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Abstract We study the dynamic interactions between
traveling waves propagating in a linear lattice and a
lightweight, essentially nonlinear and damped local
attachment. Correct to leading order, we reduce the
dynamics to a strongly nonlinear damped oscillator
forced by two harmonic terms. One of the excita-
tion frequencies is characteristic of the traveling wave
that impedes to the attachment, whereas the other ac-
counts for local lattice dynamics. These two frequen-
cies are energy-independent; a third energy-dependent
frequency is present in the problem, characterizing the
nonlinear oscillation of the attachment when forced
by the traveling wave. We study this three-frequency
strongly nonlinear problem through slow-fast parti-
tions of the dynamics and resort to action-angle co-
ordinates and Melnikov analysis. For damping below
a critical threshold, we prove the existence of relax-
ation oscillations of the attachment; these oscillations
are associated with enhanced targeted energy transfer
from the traveling wave to the attachment. Moreover,
in the limit of weak or no damping, we prove the ex-
istence of subharmonic oscillations of arbitrarily large
periods, and of chaotic motions. The analytical results
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1 Introduction

Lattices with local attachments (or “defects”) have
been studied extensively in the literature, (e.g., [7, 8,
12, 13, 16, 18]), since they appear in extensive ap-
plications. These include the areas of granular media
and metamaterials [5, 23]; of solid state physics and
defect-induced relaxation phenomena in superconduc-
tors [4, 15, 17, 21, 27]; and of photonic band-gap ma-
terials (photonic crystals) [1, 3, 6].

Considering previous works on lattices with nonlin-
ear attachments, Rothos and Vakakis [25] studied sub-
harmonic motions and chaos in a lattice with a nonlin-
ear attachment in the form of a softening Duffing os-
cillator with negative linear part. Goodman et al. [13]
considered the interaction of nonlinear Schrödinger
solitons with a localized defect in a medium of infinite
extent, and studied nonlinear resonance energy trans-
fer [28] from the soliton to a localized standing wave
at the position of the defect. A fundamental mecha-
nism for energy transfer from dynamical systems to
essentially nonlinear attachments is nonlinear reso-
nance capture of the dynamics in invariant manifolds
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Fig. 1 Linear lattice with
strongly nonlinear
attachment

of the dynamics [30]. Additional works on soliton-
defect nonlinear interactions were performed in [7, 8,
12, 16].

In the present work, we study the strongly nonlin-
ear dynamic interaction between traveling waves prop-
agating in a lattice and a lightweight defect in the form
of a nonlinear oscillator with nonlinearizable cubic
stiffness nonlinearity of the hardening type. We will
employ different techniques ranging from slow-fast
partition of the dynamics, complexification, and aver-
aging, to subharmonic and homoclinic Melnikov the-
ory, with the aim to study different regimes of the com-
plex dynamics of this system, such as, relaxation oscil-
lations, countable infinities of subharmonic orbits, and
chaotic motions.

2 Derivation of a reduced order model of the
dynamics

We consider an infinite linear lattice of mechanical os-
cillators with a lightweight, essentially nonlinear os-
cillator attached to the zero-th particle (cf. Fig. 1),

εÿ + λ(ẏ − ẋ0) + C(y − x0)
3 = 0

ẍ0 + ω2
1x0 + d(2x0 − x1 − x−1)

= λ(ẏ − ẋ0) + C(y − x0)
3

ẍn + ω2
1xn + d(2xn − xn−1 − xn+1) = 0

n = ±1,±2, . . .

(1)

where d and ω1 denote the coupling and grounding
stiffnesses of lattice particles, respectively, and ε the
small positive parameter scaling the light mass of the
attachment. We note that the attachment possesses es-
sential stiffness nonlinearity (of hardening cubic type
of coefficient C), and does not possess a linear com-
ponent. Moreover, the only viscous dissipation in the
system is assumed to be in the attachment, with vis-
cous damping coefficient λ (not necessarily small at
this point).

First, we consider the dynamics of system (1) in
the limit ε → 0 corresponding to the linear infinite lat-
tice with no attachment. It is well known [20] that the
unperturbed, perfectly symmetric lattice supports trav-
eling waves for which the following relation between
the lattice coordinates holds:

xn(t) = Xne
jμejωt + cc, n = 0,±1,±2, . . . (2)

where j = (−1)1/2 and (cc) denotes complex conju-
gate. The parameter μ in (2) is termed the propagation
constant, which for traveling waves is a real quality.
Substituting (2) into the equations of motion of the un-
perturbed infinite lattice (with ε = 0), we compute the
propagation constant μ of the traveling wave as func-
tion of the frequency ω:

μ = cos−1
(

1 − ω2 − ω2
1

2d

)
(3)

This relation defines a propagation zone (PZ) in the
frequency domain, namely the frequency range ω1 <

ω <

√
ω2

1 + 4d where traveling waves can be realized.

At the lower (ω1) and upper (
√

ω2
1 + 4d) bounding

frequencies of the PZ, the propagation constant be-
comes μ = +π and μ = −π , respectively, and the
traveling waves degenerate to either in-phase or out-
of-phase standing waves (which are normal modes of
the lattice).

On the contrary, for frequencies in attenuation
zones (AZs), i.e., lying outside the PZ, the propaga-
tion constant becomes a purely imaginary quantity
and the unperturbed lattice supports only in-phase
or out-of-phase standing waves possessing exponen-
tially decaying envelopes. These are near field syn-
chronous motions of the lattice, corresponding to ei-
ther in-phase relative motions between adjacent lat-
tice particles (in the frequency range 0 < ω < ω1), or
out-of-phase relative motions between particles (in the

range
√

ω2
1 + 4d < ω).
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We wish to study the dynamic interaction of the
lattice dynamics with the essentially nonlinear attach-
ment as ε increases from zero but still remains a small
quantity. In particular, we will focus in the dynam-
ical interaction between traveling waves propagating
within the PZ of the linear lattice and the lightweight
essential nonlinear attachment. Throughout this work
and without loss of generality, we will consider initial
conditions for system (1) of the form:

y(0) = 0, ẏ(0) = V, xn(0) = 0,

ẋn(0) = Fn, n = 0,±1,±2, . . .
(4)

Introducing the rescalings,

xn → ε1/2xn, y → ε1/2y, Fn → ε1/2Fn,

V → ε1/2V, n = 0,±1,±2, . . .
(5)

and the new variables, v = x0 + εy,w = x0 − y, the
two leading equations of system (1) and the corre-
sponding initial conditions in (4) are expressed as fol-
lows:

ẅ + [
(1 + ε)λ/ε

]
ẇ + C(1 + ε)w3 = v̈,

w(0) = 0, ẇ(0) = F0 − V

v̈ + [(
ω2

1 + 2d
)
/(1 + ε)

]
(v + εw) = d(x1 + x−1),

v(0) = 0, v̇(0) = F0 + εV

(6)

The variable w denotes the relative response between
the nonlinear attachment and the zero-th particle of
the lattice (i.e., the particle to which it is attached),
whereas, the variable v denotes the motion of the cen-
ter of mass of the system composed of the attachment
and the zero-th particle of the chain.

The pseudo-forcing term in the second of the above
equations can be analytically evaluated in terms of
the variable w by employing the Green’s functions
of the linear lattice [31]. This reduces the infinite-
dimensional dynamical system (6) into the following
form,

w′′ + λ̂w′ + Ĉ(1 + ε)w3 = v′′

v′′ + v + εw

= (
dΩ−2) +∞∑

r=−∞
Fr

[
G1−r (τ ) + G1+r (τ )

]

− 2εdĈ
[
w3(τ ) ∗ G1(τ )

]
w(0) = 0, w′(0) = (F0 − V )Ω−1,

v(0) = 0, v′(0) = (F0 + εV )Ω−1

(7)

where the dependent variables are expressed in terms
of the normalized time variable τ = (ω2

1 + 2d)1/2(1 +
ε)−1/2t; moreover, the normalized coefficients Ω2 =
(ω2

1 + 2d)(1 + ε)−1, λ̂ = λ(1 + ε)(εΩ)−1, and Ĉ =
CΩ−2 are introduced, and by (∗) we denote the con-
volution operator. The kernels Gn(τ) = G−n(τ ), n ∈
N in (7) are defined by the following expression [31]:

Gn(τ)

= Ω−1
∫ τ

0
J0

[
α
(
τ 2 − u2)1/2]

J2n

(
2d1/2u/Ω

)
du,

n = 0,±1,±2, . . . (8)

where α = ω1/Ω , and Jp(•) is Bessel’s function of
the first kind and integer order p.

Hence, the dynamics of the infinite-dimensional
system (1) can be reduced to the system of integro-
differential equations (7). Moreover, the reduced mod-
el (7) is exact, as no approximations were made for its
derivation. As mentioned previously, traveling waves
in the unperturbed lattice propagate with normalized
frequencies in the range, α < ω/Ω < [α2 + 2(1 +
ε − α2)]1/2 ≡ α1. Based on relations (2), it can be
shown that traveling waves in the lattice are real-
ized for initial velocities Fn = F cos 2nθ,0 < θ <

π/2, n = 0,±1,±2, . . . , with the lower limit θ = 0
corresponding to the lower bounding frequency of the
PZ (and the in-phase normal mode of the chain, Fn =
F,n = 0,±1,±2, . . .), and the upper limit θ = π/2
corresponding to the upper bounding frequency of the
PZ (and the out-of-phase normal mode of the lattice,
Fn = (−1)nF,n = 0,±1,±2, . . .). It follows that an-
gle θ parameterizes the PZ of the lattice, and the fre-
quencies and amplitudes of traveling waves within the
PZ. Taking into account relations satisfied by Bessel
functions of the first kind [32], we may simplify the
infinite summation on the right-hand side of the sec-
ond of (7) according to

(
dΩ−2) +∞∑

r=−∞
Fr

[
G1−r (τ ) + G1+r (τ )

]

= FΛθ sinαθτ (9)

with

Λθ = 2d cos 2θ

αΩ3

(
1 + 4d sin2 θ

α2Ω2

)−1/2

,

(10)

αθ =
(

1 + 4d sin2 θ

α2Ω2

)1/2

α
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Substituting (9) into the second of the equations of
the reduced model (7), we express it in the following
simplified form:

v′′ + v = FΛθ sinαθτ

+ ε
{−w(τ) − 2dĈ

[
w3(τ ) ∗ G1(τ )

]}
(11)

This is a linear differential equation in v, and taking
into account the assumed initial conditions it can be
explicitly solved in closed form as follows:

v(τ) = F

{
Ω−1 sin τ + Λθ

∫ τ

0
sinαθu sin(τ − u)du

}

+ ε

{(
V Ω−1) sin τ +

∫ τ

0

[−w(u)

+ 2dĈ
[
w3(u) ∗ G1(u)

]]
sin(τ − u)du

}
(12)

Clearly, the analytical solution above depends on w,
so it does not represent a true solution to the problem
in terms of v; however, it can help us reduce even fur-
ther the problem (7). Indeed, substituting (12) into the
first of equations (7), we reduce the dynamics of the
traveling wave-nonlinear attachment interaction to a
single strongly nonlinear nonhomogeneous equation:

w′′ + λ̂w′ + Ĉw3

= F

(
Λθαθ

1 − α2
θ

− Ω−1
)

sin τ

− FΛθα
2
θ

1 − α2
θ

sinαθτ + O(ε)

0 < θ < π/2,w(0) = 0,w′(0) = (F − V )Ω−1 (13)

We note that the reduced model (13) is approximate
since terms of O(ε) are omitted; these higher order
terms contain convolutions in terms of w rendering the
reduced model an integro-differential equation. How-
ever, to leading order the model (13) is in the form of
an ordinary differential equation (albeit strongly non-
linear), which simplifies considerably the analysis.

In conclusion, to leading order the relative motion
of the lightweight attachment with respect to the zero-
th particle of the lattice is governed by a strongly non-
linear oscillator forced by two harmonic terms repre-
senting to excitation of the nonlinear attachment by
impeding traveling waves. The first harmonic of the
excitation is at normalized frequency equal to unity
and characterizes the local lattice dynamics (i.e., the

grounded stiffness of each particle of the lattice),
whereas the second harmonic corresponds to the nor-
malized frequency of the traveling wave inside the nor-
malized PZ, α < αθ < [α2 + 2(1 − α2)]1/2 + O(ε).
Hence, the model (13) accounts only for the excitation
of the nonlinear attachment by the traveling wave in
the lattice, and not for the ‘reaction dynamics’ of the
nonlinear attachment which is modeled by the higher
order terms in the form of convolution operators in
w. By the previous asymptotic formulation, however,
these higher order effects are small as ε → 0. We note
that as the frequency of the traveling wave approaches
the bounding frequencies of the propagation zone of
the chain, the problem changes and degenerates to the
problem of resonance interaction of standing waves
(normal modes) of the chain with the nonlinear attach-
ment. Then higher order terms should be included in
the asymptotic analysis in order to accurately charac-
terize that resonance interaction. This problem, how-
ever, is not considered in this work.

Our further study, and unless otherwise noted, will
focus on the strongly nonlinear reduced model (13)
under the assumption of weak inter-particle coupling.
To this end, we rescale the coupling parameter of the
lattice according to d = ε1/4D and express the nor-
malized frequency of the second harmonic of the exci-
tation term as

αθ = 1 − ε1/4Dω−2
1 cos 2θ + O

(
ε1/2)

≡ 1 + ε1/4B(θ) + O
(
ε1/2) (14)

where B(θ) = −Dω−2
1 cos 2θ is a normalized fre-

quency detuning parameter. For simplicity, we will fo-
cus in the case where the amplitudes of the two har-
monic terms in the nonhomogeneous term of (13) are
equal, i.e., we will be concerned only with the specific
angles θ = θ̄ satisfying the relation,

Λθαθ

1 − α2
θ

− Ω−1

∣∣∣∣∣
θ=θ̄

= − Λθα
2
θ

1 − α2
θ

∣∣∣∣∣
θ=θ̄

(15)

and corresponding to frequency detuning B(θ̄) ≡ B̄ .
In Fig. 2, we depict the dependence of θ̄ on the small
parameter ε in the limit of weak interparticle cou-
pling d = ε1/4D for D = ω1 = 1.0; we note that for
small ε it holds that B̄ < 0. By imposing relation (15),
the nonlinear attachment is excited by two harmonic
terms of equal magnitude and closely spaced normal-
ized frequencies equal to 1 and (1 + ε1/4B̄); as dis-
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Fig. 2 Angle θ̄ as function
of the small parameter ε for
D = 1.0 and ω1 = 1.0

cussed below this paves the wave for slow-fast parti-
tioning of the dynamics as these are expected to be in
the form of “slowly” modulated “fast” oscillations. As
mentioned previously, the first frequency characterizes
the grounding stiffness of each particle of the lattice,
whereas the second is characteristic of the traveling
wave impeding to the nonlinear attachment.

Taking these assumptions into consideration, in the
limit of weak interparticle coupling the reduced model
(13) is expressed as

w′′ + λ̂w′ + Ĉw3

= F̂ sin τ + F̂ sin
(
1 + ε1/4B̄

)
τ + O(ε)

= F̂
[
1 + cos

(
ε1/4B̄τ

)]
sin τ

+ F̂ sin
(
ε1/4B̄τ

)
cos τ + O(ε)

w(0) = 0,w′(0) = F − V (16a)

where from now on we set ω1 = 1, and define the com-
mon amplitude of the two harmonics as

F̂ = −FΛθα
2
θ

1 − α2
θ

∣∣∣∣∣
θ=θ̄

(16b)

We note that in the limit of weak interparticle cou-
pling of the lattice the forcing terms are partitioned
in terms of “slow” components with normalized fre-
quency ε1/4B̄ , and “fast” components with normalized
frequency equal to unity. It follows that the problem
renders itself to the complexification-averaging (CX-
A) analysis first developed by Manevitch [19] (see also
[29] for an extensive series of further applications),

based on slow-fast partition of the nonlinear dynam-
ics. As shown in these works, the CX-A methodology
is suitable for the analysis of strongly nonlinear tran-
sient or steady state problems of the type discussed
herein. In the following sections, we will analyze the
dynamical system (16), and show that depending on
its damping it exhibits different response regimes and
complex dynamical behavior, such as relaxation oscil-
lations, countable infinities of subharmonic orbits, and
chaotic motions.

3 Relaxation oscillations

We now apply the CX-A method developed by Manev-
itch [19] to the analysis of the reduced order model
(16a). We start by introducing the new complex vari-
able,

ψ(τ) = w′(τ ) + jw(τ) (17)

where j = (−1)1/2. The reduced model is then ex-
pressed in the following complex form:

ψ ′ − j

2

(
ψ + ψ∗) + λ̂

2

(
ψ + ψ∗) + jĈ

8

(
ψ − ψ∗)3

= F̂

[
ejτ − e−jτ

2j

]

+ F̂

[
ej (1+ε1/4B̄)τ − e−j (1+ε1/4B̄)τ

2j

]
+ O(ε)

(18)
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We represent the solution of (18) in the form,

ψ(τ) = ϕ(τ)ejτ (19)

where ϕ(τ) is a slowly varying complex amplitude
that modulates the fast oscillation ejτ . This ansatz is
dictated by the slow-fast partition of the nonhomoge-
neous term of (16a), and by the recognition that there
exists a single fast frequency in the dynamics (whose
normalized value is unity). Substituting (19) into (18)
and averaging out fast frequency components with fre-
quencies higher than unity we obtain the following
complex modulation equation governing the slow evo-
lution of ϕ(τ):

ϕ′ + j

2
ϕ + λ̂

2
ϕ − 3jĈ

8
|ϕ|2 ϕ ≈ F̂

2j

(
1 + ejε1/4B̄τ

)

ϕ(0) = F − V

(20)

To proceed with our analysis, we introduce the polar
transformation ϕ(τ) = N(τ)ejη(τ), substitute into (20)
and set separately equal to zero the real and imaginary
parts of the resulting expression:

N ′ = (
F̂ /2

)
sin

(
ε1/4B̄τ − η

) − (
λ̂/2

)
N − (

F̂ /2
)

sinη

Nη′ = (−F̂ /2
)

cos
(
ε1/4B̄τ − η

)
− (N/2) + (

3Ĉ/8
)
N3 − (

F̂ /2
)

cosη

(21)

This is a set of real nonlinear differential equations
that we proceed to analyze using the method of multi-
ple scales [22]. To this end, we introduce the fast time
scale τ0 = τ and the slow time scales τ1 = ε1/4τ, τ2 =
ε2/4τ, . . . , and express the amplitude and phase in (21)
in the following series:

N(τ) = N(τ0, τ1, . . .)

= N0(τ0, τ1, . . .) + ε1/4N1(τ0, τ1, . . .) + · · ·
η(τ) = η(τ0, τ1, . . .)

= η0(τ0, τ1, . . .) + ε1/4η1(τ0, τ1, . . .) + · · ·

(22)

In the method of multiple scales, the new time scales
are treated as independent variables. Substituting (22)
into (21), expressing the derivatives in terms of the
new time scales and matching terms at different or-
ders of magnitude, we obtain an hierarchy of problems
governing the successive approximations in (22).

The O(1) subproblem is governed by the following
system:

∂N0

∂τ0
= F̂

2
sin

(
B̄τ1 − η0

) − λ̂N0

2
− F̂

2
sinη0

∂η0

∂τ0
= − F̂

2
cos

(
B̄τ1 − η0

) − N0

2

+ 3ĈN3
0

8
− F̂

2
cosη0

(23)

We wish to study the steady state dynamics of this
system in terms of the fast time scale τ0. This is per-
formed by examining the limit of the dynamics of (23)
as τ0 → ∞ and setting partial derivatives with respect
to τ0 equal to zero. Clearly, the steady state dynamics
in terms of the fast time scale may still be unsteady
with respect to the slow time scale τ1 and higher order
time scales, but this is acceptable since the different
time scales are treated as independent variables. It fol-
lows that as τ0 → ∞ the dynamics is governed by the
system of equations,

F̂

2
sin

(
B̄τ1 − η̂0

) − λ̂N̂0

2
− F̂

2
sin η̂0 = 0

− F̂

2
cos

(
B̄τ1 − η̂0

) − N̂0

2
+ 3ĈN̂3

0

8
− F̂

2
cos η̂0 = 0

(τ0 → ∞)

(24)

where the steady state amplitude and phase (in terms
of the fast time scale) are slowly varying quanti-
ties, defined as N̂0(τ1, . . .) = limτ0→∞ N0(τ0, τ1, . . .)

and η̂0(τ1, . . .) = limτ0→∞ η0(τ0, τ1, . . .). Manipulat-
ing expressions (24), we express η̂0 as a function
of N̂0,

sin η̂0 =
{

− λ̂N̂0

F̂

(
1 + cos B̄τ1

)

+
(

− N̂0

F̂
+ 3ĈN̂3

0

4F̂

)
sin B̄τ1

}

× [(
1 + cos B̄τ1

)2 + sin2 B̄τ1
]−1 (25)

with N̂0 governed by the algebraic relation:

(
N̂0

F̂

)2
[
λ̂2 +

(
1 − 3ĈN̂2

0

4

)2
]
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− 2
(
1 + cos B̄τ1

) = 0 ⇒
(26)

N̂6
0 − 24

9Ĉ
N̂4

0 + 16(1 + λ̂2)

9Ĉ2
N̂2

0

− 32F̂ 2

9Ĉ2

(
1 + cos B̄τ1

) = 0

In the terminology of Gendelman and collabora-
tors [9–11], but also see [29]—this represents a slow
invariant manifold—SIM of the dynamics of system
(16a) or (20), i.e., this is the manifold reached as-
ymptotically by the dynamics as τ0 → ∞. As indi-
cated by the explicit dependence of relation (26) on
the slow time scale τ1 (but also by the implicit depen-
dence N̂0 = N̂0(τ1)), the SIM is unsteady with respect
to the slow time scales, so it provides only a leading
order approximation to the exact steady state dynam-
ics of the system. What allows us to express the SIM
in the form (26) is the fact that different time scales are
treated as independent variables in the multiple scales
analysis.

Relation (26) is a cubic polynomial in terms of N̂2
0 ,

so depending on the parameters of the problem it can
possess as many as three real solutions for the slowly
varying amplitude. Indeed, the (slowly varying) bifur-
cation surface in parameter space that separates the
regimes of one and three real solutions for N̂2

0 can be
explicitly computed as

[
16(1 + λ̂2)

27Ĉ2
− 576

729Ĉ2

]3

+
[
−64(1 + λ̂2)

243Ĉ3

+ 16F̂ 2(1 + cos B̄τ1)

9Ĉ2
+ 1

27

(
24

9Ĉ

)3
]2

= 0 ⇒

D
(
λ̂2, Ĉ, F̂ , B̄τ1

) = 0 (27)

We note that for fixed nonlinear coefficient Ĉ, forc-
ing amplitude F̂ and detuning parameter B̄ , the lead-
ing order dynamics possesses a single solution for N̂2

0
for sufficiently strong damping, and three solutions
for damping below a critical slowly varying threshold.
The existence of multiple solutions for relatively weak
damping has important implications on the dynamics
as discussed later. Once the amplitude of the oscilla-
tion on the SIM N̂0 = N̂0(τ1) is computed, the first
order approximation to the phase is computed through
relation (25).

Corrections to the dynamics on the SIM are com-
puted by considering higher order subproblems. At

O(ε1/4) the dynamics is governed by the following
system:

∂N1

∂τ0
= −∂N0

∂τ1
− η1F̂

2
cos

(
B̄τ1 − η0

) − λ̂N1

2

− η1F̂

2
cosη0

(28)
∂η1

∂τ0
= −∂η0

∂τ1
− η1F̂

2
sin

(
B̄τ1 − η0

) − N1

2

+ 9ĈN2
0 N1

8
+ η1F̂

2
sinη0

To restrict the dynamics on the SIM (i.e., in the
limit τ0 → ∞), we set the partial derivatives with
respect to the fast time τ0 equal to zero and solve
the resulting set of equations in terms of the lim-
its N̂1(τ1) = limτ0→∞ N1(τ0, τ1, . . .) and η̂1(τ1) =
limτ0→∞ η1(τ0, τ1, . . .):

{
N̂1

η̂1

}
=

[
λ̂/2

(
F̂ /2

)[
cos

(
B̄τ1 − η̂0

) + cos η̂0
]

(1/2)
[
1 − (

9ĈN̂2
0 /4

)] (
F̂ /2

)[
sin

(
B̄τ1 − η̂0

) − sin η̂0
]

]−1 {
− ∂N̂0

∂τ1

− ∂η̂0
∂τ1

}
(29)

The approximate steady state dynamics of system

(16a) on the SIM is then computed as follows:

w(τ) ∼ ŵ
(
ε1/4τ

)
= [

N̂0
(
ε1/4τ

) + ε1/4N̂1
(
ε1/4τ

) + O
(
ε1/2)]

× sin
[
τ + η̂0

(
ε1/4τ

) + ε1/4η̂1
(
ε1/4τ

)
+ O

(
ε1/2)], τ � 1 (30)

We note that since the above analysis concerns only
the dynamics on the SIM and is carried out in the
limit of large values of the fast time scale; it does
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not necessarily satisfy the initial condition of the
problem (16a). The initial value problem is analyzed
later.

In Fig. 3, we depict the envelope |ϕ(τ)| of the
steady state oscillation derived by direct numerical
simulation of system (20) with parameters Ĉ = 1, F̂ =
0.3, B̄ = 1, ε = 0.05, and varying values of the damp-
ing coefficient λ̂. For comparison purposes, we super-
impose to these plots the theoretical approximations
derived by solving (26). For relatively strong damp-
ing (cf. Fig. 3a), the envelope is a low-amplitude pe-
riodic oscillation, and the corresponding motion w(τ)

of the dynamical system (16a) possesses two closely
spaced frequencies; depending on the value of ε1/4B̄

the steady state oscillation of (16a) is either periodic
(when ε1/4B̄ is rational—as is the case for the case
considered in Fig. 3a) or quasiperiodic (when ε1/4B̄

is irrational). By decreasing the value of damping,
the system enters into a regime of relaxation oscil-
lations as evidenced by the simulations depicted in
Figs. 3b, c. The relaxation oscillations are generated
by the multivalued feature of the SIM, which now in-
cludes an unstable branch. This gives rise to jumps
in the envelope of the steady state dynamics, as the
slow motion of the envelope is interrupted by fast tran-
sitions between disjoint branches of the SIM. More-
over, the regime of relaxation oscillations is associ-
ated with relatively large amplitudes of the attach-
ment. As shown in [26], the energy absorbed and lo-
cally dissipated by the nonlinear attachment is approx-
imately proportional to the time integral of the enve-
lope |ϕ(τ)|, so relaxation oscillations are associated
with enhanced targeted energy transfer from the im-
peding traveling waves of the lattice to the strongly
nonlinear attachment. A general trend of the results
depicted in Fig. 3 is that with diminishing damping
the steady state dynamics diverge from the O(1) the-
oretical prediction; this is evidenced by the increas-
ingly higher-amplitude and higher-frequency oscilla-
tions that are superimposed to the SIM oscillation as
λ̂ → 0. This indicates that with diminishing damp-
ing the SIM approximation becomes increasingly less
valid and higher order effects must be taken into ac-
count.

This conclusion is supported by the simulation de-
picted in Fig. 4 where the envelope of the steady
state dynamics is depicted in the limit of no damp-
ing (λ̂ = 0). We deduce that in the limit of no damp-
ing the temporal evolution of the envelope is com-

plex (in fact it seems to be chaotic), and the theoret-
ical SIM prediction is not valid any more. This result
provides us with ample motivation for studying the dy-
namics of system (16) in the limit of weak or no damp-
ing.

4 Chaotic motions

Reconsidering the modulation equation (20), we re-
scale the damping coefficient according to λ̂ → ε1/4λ̂

in order to consider the case of weak damping,

ϕ′ + j

2
ϕ + ε1/4λ̂

2
ϕ − 3jĈ

8
|ϕ|2 ϕ ≈ F̂

2j

(
1 + ejγ

)
(31)

γ ′ = ε1/4B̄

subject to initial conditions ϕ(0) = F −V ≡ W,γ (0) =
γ̄ ∈ [0,2π). In this case, however, instead of decom-
posing the dynamics in terms of slow and fast compo-
nents and studying the slow dynamics on the SIM (as
was performed in the previous section), we focus in
the unstable branch of the SIM and study the break-
down of the homoclinic manifolds associated with
this branch for slow variation of the angle γ , which
leads to chaotic dynamics. We will study the dynam-
ics of (31) in parameter ranges for which the unstable
branch of the SIM exists for all values of the phase
parameter γ ; this is required for the homoclinic Mel-
nikov analysis that will be developed below. Consid-
ering the dynamical system (31), in the limit ε → 0
we obtain an integrable dynamical system with no
damping and γ = γ̄ fixed. Introducing the transfor-
mation ϕ(τ) = N(τ)ejη(τ) into (31) and decompos-
ing in terms of real and imaginary parts we obtain the
following relations satisfied by the equilibrium points
(Ne, ηe) of the integrable system,

0 = (
F̂ /2

)
sin(γ̄ − ηe) − (

F̂ /2
)

sinηe

0 = (
F̂ /2

)
cos(γ̄ − ηe) − (Ne/2) (32a)

+ (
3Ĉ/8

)
N3

e − (
F̂ /2

)
cosηe

or by eliminating the stationary phase ,

(Ne/2) − (
3Ĉ/8

)
N3

e = −(
F̂ /

√
2
)√

1 + cos2 γ̄ (32b)

It follows that the existence of an unstable equilibrium
in the integrable dynamics for all values of γ̄ corre-
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Fig. 3 Envelopes of steady
motions for Ĉ = 1.0,
F̂ = 0.3, B̄ = 1.0, ε = 0.05
and, (a) λ̂ = 0.7,
(b) λ̂ = 0.3, (c) λ̂ = 0.1;
(solid line) |ϕ(τ)|
(numerical simulation),
(dashed line) N̂0(ε

1/4τ)

(SIM approximation)

sponds to regions of system parameters where three

roots for Ne exist. This holds when F̂ < 2/(9
√

Ĉ),
i.e., for sufficiently small forcing amplitudes. In the
numerical applications later in this Section we will set
Ĉ = 4/3, which leads to the requirement F̂ < 0.192.
Hence, the following analysis is valid for sufficiently
small forcing amplitudes below this limit.

Considering again the integrable dynamical system
(31) with ε → 0 and no damping, setting γ = γ̄ fixed
and assuming that F̂ is sufficiently small for the unsta-
ble branch of the SIM to exist for all values of γ̄ , we
explicitly compute the homoclinic manifold of the un-
stable branch of the SIM. Indeed, following the analy-
sis in [26], it can be shown that the unperturbed system



452 A.F. Vakakis

Fig. 3 (Continued)

Fig. 4 Envelope of steady
state motion for Ĉ = 1.0,
F̂ = 0.3, B̄ = 1.0, ε = 0.05,
and λ̂ = 0; (solid line)
|ϕ(τ)| (numerical
simulation), (dashed line)
N̂0(ε

1/4τ)

(SIM approximation)

possesses the following first integral of motion,

j

2
|ϕ|2 − 3jĈ

16
|ϕ|4 − F̂

2

[
sin γ̄ − j (1 + cos γ̄ )

]
ϕ∗

+ F̂

2

[
sin γ̄ + j (1 + cos γ̄ )

]
ϕ = 2jH(γ̄ ) (33a)

where the right-hand side is a γ̄ -dependent constant
of integration. Using the first integral (33a), we may



Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local 453

compute the exact solution of the unperturbed dynam-
ical system.

This is performed by introducing again the polar
representation ϕ(τ) = N(τ)ejη(τ) leading to the real
first order system,

N ′ = F̂

2

[
sin γ̄ cosη − (1 + cos γ̄ ) sinη

]
(33b)

which is complemented by the first integral,

N2

2
− 3ĈN4

16
+ F̂N

[
sin γ̄ sinη + (1 + cos γ̄ ) cosη

]

= W 2

2
− 3ĈW 4

16
+ F̂W (1 + cos γ̄ ) (33c)

In (33b, c), we impose the initial conditions N(0) = W

and η(0) = 0. Manipulating these two equations, we
may eliminate the angle η and derive an integrable
first order equation for the amplitude N(τ). Setting
N2(τ ) = z(τ ) this equation is expressed as

z′ =
{

4F̂ 2z

[
1 + sin2 γ̄

(1 + cos γ̄ )2

]−1

−
[
W 2 − z

2
− 3Ĉ

16

(
W 4 − z2)

+ F̂W (1 + cos γ̄ )

]2
}1/2

≡ {
Q

(
z,W, F̂ , γ̄

)}1/2 (34)

with initial condition z(0) = W 2. We note that Q(z,
W , F̂ , γ̄ ) is periodic in γ̄ with period 2π , and satisfies
Q(z, W , F̂ , π − ν) = Q(z, W , F̂ , π + ν), i.e., is sym-
metric with respect to the line γ̄ = π . Moreover, (34)
is exactly solved by quadratures,

z′ = {
Q

(
z,W, F̂ , γ̄

)}1/2 ⇒
(35)∫ z dz

{Q(z,W, F̂ , γ̄ )}1/2
=

∫ τ

dτ + L

where L is an integration constant. Clearly, the type of
solutions of (35) depends on the roots of the denom-
inator Q(z,W, F̂ , γ̄ ) which is a quartic polynomial
in terms of z. Depending on the system parameters
Q(z,W, F̂ , γ̄ ) generically possesses two or four real
roots in z, corresponding to time-periodic solutions for
z(τ ). In this section, however, we will consider F̂ and

γ̄ to be fixed, and we focus in the degenerate case cor-
responding to the critical value of the initial condition
W = Wcr(γ̄ ) for which Q(z,W = Wcr(γ̄ ), F̂ , γ̄ ) pos-
sesses a pair of coincident real roots and two additional
distinct real roots for z. We will assume that these real
roots are ordered according to z0(γ̄ ) < z1(γ̄ ) < z2(γ̄ ),
where z1(γ̄ ) is the double root.

Then it can be shown that the dynamical system
(34) possesses a degenerate pair of homoclinic orbits
which can be explicitly computed [14]. Indeed, fol-
lowing an analysis similar to [26], one of the homo-
clinic orbits is computed as

z(h)(τ ; γ̄ ) = N(h)2
(τ ; γ̄ )

= z1(γ̄ ) − g1(γ̄ )g2(γ̄ )

g1(γ̄ ) sinh2[ 3Ĉ
√

g1(γ̄ )g2(γ̄ )
32 (τ ± M(γ̄ ))] + g2(γ̄ ) cosh2[ 3Ĉ

√
g1(γ̄ )g2(γ̄ )

32 (τ ± M(γ̄ ))]
(36a)

for τ ≥ 0, with g1(γ̄ ) = z1(γ̄ ) − z0(γ̄ ), g2(γ̄ ) =
z2(γ̄ ) − z1(γ̄ ). The quantity M(γ̄ )) in the denomi-
nator is defined by

M(γ̄ ) = − 16

3Ĉ

∫ z0(γ̄ ))

W 2
cr (γ̄ )

du

[z1(γ̄ ) − u]{[u − z0(γ̄ )][z2(γ̄ ) − u]}1/2
> 0 (36b)



454 A.F. Vakakis

Fig. 5 Homoclinic orbit of
the unperturbed system (31)
(ε = 0) for F̂ = 0.1786,
Ĉ = 4/3, γ̄ = 2.0,
Wcr(γ̄ ) = 0.281519:
(a) z(h)(τ ; γ̄ ),
(b) η(h)(τ ; γ̄ ),
(c) representation in the
complex plane

with z0(γ̄ ) ≤ W 2
cr (γ̄ ) ≤ z1(γ̄ ) < z2(γ̄ )) and the (+)

or (−) sign corresponding to positive or negative val-

ues of Wcr(γ̄ ). The corresponding expression for the

phase on the homoclinic solution is given by

sinη(h)(τ ; γ̄ )

= F̂−1 d
√

zh(τ, γ̄ )

dτ
+ sin γ̄

2F̂ (1 + cos γ̄ )
√

zh(τ, γ̄ )

×
{

W 2
cr (γ̄ ) − zh(τ, γ̄ )

2

− 3Ĉ

16

[
W 2

cr (γ̄ ) − zh 2(τ, γ̄ )
]

+ F̂Wcr(γ̄ )(1 + cos γ̄ )

}
(37)
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Fig. 5 (Continued)

The homoclinic solution (36, 37) satisfies the initial
conditions z(h)(0; γ̄ ) = W 2

cr (γ̄ ) and η(h)(0; γ̄ ) = 0,
and a representative example is depicted in Fig. 5. The
additional homoclinic orbit corresponding to the case
z0(γ̄ ) < z1(γ̄ ) ≤ W 2

cr (γ̄ ) ≤ z2(γ̄ ) can be similarly
computed in closed form but is not presented here.

By varying γ̄ in the range [0,π) (since Q(z, W ,
F̂ , γ̄ ) is periodic in γ̄ with period equal to 2π and
is antisymmetric with respect to γ̄ = π), the unper-
turbed system (31) possesses two degenerate homo-
clinic manifolds (tori) Γ in (C × S1) space, and an
unstable hyperbolic periodic orbit M . In Fig. 6, we de-
pict one of the two degenerate homoclinic tori corre-
sponding to the analytical solution (36, 37), as well as
the hyperbolic periodic orbit M; only the torus in the
range 0 ≤ γ̄ ≤ π is depicted, with the remaining part
for π ≤ γ̄ ≤ 2π being symmetric with respect to the
plane γ̄ = π . Clearly, this highly degenerate structure
is not expected to persist in the perturbed system (for
0 < ε � 1) and, as shown below, its breakdown can
lead to highly complex chaotic dynamics. In the fol-
lowing analysis, we study analytically the breakdown
of the homoclinic manifolds in the perturbed system
in order to prove the existence of chaotic orbits in the
perturbed dynamics.

We now express the perturbed system (31) for 0 <

ε � 1 in perturbed Hamiltonian form. To this end,

Fig. 6 Degenerate homoclinic torus of the unperturbed system
(31) (ε = 0) for F̂ = 0.1836, Ĉ = 4/3, and the unstable hyper-
bolic periodic orbit Γ (only the torus in the range 0 ≤ γ̄ ≤ π is
depicted)

we express the complex amplitude as ϕ(τ) = x1(τ ) +
jx2(τ ) and rewrite (31) in the following matrix form:
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x′ = J∇H(x,γ ;μ) + ε1/4g
x
(x;μ)

γ ′ = ε1/4gγ (x, γ )

}
(x, γ ) ∈ R2 × S1

(38)

In (38) x = (x1, x2)
T , the ∇ operator is taken with re-

spect to x, g
x
(x; μ) = (−x1λ̂/2, −x2λ̂/2)T , gγ (x, γ )

= B̄ , and μ = (λ̂, F̂ )T is a vector of parameters. The
Hamiltonian function in (38) is given by

H(x,γ ;μ) = x2
1 + x2

2

4
− 3Ĉ(x2

1 + x2
2)2

32

+ F̂

2

[
x1(1 + cosγ ) + x2 sinγ

]

with

J =
[

0 1

−1 0

]

For ε = 0 and for every γ ∈ S1, the unperturbed
Hamiltonian system (38) is completely integrable
with Hamiltonian H(x,γ ;μ), it possesses an unstable
hyperbolic equilibrium point which varies smoothly
with γ , and it has a one-dimensional homoclinic
manifold connecting the equilibrium point to itself;
we represent the orbits along the homoclinic man-
ifold as x = x(h)(τ ;γ ) = (x

(h)
1 (τ ;γ ), x

(h)
2 (τ ;γ )),

where

x
(h)
1 (τ ;γ ) =

√
z(h)(τ ;γ ) cosη(h)(τ ;γ )

x
(h)
2 (τ ;γ ) =

√
z(h)(τ ;γ ) sinη(h)(τ ;γ )

and z(h)(τ ;γ ), η(h)(τ ;γ ) are defined by (36, 37). By
varying γ ∈ [0,2π), the unperturbed system possesses
a one-dimensional normally hyperbolic invariant man-
ifold,

T = {
(x, γ ) ∈ R2 × S1, x = σ(γ ), γ ∈ S1}

where ∇H(σ(γ ), γ ) = 0 and det[∇2H(σ(γ ), γ )] �= 0
which guarantees hyperbolicity of σ(γ ) (cf. Fig. 6).
Moreover, T has smooth two-dimensional stable and
unstable invariant manifolds denoted by Ws(T ) and
Wu(T ), respectively, which intersect (in fact, they
completely coincide) in two two-dimensional homo-
clinic manifolds denoted by Γ (e.g., Fig. 6), and de-
fined as

Γ = {(
x = x(h)(−τ0;γ ), γ

) ∈ R2 × S1,

(τ0, γ ) ∈ R × S1}

where τ0 parameterizes the one-dimensional homo-
clinic manifold for fixed γ .

The breakdown of the homoclinic manifolds Γ for
0 < ε � 1 was studied in [33]. In the perturbed sys-
tem, there exists a γ0 > 0 such that for 0 < γ ≤ γ0

the perturbed system possesses a one dimensional nor-
mally hyperbolic invariant manifold,

Tε1/4 = {
(x, γ ) ∈ R2 × S1, x = σ̃

(
γ ; ε1/4)

= σ(γ ) + O
(
ε1/4), γ ∈ S1}

which is an O(ε1/4) perturbation of T . Moreover, Tε1/4

has two-dimensional stable and unstable manifolds
Ws(Tε1/4) and Wu(Tε1/4) which, if they intersect trans-
versely, give rise to Smale horseshoes close to these in-
tersections, and hence to chaotic orbits. Wiggins [33]
proved that the distance between the perturbed mani-
folds in the normal direction at a point (τ0, γ ) ∈ Γ (of
the unperturbed homoclinic manifolds) is given by

d
(
τ0, γ,μ; ε1/4)

= ε1/4M(γ ;μ)

‖∇H(x(h)(−τ0), γ ;μ)‖ + O
(
ε1/2) (39a)

where the homoclinic Melnikov function M(γ ; λ̂) is
defined by

M(γ ;μ)

=
∫ ∞

−∞

[
〈∇H,g

x
〉

+
〈
∇H,

∂J∇H
∫ τ

gγ

∂γ

〉]
(x(h)(τ,γ ),μ)

dτ (39b)

and 〈·, ·〉 denotes the Euclidean inner product. Hence,
the homoclinic Melnikov function is computed only
based on the unperturbed homoclinic solution.

The existence of chaotic orbits in the perturbed sys-
tem is then proved by the following theorem.

Theorem 1 [33] Suppose that there exists a point
(γ, λ̂) = (γ ∗, λ̂∗) such that

(i) M(γ ∗; λ̂∗) = 0
(ii) ∇M(γ ∗; λ̂∗) is of rank 1
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Fig. 7 Plot of the
homoclinic Melnikov
function
M(γ ; λ̂, B̄ = −1/1.79958)

versus γ for λ̂ = 0.8,
1.0, 1.2

Then for sufficiently small ε1/4, the perturbed in-
variant manifolds Ws(Tε1/4) and Wu(Tε1/4) intersect
transversely near (γ ∗, λ̂∗).

Then we can invoke Birkhoff’s homoclinic theorem
[33] to prove that transverse intersections of the sta-
ble and unstable manifolds of Tε1/4 generate chaotic
Smale horseshoe maps in neighborhoods of the trans-
verse homoclinic intersections, and hence to countable
infinities of unstable orbits of every possible period,
uncountable infinities of unstable orbits and dense or-
bits. We note that the fact that in our case the pertur-
bation of the homoclinic manifold is slowly varying
does not restrict the homoclinic Melnikov analysis. In
fact, in the terminology of Wiggins [33], system (38)
is a Type-II dynamical system with I = 0,Ω(x, I ) = 0
and θ̇ � 1. A similar application of Melnikov analysis
for the case of a parametrically forced pendulum with
a slowly varying frequency is provided in [33].

Substituting the expression for the unperturbed ho-
moclinic solution (36, 37) in (39b) the homoclinic
Melnikov function is expressed as

M(γ ;μ)

=
∫ ∞

−∞

{
−(

λ̂/4
)(

x2
1 + x2

2

) + (
3Ĉλ̂/16

)(
x2

1 + x2
2

)2

− (
λ̂F̂ /4

)[
x1(1 + cosγ ) + x2 sinγ

]
+ (

B̄F̂ τ/2
){[

(x1/2) − (
3Ĉx1/8

)(
x2

1 + x2
2

)
+ F̂ (1 + cosγ )

]
cosγ

+ [
(x2/2) − (

3Ĉx2/8
)(

x2
1 + x2

2

)

+ (
F̂ /2

)
sinγ

]
sinγ

}}
(x(h)(τ,γ ),μ)

dτ (40)

Direct numerical computations prove that M(γ ;μ)

indeed possess simple roots in terms ofγ , so the ex-
istence of transverse homoclinic intersections in the
dynamics of the perturbed system (31) can be rigor-
ously proved by application of Birkhoff’s homoclinic
theorem. As an example, for F̂ = 0.1786, Ĉ = 4/3,
and γ = 0.6 the homoclinic Melnikov function is
computed as M = −0.107073λ̂ − 0.163227B̄ . Hence,
for λ̂/B̄ = −1.79958, the Melnikov function has a
zero; the proof that this is a simple zero can be ver-
ified by setting λ̂ = 1 and plotting M(γ ; λ̂ = 1, B̄ =
−1/1.79958) versus γ as depicted in Fig. 7. More-
over, by varying λ̂ for fixed values of F̂ = 0.1786, Ĉ =
4/3, and B̄ = −1/1.79958, we may predict the gener-
ation of chaotic orbits in the dynamics as we move
from the case where no transverse homoclinic inter-
sections occur (λ̂ = 1.2), to the case where transverse
homoclinic intersections take place (λ̂ = 1.0 and λ̂ =
0.8), as shown in Fig. 7. This analytical result based on
homoclinic Melnikov theory is verified by direct nu-
merical integrations of the reduced model (31), as de-
picted in Fig. 8. In this figure, we present direct numer-
ical simulations of system (31) for F̂ = 0.1786, Ĉ =
4/3, B̄ = −1/1.79958, ε1/4 = 0.05, and λ̂ = 1.2,1.0,
and 0.8. For stronger damping (cf. Fig. 8c), the dy-
namics settles into a low-amplitude regular motion,
whereas for lighter damping (cf. Figs. 8a and 8b), the
system executes chaotic oscillations; these numerical
results are fully compatible with and verify the results
of the analytical homoclinic Melnikov study.

The analysis of this section proves the occurrence
of chaotic dynamic interactions between traveling
waves in the chain and the weakly damped strongly
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Fig. 8 Direct numerical simulations of the reduced model (31) for F̂ = 0.1836, Ĉ = 4/3, B̄ = −1/1.79958, ε1/4 = 0.05, and
(a) λ̂ = 0.8, (b) λ̂ = 1.0, (c) λ̂ = 1.2

nonlinear attachment. As mentioned by a reviewer,
there is no guarantee that the chaotic dynamics forms
an attractive set, so we cannot prove persistence of the
chaotic dynamics with increasing time. Hence, it is

possible that only transient chaos exists in this case;
our results, however, do indicate the occurrence of
complex dynamic behavior, and prove nonintegrability
of the dynamics in the system.
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Fig. 8 (Continued)

In the next section, we provide a note that proves
that in the limit of no damping the traveling wave-
attachment interaction can give rise to a countable in-
finity of subharmonic orbits. This is performed by con-
structing appropriate subharmonic Melnikov functions
as outlined in [33].

5 A note on subharmonic motions

Depending on the initial conditions of the nonlinear
attachment and the frequency and amplitude of the
traveling wave of the lattice, a countable infinity of
subharmonic resonances may occur, whereby the fre-
quency of the attachment is tuned to a rational relation
with respect to the frequency of the traveling wave. To
show this, we reconsider the reduced model (16) and
express it in terms of action-angle variables [24]. Set-
ting damping equal to zero, λ̂ = 0, and omitting terms
of O(ε), the reduced model can be expressed in the
following autonomous form:

I ′ = −ε1/2f̂
3I 1/3π(sin θ1 + sin θ2)

2K(1/2)ΛΞ

sn dn

cn4 + 2sn2dn2

≡ ε1/2f̃1(I,φ, θ1, θ2)

φ′ = ω̃(I ) − ε1/2f̂
π2I−2/3(sin θ1 + sin θ2)

4K2(1/2)ΛΞ

(41a)
× cn

cn4 + 2sn2dn2

≡ ω̃(I ) + ε1/2f̃2(I,φ, θ1, θ2)

θ ′
1 = 1

θ ′
2 = ε1/4B̄

with initial conditions,

I 2/3(0) = −Wπ

21/2ΛΞK(1/2)
> 0,

φ(0) = φ0, θ1(0) = θ10, θ2(0) = θ20 (41b)

In (41a), sn, cn and dn are Jacobi elliptic functions
with arguments [2K(1/2)(φ + π/2)/π,1/2],K(1/2)

is the complete elliptic integral of the first kind [2],
and the various parameters are defined as ω̃(I ) =
ΞI 1/3,Λ = (4C)−1/6[3π/K(1/2)]1/3 and Ξ =
[3π4C/8K4(1/2)]1/3; moreover, we have rescaled the
amplitude of the traveling wave as F̂ = ε1/2f̂ , so that
the initial condition becomes W ≡ ε1/2f̂ − V < 0.

Hence, the reduced model (16) has been trans-
formed to a dynamical system on a 3-torus (I , φ, θ1,
θ2) ∈ R+ × S1 × S1 × S1, possessing two fast fre-
quencies equal to ω̃(I ) + O(ε1/2) and 1, and a slow
frequency equal to ε1/4B̄ . The subharmonic orbits of
system (41) can be studied in the limit 0 < ε � 1 by
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invoking the following internal resonance condition
between the two fast frequencies of the problem:

mω̃(I) − n = 0 ⇒

I =
(

n

mΞ

)3

≡ I (m/n), n,m ∈ N+

This couples the two fast frequencies of the reduced
problem and defines an (m : n) resonance manifold
for the dynamics. Moreover, we restrict the dynamics
in an O(ε1/4) neighborhood of the (m : n) resonance
manifold by constructing a local model close to this
manifold. This is performed by introducing the new
angle ρ = mφ − nθ and the local action variable ξ(θ)

defined by I (θ) = I (m/n) + ε1/4ξ(θ). This local study,
however, which can be used to reveal the rich struc-
ture of subharmonic bifurcations that occur close to
the (m : n) resonance manifold will be investigated in
detail in another work. In this note, we will adopt an al-
ternative global approach (in the sense that our analy-
sis will not be restricted in a neighborhood of a reso-
nance manifold) in order to show how one can prove
the existence of a countable infinity of subharmonic
orbits in system (41) through the use of subharmonic
Melnikov analysis.

Following [33], we rewrite system (41a) in the
slightly more general form,

I ′ = ε1/2f̃1(I,φ, θ1, θ2)

φ′ = ω̃(I ) + ε1/2f̃2(I,φ, θ1, θ2)

θ ′
1 = 1

θ ′
2 = β

(42)

which allows for the existence of three fast frequen-
cies in the dynamics of the strongly coupled chain.
Clearly, the unperturbed dynamics (corresponding to
ε = 0) takes place on a 3-torus which is foliated by a
continuous families of periodic and quasiperiodic or-
bits. We wish to study how the O(ε1/2) perturbative
terms in (42) affect the dynamics on the torus.

Following [33], a (m : n : p) resonant 3-torus of
the unperturbed system (42) corresponds to the value
of the action for which the following relation between
the three frequencies of the system is satisfied,

ω̃
(
I (m/n/p)

) = n/p = nβ/m ⇒
(43)

nT̃
(
I (m/n/p)

) = p2π = mT

where T̃ (I (m/n/p)) = 2π/ω̃(I (m/n/p)) ≡ T̃ m/n/p and
T = 2π/β . Since the nondegeneracy condition
ω̃′(I ) �= 0 is satisfied for the system considered here,
there is a unique solution I = I (m/n/p) of (44) for
every triplet (m,n,p) ∈ N

+3. Hence, there is a count-
able infinity of resonant 3-tori (corresponding to sub-
harmonic orbits in the unperturbed system) and an un-
countable infinity of non-resonant 3-tori (correspond-
ing to quasi-periodic orbits in the unperturbed system).

Using subharmonic Melnikov theory, we will study
preservation of subharmonic orbits in the perturbed
system. To do this, we consider the global cross sec-
tion in the phase space of the dynamics,

Σθ20 = {
(I,φ, θ1, θ2) ∈ R+ × S1 × S1 × S1,

θ2 = θ20 ∈ [0,2π)
}

and the Poincare’ map,

Pε : Σθ20 → Σθ20,(
I (0),φ(0), θ1(0)

) → (
I (T ),φ(T ), θ1(T )

)

so that the m-th iterate of the Poincare’ map is defined
as

P m
ε : Σθ20 → Σθ20,(
I (0),φ(0), θ1(0)

) → (
I (mT ),φ(mT ), θ1(mT )

)

Returning to the dynamical system (42) we approx-
imate the perturbed solutions in the following series
form:

I (τ ) = I0 + ε1/2I1(τ ) + O(ε)

φ(τ) = ω̃(I0)τ + φ0 + ε1/2φ1(τ ) + O(ε)

θ1(τ ) = τ + θ10

θ2(τ ) = βτ + θ20

(44)

where general initial conditions were assumed. The
leading order approximations can be computed by
substituting (44) in (42) and matching O(ε1/2) terms.
Then we can approximate the corrections to the action
and angle variables after time mT as follows [33]:

I1(mT )

=
∫ mT

0
f̃1

(
I0, ω̃(I0)ξ + φ0, ξ + θ10, βξ + θ20

)
dξ

≡ M1 (I0, φ0; θ10, θ20)

φ1(mT )
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= ω̃′(I0)

∫ mT

0

∫ ξ

0
f̃1

(
I0, ω̃(I0)ζ + φ0, ζ + θ10,

(45)
βζ + θ20

)
dζdξ

+
∫ mT

0
f̃2

(
I0, ω̃(I0)ξ + φ0, ξ + θ10,

βξ + θ20
)
dξ

≡ M2 (I0, φ0; θ10, θ20)

This enables us to analytically approximate the m-th
iterate of the Poincare’ map as follows:

P m
ε : Σθ20 → Σθ20,(
I (0),φ(0)

)
→ (

I0 + ε1/2M1(I0, φ0; θ10, θ20),

ω̃(I0)mT + φ0 + ε1/2M2
(
I0, φ0; θ10, θ20

))
+ O(ε) (46)

where the trivial dependence on the angle θ1 was elim-
inated.

We note that if we set I0 = I (m/n/p) the functions
f̃1 and f̃2 become periodic in τ with period equal to
mT ; it follows that the O(ε1/2) perturbations I1(τ )

and φ1(τ ) for the (m : n : p) resonant 3-torus are also
mT -periodic in τ . For the (m : n : p) resonant 3-torus,
we define the following subharmonic Melnikov func-
tions:

M1,2
(
I (m/n/p), φ0; θ10, θ20

)
≡ M

(m/n/p)

1,2

(
I (m/n/p), φ0; θ10, θ20

)
(47)

The preservation of subharmonic orbits in the per-
turbed system is then established by the following the-
orem.

Theorem [33] Suppose that there exists a φ0 =
φ(m/n/p), such that

M1
(
I (m/n/p), φ(m/n/p); θ10, θ20

) = 0 and
(48){

ω̃′ ∂M
(m/n/p)

1

∂φ0

}
(I (m/n/p),φ(m/n/p))

= 0

Then for 0 < ε < ε̄(n,p), the Poincare’ map Pε has a
pair of equilibrium points of period m, one of which
is stable and the other unstable. This implies that a
stable-unstable pair of subharmonic orbits of period
mT is preserved in the perturbed system (42).

By applying this theorem, one can prove the preser-
vation in the perturbed system (42) of a countable in-
finity of stable subharmonic orbits of arbitrarily large
periods. We note that the zeros (I (m/n/p), φ(m/n/p))

of the subharmonic Melnikov function determines the
corresponding initial conditions W and φ0 for the re-
duced model (41a) through relations (41b), after tak-
ing θ10 = θ20 = 0.

In addition, if the model (42) is expressed in Carte-
sian form,

x′ = J∇H(x) + ε1/2g(x, τ,βτ) (49)

where x = (x1, x2)
T , g = (g1, g2)

T , and the notation
of the previous section is employed, the Melnikov
function M1 can be expressed in the following form
which is amenable to direct analytical evaluation:

M
(m/n/p)

1

= M
(m/n/p)

1 (α, τ0; θ10, θ20)

= ω̃−1(I (m/n/p)
)∫ mT

0

{
∂H

∂x1
g1

+ ∂H

∂x2
g2

}
(xα(τ ;τ0),τ+τ0+θ10,βτ+βτ0+θ20)

dτ (50)

In (50), xα(τ ; τ0) is the unperturbed solution of pe-
riod T̃ (I (m/n/p)) = 2π/ω̃(I (m/n/p)) ≡ T̃ m/n/p (which
can be computed explicitly by quadratures in terms of
Jacobi elliptic functions), index α parameterizes the
corresponding action (energy) of the unperturbed peri-
odic orbit, τ0 is the initial condition on the periodic or-
bit, and the initial angles are assigned zero values, i.e.,
θ10 = θ20 = 0. Using the alternative expression (50),
we can explicitly compute the Melnikov function in
terms of the unperturbed periodic orbit and prove that
it possesses simple zeros in a way similar to our homo-
clinic Melnikov analysis of the previous section. Then
the preservation of the family of subharmonic orbits in
the perturbed system can be rigorously studied.

6 Concluding remarks

We studied strongly nonlinear dynamical interactions
between traveling waves propagating in a linear lattice
and a lightweight essentially nonlinear local attach-
ment (defect). Through the use of the Green’s function



462 A.F. Vakakis

of the lattice at the point of attachment to the nonlin-
ear oscillator, and by considering only leading-order
terms in the dynamic interaction we reduced the dy-
namics to a strongly nonlinear damped oscillator with
two-frequency harmonic forcing; one of the frequen-
cies of the excitation was characteristic of the travel-
ing wave, whereas the other accounted for local lattice
effects, i.e., for the linear grounding stiffness of each
particle of the lattice. A third frequency characterized
the nonlinear oscillation of the attachment, and in con-
trast to the previous two was energy-dependent.

We analyzed the dynamics of the reduced model in
the limit of small attachment mass and for weak in-
terparticle coupling in the lattice. We showed that be-
low a damping threshold the nonlinear attachment ex-
ecutes relaxation oscillations. These motions were an-
alytically studied by constructing slow invariant man-
ifolds (SIMs) of the dynamics. In the limit of weak
or no damping, we proved the existence of subhar-
monic and chaotic oscillations through the use of sub-
harmonic and homoclinic Melnikov theory.

The ideas and methodologies adopted in this work
can be applied to study nonlinear dynamic interac-
tions of traveling or standing (near-field) waves in lin-
ear periodic media with local nonlinear attachments
or defects. Another possible extension is in the area
of soliton-defect interaction in nonlinear periodic me-
dia; however, an alternative reduction process should
be developed in that case in order to derive a reduced
order model that fully captures the leading order dy-
namic interaction between the solitary waves and the
attachment.
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