function
can be recast as an Abelian integral, and the problem
is reduced to counting the zeroes of this integral. Un-
like the classical Melnikov method, Abelian integrals
only rely on the geometrical features of the trajecto-
ries, without need to determine the time evolution of
the system, which often involves special functions [9].

There is an abundant mathematical literature about
Abelian integrals and the number of their zeroes.
Usual methods to determine this number are based
on Picard–Fuchs equations, complex analysis, and
Chebyshev’s property (see [10, 11] and references
therein). To the best of the author’s knowledge, appli-
cations of Abelian integrals to circuits and systems are
scarce. In this paper the method of Abelian integrals
is applied to a strongly nonlinear oscillator under the
effect of a polynomial perturbation. A method to deter-
mine wether all terms in the perturbation are influent
is given. An upper bound to the number of limit cycles
(counted with their multiplicities) as a function of the
degree of the perturbation is derived, and the stability
of the limit cycles is investigated as a function of the
coefficients of the polynomial perturbation.

The paper is structured as follows: In Sect. 2 the de-
finition of Abelian integrals, their main properties and
their relation to limit cycles are introduced. In Sect. 3
the mathematical model of strongly nonlinear, weakly
dissipative oscillators is described. The corresponding
Abelian integrals are derived in Sect. 4, where it is
shown how they can be used to determine which terms
in the perturbation are relevant and which are not.
The Picard–Fuchs and the Riccati equations satisfied
by these Abelian integrals are derived in Sect. 5, and
are used to determine some properties instrumental to
find an upper bound to the number of their zeroes. Us-
ing these properties, the main theorem concerning the
number, positions and stability of the emerging limit
cycles is given in Sect. 6. In Sect. 7 an example is
given, and it is shown how the exact number, stabil-
ity, position and shape of limit cycles can be obtained
by numerically solving two simple equations. The the-
oretical prediction are compared and confirmed with

numerical simulations. Section 8 is devoted to conclu-
sions.

2 Abelian integrals and limit cycles

Consider the planar autonomous system
⎧
⎨

⎩

ẋ = ∂H(x,y)
∂y

+ εf (x, y),

ẏ = − ∂H(x,y)
∂x

+ εg(x, y),
(1)

where ε is a small parameter, H(x,y) is a first integral
of the unperturbed system (ε = 0), f (x, y) and g(x, y)

are polynomials of degree at most m. For ε = 0 the
system is Hamiltonian, so that its equilibrium points
are either saddles (unstable) or centers, i.e. neutrally
stable surrounded by a continuous family of periodic
orbits γ (h), which are the level sets H(x,y) = h. The
question is: How many periodic orbits keep unbroken
for small ε? To answer this question, consider a cross
section σ transversal to the level set γ (h), and pick
an initial condition h on σ . Let P(h, ε) be the first re-
turn map of the perturbed orbit γ (h, ε) starting from h

on σ . The difference d(h, ε) = P(h, ε) − h is called
the displacement function (see Fig. 1), and the answer
to the question above is given by its zeroes.

Theorem 1 (Poincaré–Pontryagin [12]) The displace-
ment function is given by

d(h, ε) = ε I (h) + O
(
ε2) (2)

as ε → 0, where I (h) is the Abelian integral given by

I (h) =
∮

γ (h)

g(x, y) dx − f (x, y) dy. (3)

Theorem 1 tells that the Abelian integral is a first
order measure of the displacement function. If this
measure is zero, up to the first perturbative order, the
periodic orbit γ (h) remains unbroken and a limit cycle

Fig. 1 Construction of the displacement function
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of the perturbed system survives to the perturbation,
emerging from the center.

The relationships between limit cycles of perturbed
Hamiltonian systems and Abelian integrals are sum-
marized in the following theorem:

Theorem 2 ([10, 11]) Suppose that I (h) is not identi-
cally zero for h ∈ (a, b), the following statements hold:

– If there exists an h∗ ∈ (a, b) such that I (h∗) = 0
and I ′(h∗) �= 0, then the perturbed system has a
unique hyperbolic limit cycle emerging from γ (h∗).
The cycle is stable if I ′(h∗) < 0, and unstable if
I ′(h∗) > 0.

– If there exists an h∗ ∈ (a, b) such that I (h∗) =
I ′(h∗) = · · · = I (k−1)(h∗) = 0 and I (k)(h∗) �= 0,
then the perturbed system has at most k limit cycles
bifurcating from the same curve γ (h∗).

– The total number of isolated zeroes, counted with
their multiplicities, of I (h) for h ∈ (a, b), is an up-
per bound to the number of limit cycles, counted
with their multiplicities, emerging from the continu-
ous family of periodic orbits γ (h), h ∈ (a, b).

By virtue of this theorem, the problem of finding
the number, positions and stability of limit cycles is
reduced to counting the zeroes of an Abelian integral,
determine their locations and the sign of the derivative
at that value of h. On the one hand, as it will be shown,
these problems are far from being trivial. On the other
hand, one can rely on the properties of Abelian inte-
grals, which turn out to be very useful for the solution.

3 Perturbed nonlinear oscillators

Planar autonomous systems with cubic nonlinearities
and weak dissipative forces have attracted much atten-
tion in many areas of applied sciences. Their typical
form is

ẍ + a x + b x3 = εf (x) ẋ, (4)

and they include Duffing and van der Pol oscillators as
special cases. Assuming ẋ = y + ε F (x), where F(x)

is a primitive of f (x), computing its derivative and
comparing with (4) one obtains the system
{

ẋ = y + εF (x),

ẏ = −ax − bx3.
(5)

A typical choice for F(x) is a polynomial. In fact, set-
ting apart systems with “dry friction”, F(x) is an ana-
lytic function and can be represented with any desired
accuracy by its Taylor series expansion truncated to a
suitable number of terms. Equation (5) can be rewrit-
ten as
{

ẋ = y + ε
∑m

k=1 ckx
k,

ẏ = −ax − bx3,
(6)

examples of circuits governed by equations of this type
are given in [6, 7]. For ε = 0 the system is conservative
with Hamiltonian

H(x,y) = 1

2
y2 + a

2
x2 + b

4
x4. (7)

Depending on the choice of the parameters a and b,
the system can exhibit different phase portraits, which
go under the names of truncated pendulum case and
saddle loop case for a < 0; global center case, cuspidal
loop, and figure-eight loop for a > 0. This paper focus
on the case a > 0, b > 0, known as global center case.

The Hamiltonian (7) is a special case of the one
considered in [13], where a sharp bound to the number
limit cycles emerging under the effect of a perturbation
of low degree is derived. In particular, it is shown that
with the linear change of coordinates

(x, y, t) �→
(√

a

b
x,

a√
b
y,

1√
a
t

)

(8)

it is possible to remove the dependence on a and b

in the unperturbed system. An upper bound to the
number of limit cycles emerging from this simplified
Hamiltonian, under the effect of very general polyno-
mial perturbations, has been derived in [14]. In both
these papers, however, the problem of the stability of
the emerging limit cycles is not tackled, and the meth-
ods developed are not suitable to obtain quantitative
predictions about limit cycles’ position and shape.

In the case under investigation, the scaling (8)
transforms system (6) into
⎧
⎨

⎩

ẋ = y + ε
√

b
a

∑m
k=1 ck(

a
b
)

k
2 xk,

ẏ = −x − x3,
(9)

simply shifting the dependence on the parameters
from the system to the perturbation. One could be
tempted to introduce new parameters ε̄ = ε

√
b/a, and

c̄k = ck(a/b)k/2. However, for a > b and k large
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enough, the coefficients c̄k may eventually grow so
large that they cannot be considered as a perturbation
anymore.

Returning to (6), for positive values of a and b, the
system admits a unique equilibrium point at the origin,
which is of center type. This equilibrium is surrounded
by a continuous family of ovals described by the level
curves of H(x,y)

γ (h) : 1

2
y2 + a

2
x2 + b

4
x4 = h, h ∈ (0,+∞). (10)

Along these curves

dH(x, y) = y dy + (
ax + bx3)dx = 0. (11)

For ε �= 0, the origin is still the unique equilibrium
point. Assuming ε 
 1, it is a stable focus for negative
values of c1, and an unstable focus for positive c1. Un-
der the effect of the perturbation, most of the periodic
orbits disappear. If the number of those surviving is
finite, they become isolated periodic trajectories, e.g.
limit cycles, which are said to emerge from the cen-
ter.

4 Abelian integrals for perturbed nonlinear
oscillators

Using equations (3) and (6) the Abelian integral for
the perturbed nonlinear oscillator is

I (h) = −
m∑

k=1

ck

∮

γ (h)

xk dy. (12)

One of the goals of this paper is to find an upper bound
to the number of zeroes of I (h) as a function of the
degree of the perturbation m, without solving the in-
tegral explicitly. Before to proceed with the analysis,
it is convenient to introduce some notation and basic
properties of Abelian integrals . It is of use to denote

In(h) =
∮

γ (h)

xny dx. (13)

Integrating by parts one obtains

I ′
n(h) =

∮

γ (h)

xn

y
dx (14)

where ′ = d
dh

. An important relation is obtained using
Green’s formula
∮

γ (h)

xmyn dy = m

∫∫

H(x,y)≤h

xm−1yn dx dy

= − m

n + 1

∮

γ (h)

xm−1yn+1 dx. (15)

The following theorems allow to rewrite I (h) in a
simpler form and to deduce a number of properties
about its zeroes.

Lemma 1 Even powers in the perturbation of (6) do
not influence the number of limit cycles, neither their
stability.

Proof Using equation (11) the Abelian integral (12)
can be rewritten as

I (h) =
m∑

k=1

ck

[
aI ′

k+1(h) + bI ′
k+3(h)

]
. (16)

Applying Green’s formula, it is easy to show that I0(h)

is the area of the region enclosed by γ (h). Denoting by
−ρ and ρ the two intersections between γ (h) and the
x–axis yields

I ′
n(h) = 2

∫ ρ

−ρ

xn

√
2h − a x2 − (b/2)x4

dx. (17)

If n is odd, equation (17) is the integral of an odd func-
tion evaluated over an interval symmetric with respect
to the origin, which is identically null. Thus, for all
even values of k in (16) both I ′

k+1(h) and I ′
k+3(h),

i.e. those terms in the summation stemming from even
powers of the perturbation, are identically null.

As a consequence equation (16) simplifies to

I (h) =
l∑

k=1

c2k−1
[
aI ′

2k(h) + bI ′
2k+2(h)

]
, (18)

where l = m/2 if m is even, l = (m+ 1)/2 if m is odd.
Using (14) and (15) and for the same arguments used
above one obtains

I ′(h) =
l∑

k=1

(2k − 1)c2k−1I
′
2k−2(h), (19)

which implies that even powers in the perturbation do
not influence the stability of the emerging limit cy-
cles. �
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Lemma 2 The following recurrence formulas hold

I ′
n+4(h) = 1

(n + 3) b

[
4h(n + 1)I ′

n(h)

− 2(n + 2)aI ′
n+2(h)

]
, (20)

In(h) = 1

n + 3

[
4hI ′

n(h) − aI ′
n+2(h)

]
. (21)

Proof Multiplying and dividing (14) by y, and using
(10) one obtains

In(h) = 2hI ′
n(h) − aI ′

n+2(h) − b

2
I ′
n+4(h). (22)

On the other hand, application of Green’s formula
to (14) leads to

In(h) = 1

n + 1

[
aI ′

n+2(h) + bI ′
n+4(h)

]
. (23)

Eliminating In(h) from these two equations we get
(20), while eliminating I ′

n+4(h) we obtain (21). �

Applying (20) recursively, any integral I ′
2n(h) can

be brought to depend on the two fundamental integrals
I ′

0(h) and I ′
2(h). For instance, the first three integrals

are given by

I ′
4(h) = 4

3b

[
hI ′

0(h) − 4aI ′
2(h)

]
, (24)

I ′
6(h) = 4

15b2

[−8ahI ′
0(h) + (

8a2 + 9bh
)
I ′

2(h)
]
,

(25)
I ′

8(h) = 16

105b3

[
h
(
24a2 + 25bh

)
I ′

0(h)

− 4a
(
6a2 + 13bh

)
I ′

2(h)
]
. (26)

It follows that both the Abelian integral (18) and its
derivative (19) can be written as linear combination of
the integrals I ′

0(h) and I ′
2(h). The importance of this

result is twofold, in fact both the theoretical and the
numerical analysis are greatly simplified, since only
two integrals and/or their properties have to be deter-
mined.

5 Picard–Fuchs and Riccati equations

A well known fact about Abelian integrals and their
ratios is that they satisfy certain types of differential
equations, e.g. Picard–Fuchs and Riccati equations.

For the sake of completeness, this section is devoted
to derive the equations satisfied by the system un-
der investigation. This will provide crucial information
about the Abelian integral (18) and its derivative.

Lemma 3 The integrals I0(h), I2(h) and their deriv-
atives satisfy the following Picard–Fuchs equations

(
4bh + a2) d

dh

(
I0(h)

I2(h)

)

=
(

3bh+a2

h
5ab
4h

a 5b

)(
I0(h)

I2(h)

)

,

(27)
(
4bh + a2) d

dh

(
I ′

0(h)

I ′
2(h)

)

=
(−b ab

4h

a b

)(
I ′

0(h)

I ′
2(h)

)

.

(28)

The ratio P(h) = I ′
2(h)/I ′

0(h) satisfies the Riccati
equation

(
4bh + a2)P ′(h) = a + 2bP (h) − ab

4h
P 2(h). (29)

Proof Substituting n = 0 in (20) one obtains

3bI ′
4(h) = 4hI ′

0(h) − 4aI ′
2(h). (30)

For n = 0 and n = 2, (21) yields

{
3I0(h) = 4hI ′

0(h) − aI ′
2(h),

5I2(h) = 4hI ′
2(h) − aI ′

4(h).
(31)

Introducing (30) in the second of (31)

{
3I0(h) = 4hI ′

0(h) − aI ′
2(h),

15bI2(h) = −4ahI ′
0(h) + 4

(
3bh + a2

)
I ′

2(h).
(32)

Eliminating I ′
2(h) from these equations, one obtains

the first of (27), while eliminating I ′
0(h) the second

stems. Taking the derivative of (32), and eliminating
I ′′

0 (h) or I ′′
2 (h) one obtains (28).

The derivative of P(h) is

P ′(h) = I ′′
2 (h)

I ′
0(h)

− I ′′
0 (h)

I ′
0(h)

P (h), (33)

multiplying both sides for (4bh + a2) and using (28),
(29) follows. �

Theorem 3 The function P(h) is strictly increas-
ing, positive definite and concave in the interval h ∈
(0,+∞).
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Proof Defining h = h(t), it follows that

d

dt
P

(
h(t)

) = P ′(h)
dh

dt
, (34)

and from equation (29)

4h
(
4bh + a2)P ′(h) = 4ah + 8bhP (h) − abP 2(h).

(35)

Comparing the two equations

{
dh
dt

= 4h(4bh + a2),

dP (h)
dt

= 4ah + 8bhP (h) − abP 2(h).
(36)

For h ≥ 0, (36) has a unique equilibrium point in the
origin, which is unstable with one-dimensional center
and unstable manifolds. The behavior of solutions can
be determined by the method of isoclines [9]. From
equation (36)

dP (h)

dh
= −abP 2(h) + 8bhP (h) + 4ah

4h(4bh + a2)
. (37)

The denominator is always positive in the interval h ∈
(0,+∞). The roots of the numerator Q±(h), represent
invariant sets of P(h), i.e. P(h) cannot intersect these
lines, and are given by

Q±(h) = 4h

a
±

√

16h2

a2
+ 4h

b
. (38)

These isoclines divide the half plane {(h,P (h)) : 0 <

h < +∞} into three regions, and the vector field (36)
is upwards in the middle region, downwards in the up-
per and lower regions (see Fig. 2). Routine calcula-

Fig. 2 Behavior of the vector field (36)

tions reveal that

dQ+(h)

dh

∣
∣
∣
∣
h=0

= +∞; dP (h)

dh

∣
∣
∣
∣
h=0

= 2

2a + b
.

(39)

This implies that P(h) lies in the middle region, and is
positive definite, strictly increasing and upper bounded
by Q+(h).

To prove that P(h) is concave, compute the deriva-
tive of (37)

P ′′(h) = 2a + 4bP (h) − (abP (h) + 12bh + 2a2)P ′(h)

8bh2 + 2a2h (40)

and using (37)

P ′′(h) = b(aP (h) − 4h)

8h2(a2 + 4bh)2

× [
4ah + 2

(
a2 + 4bh

)
P(h) + abP 2(h)

]
.

(41)

Again the denominator is always positive, and P ′′(h)

has three roots

R0(h) = 4h

a
, (42)

R±(h) = −(a2 + 4bh) ± √
(a2 + 4bh)2 − 4a2bh

ab
.

(43)

R0(h), and R±(h) divide the half plane {(h,P (h)) :
0 < h < +∞} into four regions. The second deriva-
tive is negative below R−(h) and between R+(h) and
R0(h), while it is positive between R−(h) and R+(h),
and above R0(h) (see Fig. 3). It is easy to see that
R±(h) are negative for all h > 0, and that

dR0(h)

dh

∣
∣
∣
∣
h=0

= 4

a
. (44)

Since 2/(2a +b) < 4/a for all positive values of a and
b, it follows that P(h) < R0(h), and P ′′(h) < 0. �

These properties of the function P(h) are instru-
mental to determine the number of zeroes of I (h) and
the sign of its derivative I ′(h), as it will be shown in
the next section.



Existence, number, and stability of limit cycles in weakly dissipative, strongly nonlinear oscillators 327

Fig. 3 Sign of the second derivative P ′′(h)

6 Number and stability of limit cycles

This section is devoted to describe the main theorem
of the paper, concerning the number, stability and lo-
cation of limit cycles emerging from the center. A very
powerful tool to determine an upper bound to the num-
ber of limit cycles emerging in polynomial perturba-
tions of Hamiltonian systems is based on the Cheby-
shev property [11, 14]. However, proving that a system
enjoys the Chebyshev property requires to introduce
rather sophisticated concepts, and often leads to the
conclusion that the number of limit cycles is a linear
function of the degree of the perturbation [10, 11, 14].
Here, a method developed in [15] will be used; this
method is based on simple mathematical concepts and
also gives a linear dependence of the number of limit
cycles on the degree of the perturbation, despite prob-
ably not the strictest one. Before dealing with the the-
orem, some notations are introduced. In what follows,
pr(h), and qs(h) denote polynomials in the variable
h of degree r and s, respectively; an overbar denotes
different polynomials of the same degree.

Equation (19) can be rewritten in the general form

I ′
n+4(h) = p1(h)I ′

n(h) + q0I
′
n+2(h), (45)

in this way, (23)–(26) become

I ′
4(h) = p1(h)I ′

0(h) + q0I
′
2(h), (46)

I ′
6(h) = p̄1(h)I ′

0(h) + q1(h)I ′
2(h), (47)

I ′
8(h) = p2(h)I ′

0(h) + q̄1(h)I ′
2(h). (48)

By inspecting these equations it is possible to infer a
general formula, for l = 2,3, . . .

I ′
2l (h) =

{
p l

2
(h)I ′

0(h) + q l
2 −1(h)I ′

2(h) if l is even,

p l−1
2

(h)I ′
0(h) + q l−1

2
(h)I ′

2(h) if l is odd.

(49)

Equations (18) and (19) become

I (h) = pr(h)I ′
0(h) + qs(h)I ′

2(h), (50)

I ′(h) = pr−1(h)I ′
0(h) + qs−1(h)I ′

2(h), (51)

where, for l = 2,3, . . .

(r, s) =
{

( l+1
2 , l−1

2 ) if l is odd,

( l
2 , l

2 ) if l is even.
(52)

Theorem 4 An upper bound to the number of limit
cycles, counted with their multiplicities, is:

– Zero, for m ≤ 2.
– One, for 2 < m ≤ 4, provided p0/q0 < 0, and zero

otherwise. The cycle is stable if q0 < 0, unstable
otherwise.

– Two, for 4 < m ≤ 6. The inner cycle is stable and
the outer unstable for q0 < 0. For q0 > 0 the stabil-
ity is reversed.

– For m > 6, an upper bound to the number of limit
cycle is given by:

j =
{ 3l+1

2 if l is odd,

3l
2 if l is even.

Proof The proof is based on the facts that between two
consecutive zeroes of I (h) there is always at least one
zero of I ′(h), and that h = 0 is a double zero of I (h),
i.e. I (0) = I ′(0) = 0.

For m ≤ 2, i.e. l = 1, (50) and (51) become

I (h) = p1(h)I ′
0(h) + q0I

′
2(h), (53)

I ′(h) = q̄0I
′
0(h). (54)

It is trivial to observe that for h ∈ (0,+∞), I ′(h) is al-
ways different from zero, so that I (h) is either strictly
increasing or strictly decreasing. In both cases it can-
not have zeroes for h ∈ (0,+∞).

For 2 < m ≤ 4, i.e. l = 2, the following equations
hold

I (h) = p1(h)I ′
0(h) + q1(h)I ′

2(h), (55)

I ′(h) = p0I
′
0(h) + q0I

′
2(h). (56)
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Fig. 4 Zeros of the Abelian integral I (h) (crosses) and its
derivative I ′(h) (dots), given by (55) and (56). The position of
h∗ is only indicative

Equation (56) can be rewritten as

I ′(h) = I ′
0(h)

(
p0 + q0P(h)

)
. (57)

If p0/q0 < 0, I ′(h) has a unique zero at h̄ ∈ (0,+∞),
and as a consequence I (h) has a unique zero at h∗ > h̄.
Since P(h) is a strictly increasing function, P(h∗) >

P (h̄), see Fig. 4. Then I ′(h∗) > I ′(h̄) = 0 if q0 > 0,
and the cycle is unstable. Conversely, for q0 < 0,
I ′(h∗) < I ′(h̄) = 0 and the cycle is stable.

For 4 < m ≤ 6, i.e. l = 3, (50), (51) yield

I (h) = p2(h)I ′
0(h) + q1(h)I ′

2(h), (58)

I ′(h) = p1(h)I ′
0(h) + q0I

′
2(h). (59)

Rewriting (59) as

I ′(h) = I ′
0(h)

(
p1(h) + q0P(h)

)
, (60)

it is easy to see that I ′(h) can have at most two ze-
roes in (0,+∞), given by the intersections between
the straight line −p1(h)/q0 and P(h), at h̄1, h̄2. As-
suming h̄1 < h̄2, I (h) can have at most two zeroes at
h∗

1, h
∗
2, with h̄1 < h∗

1 < h̄2 < h∗
2. Since P(h) is a con-

cave function, it follows that

p1(h
∗
2)

q0
+ P(h∗

2) < 0 <
p1(h

∗
1)

q0
+ P

(
h∗

1

)
. (61)

The situation is summarized in Fig. 5.
If q0 > 0, then p1(h

∗
2) + q0P(h∗

2) < 0 < p1(h
∗
1) +

q0P(h∗
1) and I ′(h∗

2) < 0 < I ′(h∗
1). This implies that

the inner cycle emerging from γ (h∗
1) is unstable, while

the outer emerging from γ (h∗
2) is stable. By the same

arguments it is easy to see that the stability is reversed
for q0 < 0.

For m > 6, i.e. l ≥ 4, consider (50) and (51). Elim-
inating I ′

0(h) one gets

pr(h)I ′(h) = pr−1(h)I (h) + M(h), (62)

Fig. 5 Zeros of the Abelian integral I (h) (crosses) and its
derivative I ′(h) (dots) given by (58) and (59). The position of
h∗

1 and h∗
2 is indicative

where

M(h) = [
pr(h)qs−1(h) − pr−1(h)qs(h)

]
I ′

2(h). (63)

Let h1, h2, with h1 < h2, be two consecutive simple
zeroes of I (h), i.e. I (hi) = 0, I ′(hi) �= 0, i = 1,2.
Then I ′(h1)I

′(h2) < 0. Equation (62) implies that ei-
ther there exists h̄ ∈ (h1, h2) such that pr(h̄) = 0,
or M(h1)M(h2) < 0, which implies the existence of
h∗ ∈ (h1, h2) such that M(h∗) = 0. It follows that be-
tween two simple zeroes of I (h), there exist at least
either a zero of pr(h), or of M(h), or both.

Conversely, let h̄ be a zero of I (h) with multiplic-
ity n. Then it is a zero of both I ′(h) and M(h) with
multiplicity n − 1.

In both cases, denoting by j the number of zeros of
I (h), by u those of pr(h) and by v those of M(h) one
has

j ≤ u + v + 1. (64)

Clearly u = r , v = r + s − 1, and the thesis fol-
lows. �

7 Application

As an example consider the system

{
ẋ = y + ∑6

k=1 ckx
k,

ẏ = −ax − bx3.
(65)

The corresponding Abelian integral and its derivative
are

I (h) =
3∑

k=1

c2k−1
[
aI ′

2k(h) + bI ′
2k+2(h)

]
, (66)
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I ′(h) =
3∑

k=1

(2k − 1)c2k−1I
′
2k−2(h). (67)

Using the recurrence formulas (20) and (21) one ob-
tains

I (h) = (
αh2 + βh

)
I ′

0(h) + (γ h + δ)I ′
2(h), (68)

I ′(h) =
(

c1 + 20c5

3b
h

)

I ′
0(h) +

(

3c3 − 20ac5

3b

)

I ′
2(h),

(69)

where

α = 80c5

21b
, β = 4c1

3
− 4ac3

5b
+ 32a2c5

21b2
,

γ = 12c3

5
− 116ac5

21b
,

δ = −ac1

3
+ 4a2c3

5b
− 32a3c5

21b2
.

Limit cycles emerges from trajectories associated to
values of h such that

P(h) = −αh2 + βh

γh + δ
, (70)

while the zeroes of I ′(h) are obtained solving

P(h) = 20c5h + 3bc1

20ac5 − 9bc3
. (71)

The solutions to (71) are given by the intersections be-
tween a straight line and the strictly increasing, con-
cave function P(h). Restricting the analysis to positive
values of c5 (negative values does not pose any partic-
ular problem and can be treated in analogous way),
one finds that:

– 20ac5 − 9bc3 < 0 implies q0 > 0, and that the
straight line has negative slope. For c1 > 0 the ori-
gin is an unstable equilibrium point, and the straight
line intercepts the y-axe at a negative value, thus
there are not limit cycle. For c1 < 0, the origin is
stable and the straight line intercepts the y-axe at a
positive value, this condition is sufficient to have at
most one limit cycle. Since P(h∗) > −p1(h

∗)/q0,
I ′(h∗) > 0 and the cycle is unstable.

– 20ac5 − 9bc3 > 0 implies q0 < 0 and that the
straight line has positive slope. For c1 < 0 the ori-
gin is stable and the straight line intersects the y-
axe at a negative point, but this condition alone

does not guarantee that there exists one intersection.
If such intersection exists, P(h∗) < −p1(h

∗)/q0,
I ′(h∗) > 0 and the cycle is unstable. Conversely,
for c1 > 0 the origin is unstable, and the straight
line intersects the y-axe at a positive point, this con-
dition is necessary, but not sufficient to have two
limit cycles. If there is only one limit cycle, one has
P(h∗) > −p1(h

∗)/q0, that is I ′(h∗) < 0 and the cy-
cle is stable. If there are two intersections, by virtue
of Theorem 4 the inner is stable and the outer unsta-
ble.

In the general case, to determine the exact values h∗
at which limit cycles emerge from γ (h), one should
solve (50). The stability of the emerging limit cycles
can be determined by looking at the sign of (51) at
h = h∗. This can be done numerically using the formu-
las for I ′

0(h), I ′
2(h) and the complete elliptic integrals

given in Appendix. In order to confirm the theoreti-
cal results, such numerical calculations have been per-
formed for the example above with a = 2, b = 3, and
different values of the parameters c1, c3 and c5. The
results are shown in Figs. 6–9, in the upper part it is
shown the behavior of P(h) (solid line), the right hand
side of (70) (dashed line) and of (71) (dotted line); in
the lower part it is shown the behavior of (65) obtained
through numerical simulations. Figure 10 shows the
comparison between the shape and position of the sta-
ble limit cycle predicted for c1 = 1, c3 = −4, c5 = 2.5
and the numerically obtained limit cycle.

8 Conclusions

Determine the existence, number, position and stabil-
ity of limit cycles in nonlinear oscillators is a problem
of paramount importance in many areas of applied sci-
ences and engineering. An analytical tool which gives
an a priori knowledge about the issues above, can help
designers and save time with numerical simulations.

In this paper, the method of Abelian integrals has
been applied to investigate the emergence of limit cy-
cles in strongly nonlinear oscillators with weak dis-
sipative perturbations. These systems can model, for
instance, van der Pol and Duffing oscillators in the
weakly dissipative limit. Under the effect of a per-
turbation, Hamiltonian centers are destroyed, and the
emerging limit cycles are related to the zeroes of
Abelian integrals. Thus, the research of the former is
reduced to finding the latter. The sign of the derivative
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Fig. 6 Upper: Plots of P (h) (solid line), and the left hand side
of (70) (dashed line) and (71) (dotted line). Since (70) has no
real roots for h ∈ (0,+∞), limit cycles cannot exist. Lower:
The result is confirmed by numerical simulations of (65), the
origin is an unstable equilibrium point, and there are not limit
cycles. Values of the parameters: c1 = 1, c3 = 4, c5 = 2.5

of the Abelian integrals determine the stability of the
limit cycle.

To solve the problem, one can take advantage of
the many properties enjoyed by Abelian integrals, e.g.
they satisfy recurrence relations, Picard–Fuchs and
Riccati equations. Using these properties, both the
Abelian integral and its derivative can be rewritten,
for polynomial perturbations of any degree, as a lin-
ear combination of two basis integral functions, only.

By looking at these integrals, it is possible to de-
termine wether all terms in the perturbation have in-
fluence on the emergence of limit cycles and their sta-
bility. Resorting to basic mathematical concepts, it is
possible to find an upper bound to the number of ze-
roes of the Abelian integral. This upper bound is a lin-
ear function of the degree of the perturbation. The sta-
bility of the emerging limit cycles can be determined
as a function of the coefficients of the perturbations.
Although the relation between the sign of the deriva-

Fig. 7 Upper: Equation (70) has one real roots h∗ and thus
there is one limit cycle. By (71) the cycle is unstable. Lower:
Numerical simulations confirm the existence of an unstable limit
cycle. The limit cycle emerges from the level curve γ (h∗) with
h∗ = 0.7034. The shape of this cycle has been plotted using (10)
(thick dashed line). Values of the parameters: c1 = −2, c3 = 4,
c5 = 2.5

tive of Abelian integrals and stability is well known,
seldom has this possibility been explored.

As shown in the example, the developed technique
is suitable to be numerically exploited to determine
the exact number, stability, position and shape of the
emerging limit cycles. The theoretical results are con-
firmed by numerical simulations.

Appendix

This appendix is devoted to the solutions of the inte-
grals I ′

0(h) and I ′
2(h), and to prove that P(h) goes to

zero as h goes to zero. By the definition (17) one has

I ′
0(h) = 4

√
2
∫ ρ

0

dx√
4h − 2ax2 − bx4
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Fig. 8 Upper: Equation (70) has one real roots h∗ and thus
there is one limit cycle. By (71) the cycle is unstable. Lower:
Numerical simulations confirm the existence of an unstable limit
cycle. The limit cycle emerges from the level curve γ (h∗), with
h∗ = 4.7453. The shape of this cycle has been plotted using (10)
(thick dashed line). Values of the parameters: c1 = −1, c3 = 3.5,
c5 = 2.5

where

ρ =
√

1

b

(−a +
√

a2 + 4bh
)
.

Introducing

σ =
√

1

b

(
a +

√
a2 + 4bh

)
,

one obtains

I ′
0(h) = 4

√
2

b

∫ ρ

0

dx
√

(ρ2 − x2)(σ 2 + x2)
,

which can be rewritten as

I ′
0(h) = 4

ρσ

√
2

b

∫ ρ

0

[(

1 − x2

ρ2

)(

1 + x2

σ 2

)]−1/2

dx.

Fig. 9 Upper: Equation (70) has two real roots and thus there
are two limit cycles. By (71) the inner is stable and the outer
is unstable. Lower: Numerical simulations show a stable (thick
solid line) and an unstable (thick dashed line) limit cycle. The
limit cycles emerge from the level curves γ (h∗

1), and γ (h∗
2),

plotted using (10) with h∗
1 = 0.5446, and h∗

2 = 3.0893. Values
of the parameters: c1 = 1, c3 = −4, c5 = 2.5

Substituting y = x/ρ and m = −ρ2/σ 2 yields

I ′
0(h) = 4

σ

√
2

b

∫ 1

0

dy
√

(1 − y2)(1 − my2)

= 4

σ

√
2

b
K(m),

where K(m) is the complete elliptic integral of the
first kind. The properties of complete elliptic integrals,
even for negative values of the parameter m as in this
case, are well known and efficient numerical algo-
rithms for their calculation are available [16].

For the integral I ′
2(h), from (17) one has

I ′
2(h) = 4

√
2
∫ ρ

0

x2

√
4h − 2ax2 − bx4

dx.
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Fig. 10 Comparison of the shape and position of the predicted
stable limit cycle (dashed line) and the numerically obtained one
(solid line) for c1 = 1, c3 = −4, c5 = 2.5. To emphasize the
difference, the perturbation is rather strong, ε = 0.5

Working as before leads to

I ′
2(h) = 4

√
2

b

[∫ ρ

0

√
σ 2 + x2

√
ρ2 − x2

dx

− σ 2
∫ ρ

0

dx
√

(ρ2 − x2)(σ 2 + x2)

]

.

The second integral on the right hand side has already
been solved. Using the same substitution introduced
above, the first one becomes

∫ ρ

0

√
σ 2 + x2

√
ρ2 − x2

dx = σ

∫ 1

0

√
1 − my2

√
1 − y2

dy = σE(m)

where E(m) is the complete elliptic integral of the sec-
ond kind. Putting everything together

I ′
2(h) = 4σ

√
2

b

[
E(m) − K(m)

]
.

Computing the ratio one gets

P(h) = I ′
2(h)

I ′
0(h)

= σ 2
[

E(m)

K(m)
− 1

]

. (72)

For |m| < 1, the complete elliptic integrals admit the
following infinite series expansions [16],

K(m) = π

2

{

1 +
+∞∑

n=1

[
(2n − 1)!!

(2n)!!
]2

mn

}

,

E(m) = π

2

{

1 −
+∞∑

n=1

[
(2n − 1)!!

(2n)!!
]2

mn

2n − 1

}

.

Taking into account that, by the definition of m, ρ and
σ , h → 0 implies m → 0, it follows that

lim
h→0

E(m)

K(m)
= 1,

and

lim
h→0

P(h) = 0.
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