
Nonlinear Dyn (2010) 61: 163–182
DOI 10.1007/s11071-009-9639-0

O R I G I NA L PA P E R

Internal-external resonance of beams on non-linear
viscoelastic foundation traversed by moving load

M. Ansari · E. Esmailzadeh · D. Younesian

Received: 6 December 2009 / Accepted: 7 December 2009 / Published online: 23 January 2010
© Springer Science+Business Media B.V. 2010

Abstract Vibration of a finite Euler–Bernoulli beam,
supported by non-linear viscoelastic foundation tra-
versed by a moving load, is studied and the Galerkin
method is used to discretize the non-linear partial dif-
ferential equation of motion. Subsequently, the solu-
tion is obtained for different harmonics using the Mul-
tiple Scales Method (MSM) as one of the perturba-
tion techniques. Free vibration of a beam on non-linear
foundation is investigated and the effects of damp-
ing and non-linear stiffness of the foundation on the
responses are examined. Internal-external resonance
condition is then stated and the frequency responses of
different harmonics are obtained by MSM. Different
conditions of the external resonance are studied and a
parametric study is carried out for each case. The ef-
fects of damping and non-linear stiffness of the foun-
dation as well as the magnitude of the moving load
on the frequency responses are investigated. Finally, a
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thorough local stability analysis is performed on the
system.
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foundation · Perturbation method

1 Introduction

Vibration analysis of beams traversed by moving load
is a well-known subject in structural mechanics and
has also been of great interest by many engineers
in different disciplines including mechanical, bridge,
and railway engineering. Many researchers have con-
ducted various investigations in the field of moving
loads. Fryba [1] has presented fundamental studies in
this area and cited more than 70 references in this area
including most of the published articles before the turn
of century.

Esmailzadeh and Ghorashi [2] studied the vibration
of Timoshenko beams traversed by concentrated and
partially distributed moving masses. They computed
the beam response, and the distribution of the shear
force and the bending moment along the beam, using
the finite difference method. Andersen et al. [3] used
the finite element method (FEM) to obtain the numer-
ical solution of problems with external loads moving
uniformly along an infinite Euler beam supported by a
linear elastic Kelvin foundation with a linear viscous
damping.
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The vibration of a simply-supported beam traversed
by uniform distributed moving loads was studied by
Yu et al. [4]. They concluded that the dynamic re-
sponse of the beam is tied up with these factors: the
frequency of the beam, the moving frequency of the
load and the ratio of the vehicle-beam mass. The dy-
namic analysis of bridges under moving loads was car-
ried out by Gurav [5]. He implemented an orthotropic
three-dimensional plate model to study the flexural
and torsional properties of the bridge and also derived
the eigen-value equations and normal mode shapes for
an orthotropic plate.

Ouyang and Mottershead [6] investigated the vi-
bration of a beam excited by a moving flexible body.
They found that the deflection of the beam displays
several cycles of oscillation during the passage of the
moving body and can exceed the maximum static de-
flection at moderate speeds, but is close to the static
deflection when the speed is either very low or very
high. The study of vibration and dynamic buckling
of shear beam-columns on elastic foundation under
moving harmonic loads was carried out by Kim and
Cho [7]. They examined as how the shear deformation
of beams and the axial compression affect the local
stability and vibration of systems and investigated the
effects of various parameters, such as the load veloc-
ity, load frequency, shear rigidity, and the damping on
the deflected shape, maximum displacement, and the
critical values of the velocity, frequency, and the axial
compression.

Martinez-Castro et al. [8] proposed a semi-analytic
solution in the time domain for the non-uniform
multi-span Euler–Bernoulli beams traversed by mov-
ing loads. In that research, the time-dependent modal
equations are solved in closed-form and, therefore,
the method is highly accurate and robust, circumvent-
ing the main disadvantages of time-stepping schemes.
Garinei [9] focused on the vibrations of simple beam-
like modeled bridge under harmonic moving loads.
Ouyang and Mottershead [10] presented a combined
numerical–analytical method for vibration of a beam
excited by a moving flexible body. They discovered
that the vibration of the moving body and the beam ex-
cited by the moving body are significantly influenced
by the traveling speed, and the vibration levels tend
to be greater in the intermediate speed range and the
total moving force at the interface of the beam and the
moving body can be compressive and tensile.

Stancioiu et al. [11] considered separation and reat-
tachment in the study of the vibration of a beam ex-
cited by a moving oscillator. For any moving oscilla-
tor like the one being discussed in that paper, the stiff-
ness of the spring connecting the two masses as well
as the mass ratio can influence the onset of separation
to a large extent. They concluded that it is more ap-
propriate that for those studies, involving separation,
the moving mass model should be replaced with the
moving oscillator model, and when the spring stiff-
ness becomes very high, the oscillator can usually be
replaced with a single mass, without affecting the dy-
namic response of the beam. Kiral and Goren Kiral
[12] focused on the dynamic behavior of a symmetri-
cal laminated composite beam subjected to a concen-
trated force traveling at a constant velocity using a de-
veloped three-dimensional finite element model.

There are few works recently done on the study of
non-linear vibrations of the beams subjected to either
stationary or moving loads. Coskun and Engin [13] in-
vestigated the non-linear vibration of an elastic beam
on a linear unstretched Winkler foundation subjected
to a concentrated stationary load at its midpoint. They
found that in contrast to the linear cases, the position of
the lift-off points will change depending on the mag-
nitude of the load and also, the vertical displacements
change with the square of the load in the non-linear
case; the dynamic effect in the linear case, the dynamic
effect and the non-linearity arising from the founda-
tion modulus in the non-linear case affect the variation
of the contact lengths and the vertical displacements
of the beam.

The non-linear dynamics of an Euler–Bernoulli
beam under moving loads was studied by Yanmeni
Wayou et al. [14] including the moving load inertia
in the Duffing equation. They concluded that the load
inertia can be neglected under two conditions:

(1) when the load velocity is higher than that leads to
the resonance in the beam, and

(2) when the moving mass is very small compared to
the mass of the beam.

Kang and Tan [15] conducted an investigation on
non-linear response of a beam under distributed mov-
ing contact load. They applied a two-dimensional
spectral balance method to solve the resulting ex-
tended Duffing’s system, which is subjected to quasi-
periodically modulated excitations.

For a beam resting on an elastic foundation, there
are many cases in which, the foundation should be
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considered non-linear for more appropriate investiga-
tions. Such systems have been treated by numerous re-
searchers with diverse theoretical tools, including the
numerical technique [16], finite element method [17–
19], analytical approach [20–22] and the perturbation
method [23]. In most of the published articles on the
non-linear vibration of beams, subjected to moving
loads, the non-linearity being of the geometrical type
and arises from the large deformations of the beam.

There are very few published articles on the vibra-
tion of beams on non-linear foundations subjected to
moving loads. Oscillations of a beam on non-linear
elastic foundation under periodic fixed loads were
studied by Santee and Goncalves [24] and the influ-
ence of a non-linear elastic foundation on the non-
linear dynamic behavior and the local stability of slen-
der beams were analyzed using a simplified model.

The problem of train-track interaction is one of the
most important applications of such system in which,
a railway track is resting on a viscoelastic ballast and
traversed by a moving train. In most of the cited ref-
erences discussed earlier, the foundation is assumed to
be a linear mass-spring system with the view to sim-
plify the model. Dahlberg [25] showed that the sup-
port structure of a railway track, in practice, is highly
non-linear because of the hardening characteristic of
the ballast. He solved the problem in the time domain
and found that the differences between the results of
the linear and non-linear models were quite consider-
able and deduced that a non-linear track model would
represent the rail deflection fairly well.

Kargarnovin et al. [26] carried out a similar study
in the frequency domain to find the response of infinite
beams supported by non-linear viscoelastic founda-
tions subjected to harmonic moving loads. They pre-
sented a straightforward solution technique applicable
in the frequency domain.

The survey of the published research articles shows
the lack of investigation on the subject of vibration of
beams on non-linear foundations subjected to moving
loads. That arises from two reasons, (a) the novelty
of the concept of non-linearity of foundation that was
verified experimentally in 2002 by Dahlberg [25], and
(b) the complexity of the solution of the obtained non-
linear partial differential equations of motion.

Abe [28] showed if discretizing the governing
equation first by the use of the Galerkin method, then
applying a shooting method to the obtained ordinary
differential equations, and finally implementing the

multiple scales method (MSM) [27], as being one of
the perturbation methods, it will give more accurate
results than when the multiple scales method is ap-
plied directly to the governing equation, which is a
non-linear partial differential equation.

In this paper, the Galerkin method is utilized to dis-
cretize the governing equations and MSM perturbation
method is applied to obtain the non-linear responses
of the system. A railway track (finite beam) resting on
ballast (non-linear viscoelastic foundation) traversed
by a passing train (moving load) comprised the case
study in this research. The Euler–Bernoulli beam the-
ory is employed to model the finite beam and MSM
is used to obtain the response of the free and forced
vibration of the non-linear system. A comprehensive
parametric sensitivity analysis is carried out to investi-
gate the effects of different parameters on the dynamic
performance of the system.

2 Problem formulation

The case of a uniform finite beam resting on non-linear
viscoelastic foundation and subjected to a moving con-
centrated load is shown schematically in Fig. 1. Us-
ing the Hamilton principle and employing the Euler–
Bernoulli theory, one can develop the governing dif-
ferential equation of motion as

EIwxxxx + kw + αw3 + μ̂wt + ρAwtt

= Foδ(x − vt) (1)

where E,I,A, and ρ are the respective modulus
of elasticity, the second moment of area, the cross-
sectional area of the beam, and the beam material den-
sity. The parameters k and α are the linear and non-
linear parts of the foundation stiffness, μ̂ is the damp-
ing coefficient of the foundation, and Fo, v and w are
the concentrated load, the moving load speed and the
beam deflection, respectively.

It should be noted that since in reality, several foun-
dations show non-linearities of the form of (1), the
authors have chosen this type of model with the cu-
bic non-linear term. In order to give a real sample of
such non-linear behavior, one could consider the field
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Fig. 1 A finite beam
resting on a nonlinear
viscoelastic foundation

Fig. 2 Nonlinear behavior of a real case of railway track [29]

measurement results illustrated in Fig. 2. The detailed
field measurement results can be found in [29]. An
actual railway track was modeled by Dahlberg [25]
using a hinge-hinge beam placed on a non-linear vis-
coelastic foundation and solved the dynamic problem
in the time domain using FEM. He found that the
differences in the results between the non-linear and
linear models are considerable and a non-linear track
model simulates the rail deflection quite well (com-
pared with the measurements) whereas the equivalent
linear model cannot as shown in Fig. 3. He validated
his non-linear model experimentally within the fre-
quency range of 0.1 to 20 Hz. Subsequently and in
a more recent work, Wu and Thompson [30] used a
similar non-linear model and studied the problem of
wheel/track impact using the finite element method.
They concluded that linear track models are not totally
appropriate for the analysis of the wheel/track impact
problems.

Fig. 3 Comparison between different models of railway
track [25]. Solid line (—): field measurement; dotted line (. . .):
nonlinear model; dashed line (– –): equivalent linear model

The beam is assumed simply supported at both ends
with the boundary conditions:

w = wxx = 0 at

{
x = 0
x = l

(2)

The Galerkin method is used to discretize the sys-
tem with the following expansion in w

w =
∞∑

n=1

un(t) · sin
nπx

l
(3)

In general, it is convenient to assume the expan-
sion of the displacement in terms of the linear free-
oscillation modes. These functions and the natural
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frequencies are intrinsic properties whereas, in the
present research, the infinitesimal motions are well de-
scribed by them. In order to find w, the first three terms
of (3) were considered. Substituting (3) into (1) would
lead to

3∑
m=1

⎧⎨
⎩

⎡
⎣ρAüm(t) + μ̂u̇m(t)+(

m4π4EI

l4
+ k

)
um(t)

⎤
⎦ sin

(
mπx

l

)⎫⎬
⎭

+ α

[
3∑

m=1

{
um(t) · sin

mπx

l

}]3

= Foδ(x − vt) (4)

Using the orthogonality principle of the mode shapes
and multiplying (4) by sinnπx/l and then integrating
it over the interval length [0, l] yields:

ü1 + ω2
1u1 = −Mu̇1 − α1u

3
1 − α2u

2
1u3 − α3u1u

2
2

− α4u1u
2
3 − α5u

2
2u3

+ F1 cos(�1t + τ1), (5)

ü2 + ω2
2u2 = −Mu̇2 − α6u

3
2 − α7u

2
1u2 − α8u2u

2
3

− α9u1u2u3 + F2 cos(�2t + τ2), (6)

ü3 + ω2
3u3 = −Mu̇3 − α10u

3
3 − α11u3u

2
1 − α12u

2
2u3

− α13u
2
2u1 − α14u

3
1 + F3 cos(�3t + τ3)

(7)

where

μ = 1

2

μ̂

ρA
, �1 = 1

2
�2 = 1

3
�3 = πv

l
,

α1 = α5 = α6 = α10 = α13 = 3

4

α

ρA
,

α3 = α4 = α7 = α8 = α9 = α11 = α12 = 3

2

α

ρA
,

α2 = −3

4

α

ρA
, α14 = −1

4

α

ρA
,

ω2
1 = EIπ4

ρAl4
+ k

ρA
, ω2

2 = 16EIπ4

ρAl4
+ k

ρA
,

ω2
3 = 81EIπ4

ρAl4
+ k

ρA
,

F1 = ε3f1, F2 = ε3f2, F3 = ε3f3, M = ε2μ

and τ1 = τ2 = τ3 = −π

2
.

In these equations, ε is a considered as a small and
the dimensionless parameter and the order of the am-
plitude, Fn and M are set in such a way that, in the
case of the primary resonances, the effect of the damp-
ing term, non-linearity, and the excitation term appear
in the same perturbation equations.

An asymptotic expansion would be in the form of

ui = εui1(To, T2)+ε3ui3(To, T2)+· · · for i = 1 to 3

(8)

where Tn = εnt .
Since the non-linearity is in the form of cubic, the

terms O(ε2)and the scale T1 are missing from (8). By
substituting (8) into (5), (6), and (7) and equating the
coefficients of the same powers of ε, one could obtain

Order ε:

D2
oui1 + ω2

i ui1 = 0 for i = 1 to 3 (9)

Order ε3:

D2
ou13 + ω2

1u13

= −2DoD2u11 − 2μDou11 − α1u
3
11 − α2u

2
11u31

− α3u11u
2
21 − α4u11u

2
31 − α5u

2
21u31

+ f1 cos(�t + τ1), (10)

D2
ou23 + ω2

2u23

= −2DoD2u21 − 2μDou21 − α6u
3
21 − α7u

2
11u21

− α8u21u
2
31 − α9u11u21u31 + f2 cos(2�t + τ2),

(11)

D2
ou33 + ω2

3u33

= −2DoD2u31 − 2μDou31 − α10u
3
31 − α11u

2
11u31

− α12u31u
2
21 − α13u11u

2
21 − α14u

3
11

+ f3 cos(3�t + τ3) (12)

The solutions of (9) can be expressed in the follow-
ing form:

ui1 = Ai(T2) exp(iωiTo) + cc for i = 1 to 3 (13)

where cc denotes the complex conjugate of the pre-
ceding terms.
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Substituting ui1 in (10), (11), and (12) one can ob-
tain the following equations:

D2
ou13 + ω2

1u13

= −2α4A1A3Ā3 exp(iω1To)

− 2α3A1A2Ā2 exp(iω1To)

− 2iμω1A1 exp(iω1To) − 2iA′
1ω1 exp(iω1To)

− 3α1A
2
1Ā1 exp(iω1To)

− α2Ā
2
1A3 exp[i(ω3 − 2ω1)To]

− α4A1A
2
3 exp[i(ω1 + 2ω3)To]

− α5A
2
2Ā3 exp[i(2ω2 − ω3)To]

− 2α5A2Ā2A3 · exp(iω3To)

− α5A
2
2A3 exp[i(2ω2 + ω3)To]

− α4A1Ā
2
3 exp[i(ω1 − 2ω3)To]

− α3A1Ā
2
2 exp[i(ω1 − 2ω2)To]

− α2A
2
1A3 exp[i(2ω1 + ω3)To]

− 2α2A1Ā1A3 · exp(iω3To)

− α3A1A
2
2 exp[i(ω1 + 2ω2)To]

− α1A
3
1 exp(3iω1To)

+ 1

2
f1 exp[i(�1To + τ1)] + cc, (14)

D2
ou23 + ω2

2u23

= −3α6A
2
2Ā2 exp(iω2To)

− 2α7A2A1Ā1 exp(iω2To)

− 2α8A2A3Ā3 exp(iω2To)

− 2iμA2ω2 exp(iω2To)

− 2iA′
2ω2 exp(iω2To) − α6A

3
2 exp(3iω2To)

− α9Ā1A2Ā3 exp[i(ω2 − ω1 − ω3)To]
− α9Ā1A2A3 exp[i(ω2 + ω3 − ω1)To]
− α9A1A2Ā3 exp[i(ω1 + ω2 − ω3)To]
− α9A1A2A3 exp[i(ω1 + ω2 + ω3)To]
− α7A2Ā

2
1 exp[i(ω2 − 2ω1)To]

− α7A2A
2
1 exp[i(ω2 + 2ω1)To]

− α8A2A
2
3 · exp[i(ω2 + 2ω3)To]

− α8A2Ā3 exp[i(ω2 − 2ω3)To]

+ 1

2
f2 exp[i(�2To + τ2)] + cc, (15)

D2
ou33 + ω2

3u33

= −3α10A
2
3Ā3 exp(iω3To) − α14A

3
1 exp(3iω1To)

− 2α11A1Ā1A3 exp(iω3To)

− 2α12A2Ā2A3 exp(iω3To)

− 2iA′
3ω3 exp(iω3To) − 2iμA3ω3 exp(iω3To)

− α10A
3
3 exp(3iω3To)

− α11A
2
1A3 exp[i(2ω1 + ω3)To]

− α11Ā
2
1A3 · exp[i(ω3 − 2ω1)To]

− α12A
2
2A3 exp[i(2ω2 + ω3)To]

− α12Ā
2
2A3 · exp[i(ω3 − 2ω2)To]

− α13Ā1A
2
2 exp[i(2ω2 − ω1)To]

− 2α13A1A2Ā2 · exp(iω1To)

− 3α14A
2
1Ā1 exp(iω1To)

− α13A1A
2
2 exp[i(ω1 + 2ω2)To]

+ 1

2
f3 exp[i(�3To + τ3)] + cc (16)

2.1 Three-to-one internal resonance

The case of the internal resonance is of much interest
and should be considered here in depth. The internal
resonance would occur when

k = 9EIπ4

l4
⇒ ω3 = 3ω1 (17)

In order to quantitatively express the neighborhood
of ω3 to 3ω1, a detuning parameter, σ , is defined so
that ω3 = 3ω1 + ε2σ

Therefore,

ω3To = 3ω1To + ε2σTo = 3ω1To + σT2 (18)

To eliminate the terms that produce secular terms,
one can state that the coefficients of exp(iω1To),
exp(iω2To), and exp(iω3To) on the right-hand side
of (14) to (16), respectively, should be set to zero.
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Eliminating the secular terms would then lead to the
following equations:

−2α4A1A3Ā3 − 2α3A1A2Ā2 − 2iμω1A1 − 2iA′
1ω1

− 3α1A
2
1Ā1 − α2Ā

2
1A3 exp(iσT2) = 0, (19)

−3α6A
2
2Ā2 − 2α7A2A1Ā1 − 2α8A2A3Ā3

− 2iμA2ω2 − 2iA′
2ω2 = 0, (20)

−3α10A
2
3Ā3 − α14A

3
1 exp(−iσT2) − 2α11A1Ā1A3

− 2α12A2Ā2A3 − 2iA′
3ω3 − 2iμA3ω3 = 0 (21)

Eliminating the terms which, produce the secular
terms in these equations and substituting the polar co-
ordinates notation, in the form of (22), into the ob-
tained equations and by separating the real and the
imaginary parts, one could obtain

Am = 1

2
am exp(iθm) for m = 1 to 3, (22)

a1ω1θ
′
1 − 3

8
α1a

3
1 − 1

4
α4a1a

2
2 − 1

4
α4a1a

2
3

−1

8
α2a

2
1a3 cosγ = 0, (23)

−ω1a
′
1 − μa1ω1 − 1

8
α2a

2
1a3 sinγ = 0, (24)

−1

4
α7a2a

2
1 − 1

4
α8a2a

2
3 + ω2θ

′
2a2 − 3

8
α6a

3
2 = 0, (25)

−μa2ω2 − a′
2ω2 = 0, (26)

−1

4
α12a

2
2a3 − 3

8
α10a

3
3 + θ ′

3ω3a3 − 1

4
α11a

2
1a3

− 1

8
α14a

3
1 cosγ = 0, (27)

−ω3a
′
3 − μa3ω3 + 1

8
α14a

3
1 sinγ = 0, (28)

where γ = σT2 + θ3 − 3θ1.

2.2 Forced vibration

With regards to (14), (15), and (16), an internal reso-
nance should occur when ω3 ≈ 3ω1. Hence, a similar
detuning parameter σ1 must be defined:

ω3 = 3ω1 + ε2σ1 (29)

Now there are three possible cases that might occur.

2.2.1 Case 1 when �1 ≈ ω1

A new detuning parameter σ2 should now be intro-
duced in accordance with:

�1 = ω1 + ε2σ2 (30)

By substituting (29) and (30) into (14), (15), and
(16), one could obtain the solvability condition of the
system. Using (22) and by separating the real and the
imaginary parts, and eliminating the secular terms, one
could obtain

a1ω1θ
′
1 − 3

8
α1a

3
1 − 1

4
α4a1a

2
2 − 1

4
α4a1a

2
3

− 1

8
α2a

2
1a3 cosγ1 + 1

2
f1 cosγ2 = 0, (31)

−ω1a
′
1 − μa1ω1 − 1

8
α2a

2
1a3 sinγ1 + 1

2
f1 sinγ2 = 0,

(32)

−1

4
α7a2a

2
1 − 1

4
α8a2a

2
3 + ω2θ

′
2a2 − 3

8
α6a

3
2 = 0, (33)

−μa2ω2 − a′
2ω2 = 0, (34)

−1

4
α12a

2
2a3 − 3

8
α10a

3
3 + θ ′

3ω3a3 − 1

4
α11a

2
1a3

− 1

8
α14a

3
1 cosγ1 = 0, (35)

−ω3a
′
3 − μa3ω3 + 1

8
α14a

3
1 sinγ1 = 0, (36)

where γ1 = σ1T2 + θ3 − 3θ1 and γ2 = σ2T2 − θ1 + τ1.

2.2.2 Case 2 when �2 ≈ ω2

In this case, following the same procedure as men-
tioned in Sect. 2.2.1 with different detuning parameter,
one could determine the following equations, which
must also be satisfied in order for that the secular terms
be eliminated.

a1ω1θ
′
1 − 3

8
α1a

3
1 − 1

4
α4a1a

2
2 − 1

4
α4a1a

2
3

− 1

8
α2a

2
1a3 cosγ1 = 0, (37)

−ω1a
′
1 − μa1ω1 − 1

8
α2a

2
1a3 sinγ1 = 0, (38)



170 M. Ansari et al.

−1

4
α7a2a

2
1 − 1

4
α8a2a

2
3 + ω2θ

′
2a2 − 3

8
α6a

3
2

+ 1

2
f2 cosγ2 = 0, (39)

−μa2ω2 − a′
2ω2 + 1

2
f2 sinγ2 = 0, (40)

−1

4
α12a

2
2a3 − 3

8
α10a

3
3 + θ ′

3ω3a3 − 1

4
α11a

2
1a3

− 1

8
α14a

3
1 cosγ1 = 0, (41)

−ω3a
′
3 − μa3ω3 + 1

8
α14a

3
1 sinγ1 = 0, (42)

where γ1 = σ1T2 + θ3 − 3θ1 and γ2 = σ2T2 − θ2 + τ2.

2.2.3 Case 3 when �3 ≈ ω3

One could state that in this case, the following equa-
tions must be satisfied:

a1ω1θ
′
1 − 3

8
α1a

3
1 − 1

4
α4a1a

2
2 − 1

4
α4a1a

2
3

− 1

8
α2a

2
1a3 cosγ1 = 0, (43)

−ω1a
′
1 − μa1ω1 − 1

8
α2a

2
1a3 sinγ1 = 0, (44)

−1

4
α7a2a

2
1 − 1

4
α8a2a

2
3 + ω2θ

′
2a2 − 3

8
α6a

3
2 = 0, (45)

−μa2ω2 − a′
2ω2 = 0, (46)

−1

4
α12a

2
2a3 − 3

8
α10a

3
3 + θ ′

3ω3a3 − 1

4
α11a

2
1a3

− 1

8
α14a

3
1 cosγ1 + 1

2
f3 cosγ2 = 0, (47)

−ω3a
′
3 − μa3ω3 + 1

8
α14a

3
1 sinγ1 + 1

2
f3 sinγ2 = 0,

(48)

where γ1 = σ1T2 + θ3 − 3θ1 and γ2 = σ2T2 − θ3 + τ3.

3 Numerical results

To find the steady-state response in all those cases,
which were mentioned in Sect. 2, the following con-
ditions are implemented:

a′
i = γ ′

i = 0 (49)

Table 1 Geometrical and mechanical properties of the finite
beam, non-linear foundation and the moving load [16]

Item Notation Value

Beam

Length l 18 m

Young’s modulus (steel) E 210 GPa

Mass density ρ 7850 kg/m3

Cross-sectional area A 7.69 × 10−3 m2

Second moment of area I 30.55 × 10−6 m4

Foundation

Linear stiffness k 35 MN/m2

Non-linear stiffness α 4 × 108 MN/m4

Viscous damping μ̂ 1732.5 N s/m2

Moving load

Load Fo 65 kN

A computer program is developed using
MATLAB©, which was linked with the MAPLE©

software to solve the equations numerically. The phys-
ical and geometrical properties of the finite beam and
those of the non-linear foundation and the data for the
moving load are listed in Table 1 [16].

Local stability analysis is performed on the system
by linearization of (31) to (36) for Case 1, (37) to (42)
for Case 2, and (43) to (48) for Case 3 for the parame-
ters a1, a2, a3, γ1, and γ2 around the singular (or the
steady-state) points. In doing so, a set of linear equa-
tions with constant coefficients, multiplied by an un-
known disturbance term, would be obtained and the
eigen-value problem should then be formed. If the real
part of every eigen-value of the coefficient matrix is
positive then the point is unstable, otherwise must be
stable.

After evaluating the values of the parameters a1,
a2, a3, γ1, and γ2, it would be assumed that each one
is comprised of two parts: (i) a steady-state part, and
(ii) a disturbance part. Therefore, one could write

a1 = a1s + a1d, a2 = a2s + a2d, a3 = a3s + a3d ,

γ1 = γ1s + γ1d , and γ2 = γ2s + γ2d

where a1s , a2s , a3s , γ1s , and γ2s are the singular points
and a1d , a2d , a3d , γ1d , and γ2d are the disturbance
parts of a1, a2, a3, γ1, and γ2, respectively.
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In order to define the nature of all the various sin-

gular points, the new forms of a1, a2, a3, γ1, and γ2

with their derivatives are substituted into (31) to (36)

for Case 1, (37) to (42) for Case 2, and (43) to (48) for

Case 3. By expanding these relationships, one could

solve the state-space equation {Ẋ} = [A]{X} in order

to obtain the eigen-values, where the matrix [A] is re-

ferred to the Jacobian matrix. By knowing the eigen-

values, one could easily check the local stability of the

system and in order to illustrate the unstable regions

on the response graphs these have been indicated by

the dashed lines in every figure.

It should be noted that the preceding analysis de-

termines the linear or local stability of the steady-state

solutions. The stability of motions in the large domain

can be determined theoretically by the use of tech-

niques applicable in the global stability analysis, e.g.,

the Lyapunov method. The other notable issue is that,

within the practical range of engineering input para-

meters, no neutrally stable points were found along

the points on the frequency response curves. In other

words, no bifurcation points were recognized along

the frequency-response curve and all the points were

found to be either stable or unstable points. More ex-

planations on this, including some case studies, are

presented in the Appendix.

3.1 Free vibration

In considering the system response at the steady-state
condition with (26), one can conclude that

a2 = 0

and

a3γ
′ = a3σ +

(
3

8

α10

ω3
− 3

4

α4

ω1

)
a2

3

+
(

1

4

α11

ω3
− 9

8

α1

ω1

)
a2

1a3

+
(

1

8

α14

ω3
a3

1 − 3

8

α2

ω1
a1a

2
3

)
cosγ (50)

Furthermore, from (28), one could have

a′
1a1 + υa′

3a3 = −μa2
1 − μυa2

3 (51)

where

υ = ω3α2

ω1α14

Since α2 and α14 have the same sign, therefore,

υ > 0

For the steady-state motion one could write

a2
1 + υa2

3 = 0 (52)

Fig. 4 Free oscillation
amplitudes when ω3 ≈ 3ω1
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Fig. 5 Effects of damping
coefficient on the free
vibration of the system

Fig. 6 Effects of nonlinear
stiffness on the free
vibration of the system

The integrated form of (51) is then obtained as

a2
1 + υa2

3 = E · exp(−2ε2μt) (53)

where E is a constant of integration being proportional
to the initial energy of the system.

One could conclude by saying that when t → ∞,
then a2

1 + υa2
3 → 0, i.e., the energy present in the sys-

tem decays exponentially with time. The variations of
a1 and a3 with time, for the numerical solution of (24),
(28), and (50), are illustrated in Fig. 4.

The effects of damping and non-linear stiffness on
the free vibration of the system are presented in Figs. 5
and 6, respectively. It can be seen that the non-linear
stiffness will increase the frequency of the vibration,
but not the rate of the dissipation.

3.2 Forced vibration

The forced vibration analysis of the system under the
condition of input excitation will be considered in this
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Fig. 7 (a) Frequency
response curves for a1 with
ω3 ≈ 3ω1, and �1 ≈ ω1.
(b) Frequency response
curves for a3 with
ω3 ≈ 3ω1, and �1 ≈ ω1

(a)

(b)

section. The response of the system will be studied for
different possible conditions.

3.2.1 Case (a) when �1 ≈ ω1

In this case, by application of the steady-state re-
sponse, (34) will lead to μa2ω2 = 0.

Since neither μ nor ω2 are equal to zero, therefore,

a2 = 0 (54)

Taking the derivative of expression γ2 = σ2T2 − θ1 +
τ1, one would obtain γ ′

2 = σ2 −θ ′
1, which is rearranged

as θ ′
1 = σ2 − γ ′

2. Furthermore, by taking the derivative
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Fig. 8 (a) Effects of
damping coefficient on
frequency response for a1
with ω3 ≈ 3ω1, and
�1 ≈ ω1. (b) Effects of
damping coefficient on
frequency response for a3
with ω3 ≈ 3ω1, and
�1 ≈ ω1

(a)

(b)

of γ1 = σ1T2 + θ3 − 3θ1 one could arrive at γ ′
1 = σ1 +

θ ′
3 − 3θ ′

1, which can be transformed into θ ′
3 = 3(σ2 −

γ ′
2) − σ1 − γ ′

1. In the case of steady-state condition
γ ′
i = 0, hence θ ′

1 = σ2 and θ ′
3 = 3σ2 − σ1.

By setting a2 = 0, θ ′
1 = σ2 and θ ′

3 = 3σ2 − σ1 and
allowing a′

1 = a′
2 = a′

3 = 0 in (31) through (36), one
could obtain the following set of simultaneous equa-

tions, which must be solved for a1, a3, γ1, and γ2.

a1ω1σ2 − 3

8
α1a

3
1 − 1

4
α4a1a

2
3 − 1

8
α2a

2
1a3 cosγ1

+ 1

2
f1 cosγ2 = 0, (55)

−μa1ω1 − 1

8
α2a

2
1a3 sinγ1 + 1

2
f1 sinγ2 = 0, (56)
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Fig. 9 (a) Effects of
nonlinear stiffness on
frequency response for a1
with ω3 ≈ 3ω1,�1 ≈ ω1.
(b) Effects of nonlinear
stiffness on frequency
response for a3 with
ω3 ≈ 3ω1,�1 ≈ ω1

(a)

(b)

−3

8
α10a

3
3 + ω3a3(3σ2 − σ1) − 1

4
α11a

2
1a3

− 1

8
α14a

3
1 cosγ1 = 0, (57)

−μa3ω3 + 1

8
α14a

3
1 sinγ1 = 0 (58)

The variations of parameters a1 and a3 with σ2

for three different values of amplitude of the excita-

tion under the condition of �1 ≈ ω1 are presented in

Fig. 7. Furthermore, the effects of the damping coef-

ficient and the non-linear stiffness could be observed

from Figs. 8 and 9, respectively.
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Fig. 10 Frequency
response curves when
ω3 ≈ 3ω1,�2 ≈ ω2

3.2.2 Case (b) when �2 ≈ ω2

In this case, the values of both parameters a1 and a3

will be set to zero in accordance with the following
equations:

a1ω1θ
′
1 − 3

8
α1a

3
1 − 1

4
α3a1a

2
2 − 1

4
α4a1a

2
3

− 1

8
α2a

2
1a3 cosγ1 = 0, (59)

−μa1ω1 − 1

8
α2a

2
1a3 sinγ1 = 0, (60)

−1

4
α7a2a

2
1 − 1

4
α8a2a

2
3 + ω2σ2a2 − 3

8
α6a

3
2

+ 1

2
f2 cosγ2 = 0, (61)

−μa2ω2 + 1

2
f2 sinγ2 = 0, (62)

−1

4
α12a

2
2a3 − 3

8
α10a

3
3 + ω3a3(3θ ′

1 − σ1)

− 1

4
α11a

2
1a3 − 1

8
α14a

3
1 cosγ1 = 0, (63)

−μa3ω3 + 1

8
α14a

3
1 sinγ1 = 0 (64)

The variations of parameter a2 with σ2, for three
different values of the amplitude of excitation under
the condition of �2 ≈ ω2, are illustrated in Fig. 10.

The influences of the damping coefficient and the non-
linear stiffness on the frequency-response curves are
presented in Figs. 11 and 12, respectively.

3.2.3 Case (c) when �3 ≈ ω3

In this case by applying the steady-state condition, one
may obtain

a2 = 0 (65)

Therefore, the following simultaneous equations
must be solved.

1

3
a1ω1(σ1 + σ2) − 3

8
α1a

3
1 − 1

4
α4a1a

2
3

− 1

8
α2a

2
1a3 cosγ1 = 0, (66)

−μa1ω1 − 1

8
α2a

2
1a3 sinγ1 = 0, (67)

−3

8
α10a

3
3 + ω3a3σ2 − 1

4
α11a

2
1a3 − 1

8
α14a

3
1 cosγ1

+ 1

2
f3 cosγ2 = 0, (68)

−μa3ω3 + 1

8
α14a

3
1 sinγ1 + 1

2
f3 sinγ2 = 0 (69)

Here, the parameter a1 is proved to be always zero
while a3 has a non-zero value. The variations of a3

with σ2 for three different values of the amplitude of
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Fig. 11 Effects of damping
coefficient on the frequency
response curves for
ω3 ≈ 3ω1,�2 ≈ ω2

Fig. 12 Effects of
nonlinear stiffness on the
frequency response curves
for ω3 ≈ 3ω1,�2 ≈ ω2

excitation under the conditions of �3 ≈ ω3 and a1 =
0 are shown in Fig. 13. The effects of the damping
coefficient and the non-linear stiffness parameter on
the frequency response curve have been illustrated in
Figs. 14 and 15, respectively.

4 Conclusion

Vibration of a finite beam supported by non-linear vis-
coelastic foundation traversed by a moving load was

investigated. The Galerkin method was used to dis-
cretize the non-linear partial differential equation of
motion and subsequently, its solution was obtained for
different harmonics using the multiple scales method
(MSM). Free vibration of the beam resting on non-
linear foundation was then studied in the case of in-
ternal resonance. The effects of damping coefficient
and non-linear stiffness of the foundation on the re-
sponses were investigated. It was found that the mag-
nitude of the oscillations of the first harmonic is larger
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Fig. 13 Frequency
response curves for
ω3 ≈ 3ω1,�3 ≈ ω3, a1 = 0

Fig. 14 Effects of damping
coefficient on the frequency
response curves for
ω3 ≈ 3ω1,�3 ≈ ω3, a1 = 0

than those of the others and the non-linear stiffness
would increase the frequency, as well as the magni-
tude of vibration, but the rate of dissipation is not af-
fected. The internal-external resonance condition was
then considered and the frequency responses of dif-
ferent harmonics were obtained using MSM. Different
conditions of external resonance were studied and for
each case a parametric sensitivity study was carried
out. In the case of moving load, even with a constant

magnitude, the jump phenomena will occur in the fre-
quency response. The effects of damping coefficient
and non-linear stiffness of the foundation as well as
the magnitude of the moving load on the frequency
responses were investigated and the backbone curves
were obtained for every case. It is found that the sharp-
ness of the frequency responses decrease in the higher
order external resonances. In other words, the jump
phenomenon will occur at lower detuning parameters.
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Fig. 15 Effects of
nonlinear stiffness on the
frequency response curves
for ω3 ≈ 3ω1,
�3 ≈ ω3, a1 = 0

In the case of ω3 ≈ 3ω1,�1 ≈ ω1 a two-branched
frequency response was obtained for the third har-
monic. Generally, one concludes that all the harmon-
ics are more sensitive to the non-linear stiffness than
the damping coefficient or the moving load magni-
tude. The increase in the damping coefficient and the
decrease in the non-linear stiffness can delay the phe-
nomenon of jump more effectively in the lower range
of the external resonances.

Acknowledgement The research support provided by the
Natural Sciences and Engineering Research Council of Canada
(NSERC) to complete this work is greatly appreciated.

Appendix: Example for the stability analysis

The procedure, which was suggested in Sect. 3, will be
applied to (31) through (36) in order to demonstrate as
how to perform the stability analysis. In this case,

θ ′
1 = σ2 − γ ′

2, (70)

θ ′
3 = γ ′

1 − 3γ ′
2 + 3σ2 − σ1, (71)

a′
2 = a2 = 0 (72)

Substituting (70) through (72) into (31) through (36),
and solving for a′

1, a
′
3, γ

′
1, and γ ′

2 one would obtain

a′
1 = −μa1 − α2a

2
1a3 sin(γ1)

8ω1
+ f1 sin(γ2)

2ω1
, (73)

a′
3 = −μa3 + α14a

3
1 sin(γ1)

8ω3
, (74)

γ ′
1 = 3α10a

2
3

8ω3
− 3α4a

2
3

4ω1
− 3α2a1a3 cos(γ1)

8ω1
− 9α1a

2
1

8ω1

+ 3f1 cos(γ2)

2a1ω1
+ σ1 + α11a

2
1

4ω3
+ α14a

3
1 cos(γ1)

8ω1a3
,

(75)

γ ′
2 = σ2 − α2a1a3 cos(γ1)

8ω1
− 3α1a

2
1

8ω1
− α4a

2
3

4ω1

+ f1 cos(γ2)

2a1ω1
(76)

By linearizing of (73) through (76) and following
the instruction given in Sect. 3, one may define the
Jacobian matrix as

J =

⎡
⎢⎢⎣

J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

⎤
⎥⎥⎦ (77)

where

J11 = −μ − α2a1a3 sin(γ1)

4ω1
, (78)

J12 = −α2a
2
1 sin(γ1)

8ω1
, (79)
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Fig. 16 Frequency
response curves for a1 with
ω3 ≈ 3ω1, and �1 ≈ ω1,
when F = 65 kN

J13 = −α2a
2
1a3 cos(γ1)

8ω1
, (80)

J14 = f sin(γ2)

2ω1
, (81)

J21 = 3α14a
2
1 sin(γ1)

8ω3
, (82)

J22 = −μ, (83)

J23 = α14a
3
1 cos(γ1)

8ω3
, (84)

J24 = 0, (85)

J31 = −3α2a3 cos(γ1)

8ω1
− 9α1a1

4ω1
− 3f1 cos(γ2)

2a2
1ω1

+ α11a1

2ω3
+ 3α14a

2
1 cos(γ1)

8a3ω3
, (86)

J32 = 3α10a3

4ω3
− 3α4a3

2ω1
− 3α2a1 cos(γ1)

8ω1

− α14a
3
1 cos(γ1)

8ω3a
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, (87)

J33 = 3α2a1a3 sin(γ1)

8ω1
− α14a

3
1 sin(γ1)

ω3a3
, (88)

J34 = −3f1 sin(γ1)

2a1ω1
, (89)

J41 = −α2a3 cos(γ1)

8ω1
− 3α1a1

4ω1
− f1 cos(γ2)

2ω1a
2
1

, (90)

J42 = −α2a1 cos(γ1)

8ω1
− α4a3

2ω1
, (91)

J43 = α2a1a3 sin(γ1)

8ω1
, (92)

J44 = f1 sin(γ1)

2a1ω1
. (93)

One particular case in Fig. 7a is considered, as an
example, when F = 65 kN, and it is illustrated in
Fig. 16. If values of different parameters, associated
with different points on this graph, are introduced in
(77), the Jacobian matrix corresponding to every point
would be obtained. Therefore, four eigen-values of
this matrix can then be evaluated. If any of the eigen-
values have a positive real part, that point will corre-
spond to an unstable performance.

In Fig. 16, all the eigen-values of Jacobian matri-
ces associated with points A and C have negative real
parts and, therefore, both of these points represent sta-
ble ones. However, if the same numerical analysis is
performed for point B, then two of the eigen-values
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Table 2 Case studies for
stability analysis,
corresponding to Fig. 16,
where σ2 = 30

Points A B C

λ1 −1.0966 + 62657.43511i −1.0552 + 64377.7327i −0.9939 + 73870.3654i

λ2 −1.0966 − 62657.43514i −1.0552 − 64377.7327i −0.9939 − 73870.3654i

λ3 −1.9785 + 324.5164i 1.9818 + 323.4934i −1.9878 + 134.0352i

λ4 −1.9785 − 324.5164i 1.9818 − 323.4934i −1.9878 − 134.0352i

will have positive real part. Therefore, point B is an
unstable one (see Table 2, for the numerical values).
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