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Abstract In this paper, the nonlinear dynamic re-
sponse of an inclined pinned-pinned beam with a con-
stant cross section, finite length subjected to a con-
centrated vertical force traveling with a constant ve-
locity is investigated. The study is focused on the
mode summation method and also on frequency analy-
sis of the governing PDEs equations of motion. Fur-
thermore, the steady-state response is studied by ap-
plying the multiple scales method. The nonlinear re-
sponse of the beam is obtained by solving two cou-
pled nonlinear PDEs governing equations of planar
motion for both longitudinal and transverse oscilla-
tions of the beam. The dynamic magnification fac-
tor and normalized time histories of mid-pint of the
beam are obtained for various load velocity ratios and
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the outcome results have been illustrated and com-
pared to the results with those obtained from tra-
ditional linear solution. The appropriate parametric
study considering the effects of the linear viscous
damping, the velocity of the traveling load, beam in-
clination angle under zero or nonzero axial load are
carried out to capture the influence of the effect of
large deflections caused by stretching effects due to
the beam’s immovable ends. It was seen that quadratic
nonlinearity renders the softening effect on the dy-
namic response of the beam under the act of travel-
ing load. Also in the case where the object leaves the
inclined beam, its planar motion path is derived and
the targeting accuracy is investigated and compared
with those from the rigid solution assumption. More-
over, the stability analysis of steady-state response
for the modes equations having quadratic nonlinear-
ity was carried out and it was observed from the fre-
quency response curves that for the considered para-
meters in the case of internal-external primary res-
onance, both saturation phenomenon and jump phe-
nomenon can be predicted for the longitudinal excita-
tion.
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1 Introduction

The linear and nonlinear analysis for forced vibrations
of structural elements, such as beams and plates un-
der the act of traveling loads is of considerable practi-
cal importance. Many analytical and numerical meth-
ods have been proposed in the past decades to in-
vestigate the dynamic behavior of all customary and
noncustomary shapes of isotropic material, and com-
posite and FGM made engineering structural elements
in the academic literatures. However, until now lit-
tle attention has been paid to the study for dynamic
response of the coupled longitudinal-transverse vi-
brations of an inclined beam subjected to a vertical
concentrated moving load. Bridges on which vehi-
cles or trains travel, and trolleys of overhead travel-
ing cranes that move on their girders may be modeled
as moving loads on simply supported beams. Also in
aerospace industries, the rocket launcher systems and
fire arms are some applications in vibration of inclined
beams.

A comprehensive treatment of the subject of vibra-
tions of structures due to moving loads which contains
a large number of related cases is studied in [5]. In that
those works are linear, nothing exists on the longitu-
dinal motions of such a system. A common method
to tackle issues of a moving force traveling on infi-
nite length beams is the integral transforms [8]. On
the other hand, in order to deal with problems includ-
ing finite length beams, the modal analysis is com-
monly used. The linear dynamic analysis of a multi-
span beam traveled by a moving force with accelerat-
ing/decelerating velocity was studied in [14]. In [4],
a dynamic Green function approach is used to de-
termine the response of a simply supported Euler–
Bernoulli beam of finite length subject to a moving
load and authors proposed a simple matrix expression
for the deflection of the beam. The effect of a mov-
ing mass on the dynamic behavior of a simply sup-
ported Euler–Bernoulli beam was studied in [15]. The
linear finite element analysis was applied to analyze
a simply supported Euler–Bernoulli beam under the
act of moving loads by [7, 10, 12]. The dynamic be-
havior of a flexible cantilever beam carrying a moving
mass-spring is investigated in [19]. In this paper, the
dynamics of the system are described by coupled non-
linear partial differential equations and the equations
of motion are solved numerically using the Galerkin
method and an automatic ODE solver. The numerical

results are compared with a closed-form analytical so-
lution obtained using a perturbation method and the
spectral behavior of the system are investigated us-
ing time-frequency analysis. The linear analysis was
applied on a Timoshenko beam traversed a moving
mass in [11] using the Galerkin’s technique and the
results of this work is verified by [13] using the lin-
ear finite element method. The effect of weight of
the beam on the dynamic responses of a horizontal
simply supported Timoshenko beam under the influ-
ence of moving forces was studied in [23] using the
Galerkin’s method. The linear moving mass problem
for dynamic analysis of a Timoshenko beam is stud-
ied by [3]. In another work, the finite difference tech-
nique is used by [2] in dynamic analysis of a simple
beam traversed by uniform partially moving masses.
The dynamic behavior of the multispan continuous
Euler–Bernoulli beam traversed by a moving mass at
a constant velocity is investigated by [6] and the so-
lution is obtained by using both eigenfunction expan-
sion or the modal analysis method and the direct in-
tegration method in combination. Vibration of multi-
span Timoshenko beams and frames due to moving
loads were studied by [22, 24], respectively. A sim-
ple procedure based on the finite element method has
been developed for treating the dynamic analysis of
beams on an elastic foundation subjected to moving
point loads, where the foundation has been modeled
by springs of variable stiffness in [21]. The closed-
form solutions for the response of beams with general
boundary conditions subjected to a single determinis-
tic moving force are obtained by [1]. Analytic expres-
sions of the dynamic amplification factor and the char-
acteristic response spectrum are derived for weakly
damped Euler–Bernoulli beams with various bound-
ary conditions by [18]. The longitudinal and transverse
motions of a finite length elastic Euler–Bernoulli beam
traversed by a moving mass are studied in [26] us-
ing Hamilton’s principle to obtain two nonlinear cou-
pled differential equations governing the transverse
and longitudinal displacements of the beam and a fi-
nite difference method combined with a perturbation
technique is used to solve the resulting boundary value
problem. In [17], the dynamic responses of a simply
supported beam subjected to a constant velocity mov-
ing force is discussed and analytical and linear finite
element solutions are presented. In [9, 28], nonlinear
dynamical behavior of Timoshenko beams with infi-
nite length under the act of traveling harmonic loads
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resting on viscoelastic foundations are studied. Dy-
namic response of an inclined Euler–Bernoulli beam
subjected to a moving mass has been investigated in
[25] using the linear finite element method consider-
ing transversal and longitudinal displacements for the
beam. In [27], the nonlinear vibration of a horizon-
tal pinned-pinned thin beam under the act of a mov-
ing mass considering the influence of the load iner-
tia and the nonlinearity caused by stretching effect of
mid-plane of the beam due to the immovable supports
was studied. Moreover, the effect of longitudinal iner-
tia and longitudinal damping in governing equations of
motion has been neglected and so their approximate-
analytical solution is based on multiple times scale
method for the system having nonlinearity. Recently,
the nonlinear dynamic analysis of an eccentrically pre-
stressed beam under the act of a concentrated moving
harmonic load including damping effect has been stud-
ied in [20]. In that paper, the nonlinear deflections be-
havior of the beam is approximated by some polyno-
mial functions and material of the beam was assumed
to follow the Kelvin–Voigt model. Furthermore, the ef-
fects of large deflections, the internal damping of the
beam, the velocity of the moving harmonic load, the
prestress load, and the excitation frequency were dis-
cussed.

The main objective of this study is to focus on the
influence of a moving load on the coupled PDEs gov-
erning equations of motion for an inclined beam con-
sidering longitudinal and transversal interaction of os-
cillations; in addition, to investigate on the behavior
of frequency response for the system having quadratic
non-linearity in its mode equations. Moreover, the sta-
bility analysis of steady-state response in the case of
internal-external primary resonance and the influence
of detuning parameter in the shape of modal response
of the inclined beam under the act of traveling load are
performed.

2 Modeling and mathematical formulation

A one-dimensional inclined beam of length l and in-
clination angle of θ traveled by a concentrated vertical
force of F , which is always applied in Y direction, is
considered (see Fig. 1a). The longitudinal and lateral
components of traveling load in direction of x and y

are F sin θ and F cos θ , respectively (see Fig. 1b). In
our up-coming analysis, it is assumed that when the
force enters the left end of the beam, zero initial con-
ditions are assumed, i.e., the beam is at rest at time
t = 0. It is further assumed that the force will be in full
contact with the beam during its motion, i.e., no sepa-
ration occurs. The nonlinear dynamic behavior for the
coupled longitudinal and transverse vibrations of an
inclined uniform beam under simultaneous act of an
axial force and transverse moving force is considered.
The beam supports are restricted from any axial move-
ment, and hence this will produce mid-plane stretching
and some nonlinearity in governing equations of mo-
tion. For an Euler–Bernoulli beam, the governing cou-
pled nonlinear partial differential equations of forced
planar vibrations considering linear viscous damping
are [16]

utt + c1

ρA
ut − E

ρ
uxx

= (EA − P)

ρA
[wxwxx] − F sin θ

ρA
δ(x − ς) (1)

and

wtt + c2

ρA
wt − P

ρA
wxx + EI

ρA
wxxxx

= (EA − P)

ρA
[uxxwx + uxwxx]

− F cos θ

ρA
δ(x − ς) (2)

in which u = u(x, t) is the longitudinal time depen-
dent deformation, w = w(x, t) is the lateral time de-

Fig. 1 (a) An inclined
pinned-pinned beam
subjected to a moving
lateral load. (b) Equivalent
moving load model
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pendent deflection measured upward from its equilib-
rium position when unloaded, and the subscripts t and
x stand for the derivative with respect to the time (t)
and space coordinate (x) to the related order, respec-
tively. In addition, ρ is the beam density, A, I are the
area and moment of inertia of the beam cross section,
E is Young’s modulus, EI is the flexural rigidity of
the beam, c1 and c2 are constant coefficients related to
the structural damping of the beam namely μ, P is the
prescribed axial load, F is the magnitude of the con-
stant vertical lateral traveling force, and θ is the an-
gle of inclination. Furthermore, δ(x − ζ ) is the Dirac’s
delta function in which ζ is the instantaneous position
of the lateral force moving with the velocity of v on
the beam such that ζ = vt .

3 Solution method

One of the general routines in the traditional dynamic
analysis of a continuum is the modal analysis in which
the time-spatial response function will be expanded
in terms of linear undamped natural modes of system
obtained by neglecting the effects of foundation and
damping terms. Moreover, it is well documented that
the infinitesimal motions are well described by these
eigenfunctions. In what follows, in order to clarify the
problem under investigation, the conventional series
expansion solution based on modal analysis approach
also called the mode summation method is consid-
ered to analyze the vibration of a beam with pinned-
pinned ends conditions under moving lateral and ax-
ial loads. According to the separation of variables ap-
proach, the response of our continuous system in terms
of the linear free-oscillation modes can be assumed as
follows [16]:

u(x, t) =
∞∑

n=1

ξn(t) sin
nπx

l
(3)

w(x, t) =
∞∑

n=1

ηn(t) sin
nπx

l
(4)

The boundary conditions for a pinned-pinned beam
with immovable ends are expressed as

u(0, t) = u(l, t) = w(0, t) = w(l, t) = wxx(0, t)

= wxx(l, t) = 0 (5)

and initial conditions are

w(x,0) = 0, wt (x,0) = 0, u(x,0) = 0
(6)

ut (x,0) = 0

Substituting (3) and (4) into (1) and (2) lead to:

∞∑

m=1

(
ξ̈m + 2μλmξ̇m + λ2

mξm

)
sin

mπx

L

= −π3κ

∞∑

m=1

∞∑

k=1

k2mηmηk · cos
mπx

l
sin

kπx

l

− F sin θ

ρA
δ(x − ς) (7)

∞∑

m=1

(
η̈m + 2μωmη̇m + ω2

mηm

)
sin

mπx

l

= −π3κ

∞∑

m=1

∞∑

k=1

mkηkξm ·
(

k cos
mπx

l
sin

kπx

l

+ m sin
mπx

l
cos

kπx

l

)
− F cos θ

ρA
δ(x − ς) (8)

in which

ωm = mπ

l

(
EI

ρA

m2π2

l2
+ P

ρA

)1/2

(9)

λm = mπ

l(ρA)1/2
and κ = EA − P

ρAl3

Multiplying both sides of (7) and (8) by sin(nπx/l)

and integrating over the interval [0, l] lead:

ξ̈n + 2μλnξ̇n + λ2
nξn

= −2F sin θ

ρAl
sin

nπvt

l
− nπ3

4

× κ

∞∑

m=1

mηm

[|n − m|η|n−m| + (m + n)ηm+n

]

(10)

η̈n + 2μωnη̇n + ω2
nηn

= −2F cos θ

ρAl
sin

nπvt

l
− nπ3

4

× κ

∞∑

m=1

mξm

[|n − m|η|n−m| + (m + n)ηm+n

]

(11)
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4 Numerical results

Equations (10) and (11) are solved numerically using
the fourth order Runge–Kutta method via MATLAB
solver package out of which the values of ξn(t) and
ηn(t) are obtained and then having on hand these val-
ues u(x, t) and w(x, t) can be calculated using (3)
and (4). The numerical outcome of these procedures
is presented in Figs. 2, 3, 4, 5, 6.

In the next step, the dynamic response of the beam
under variation of different parameters namely; veloc-
ity of the concentrated moving force, axial load, modal
damping, beam’s inclination angle, and magnitude of
the moving force are studied. To verify the accuracy
of the obtained results some special cases are consid-
ered. For the linear case, we set higher order terms
in (1) and (2) equal to zero which yield exactly to
the linear solutions reported by Fryba [5] (see Fig. 2).
However, as described in the Introduction section, to
date no work on the nonlinear analysis of coupled
longitudinal-transversal vibrations of inclined beams
under the act of traveling load is reported.

In all following studied cases, the beam specifica-
tions are as follows unless otherwise specified: a beam
with square cross-section having area of A = 196 ×
10−4 m2, E = 200 × 109 N/m2, ρ = 7850 kg/m3

(steel), l = 8 m, μ = 0.033 [27].

Let us define the dynamic magnification factor Dd

as the ratio of the maximum magnitude of the dynamic
deflection at the mid-span of the beam to the maximum
static deflection at the same location. Also let us define
the velocity ratio as α = v

vf
= Tf

T
where Tf , T and

vf denote the first natural period (fundamental period
of the transverse motion) of the beam, the total time
taken by the moving load to cross from one end to the
other beam’s end and the velocity of a reference load
that would take the time of Tf to traverse the beam of
length l, respectively.

Figure 2 shows the variation of the Dd vs. α for
different values of the moving load for a horizontal
beam. It can be seen that by increasing the magni-
tude of the vertical moving load the dynamic displace-
ment response of the beam grows in such a way that
does not follow the well-known linear force-deflection
relation in the liner systems, i.e., F = kδ. It can be
observed that the dynamic displacement response of
the linear and nonlinear solutions are almost the same
for F ≤ 6000 N and the maximum Dd for linear and
nonlinear solutions are the same and equals to 1.73 at
α = 1.2 as reported by other researchers [17]. How-
ever, from this figure, it is clear that for the value of
F > 6000 N the dynamic response of the beam us-
ing nonlinear theory has higher value than those given

Fig. 2 Dynamic
magnification factor (Dd)

for mid-point of a
horizontal steel beam vs.
α for l = 8 m, P = 0,
μ = 0; (- - - - -) linear
solution [5], (—–)
nonlinear analysis

Fig. 3 Dynamic
magnification factor (Dd)

for mid-point of a
horizontal steel beam vs.
α for various damping
coefficients using nonlinear
analysis for l = 8 m,
F = 20000 N, P = 0; (—–)
μ = 0, (- - - - -) μ = 0.033,
(− · −·) μ = 0.066
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(a) (b)

(c) (d)

Fig. 4 Variation of the beam’s mid-point dynamic displacement vs. magnitude of the moving load for different load velocities. l = 8 m,
A = 0.0196 m2, μ = 0, θ = 0◦, vf = 40.04 m/s; (a) α = 0.5, (b) α = 1, (c) α = 1.2, (d) α = 1.5; (- - - - -) linear, (—–) nonlinear

by linear theory, hence the difference between the dy-
namic displacement responses of the nonlinear and
linear theories increase. The reason for this deviation
is due to effect of larger deflection on the higher values
of the transverse traveling force. Furthermore, as seen
from Fig. 2, the velocity of the moving load plays an
important role on the dynamic displacement response.
For example, the maximum value of the dynamic mag-
nification factor Dd is about 1.85 when F = 20000 N
at α = 1.2. Meanwhile, in the region 0 < α < 1.2,
one can observe another maximum around α = 0.3
a phenomenon which is also reported by other re-
searchers [17]. Briefly it can be said that in the under
critical region (α ≤ 1.2) the dynamic deflection of the
beam generally increases by increasing the velocity of
the load and in the overcritical region (α > 1.2), the
dynamic deflection decreases by increasing the veloc-
ity of the traveling load.

Figure 3 shows the effect of modal damping on the
dynamic behavior of mid-point of a horizontal steel

beam under study using nonlinear analysis. Three dif-
ferent values of μ including μ = 0 (undamped con-
dition), 0.033, and 0.066 have been considered. From
this figure, it can be said that by increasing the value
of damping coefficient μ, the dynamic displacement
decreases which is generally a natural phenomenon
in any structural system. Furthermore, for the con-
sidered parameters, the maximum value of Dd de-
creases from 1.85 (related to μ = 0) to 1.66 (related
to μ = 0.066) at α = 1.2.

In Fig. 4, the beam’s mid-point dynamic displace-
ment using both linear and nonlinear approaches un-
der different values of the moving load have been ex-
tracted for various velocity ratios of α = 0.5, 1, 1.2,
1.5, respectively. It can be seen that the dynamic de-
flection of the nonlinear analysis is higher than the
one obtained from the linear solution. This incident is
known as the softening behavior which is mostly due
to the existence of the quadratic nonlinearity charac-
teristic in the beam’s mode equations of motion, and
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(a) (b)

(c) (d)

Fig. 5 Time histories for normalized mid-span deflection for: l = 8 m, F = 20000 N, P = 3000 N, μ = 0.033, vf = 40.04 m/s;
(a) α = 0.25, (b) α = 0.5, (c) α = 1, (d) α = 1.5

hence this system is taken to be equivalent to a non-
linear soft spring [16]. Also, it is seen from this fig-
ure that the dynamic mid-point displacement of such
beam using linear and nonlinear solutions are almost
the same for the value of F ≤ 10000 N. However, after
this value of F , the magnitude of the w of the linear
and the nonlinear solutions differs gradually and the
difference becomes more as F increases. Also, it can
be observed from Fig. 4 that the difference between
the linear and the nonlinear solutions has an increas-
ing trend up to the load velocity ratio of α = 1.2 and
illustrates a reverse trend for the load velocity ratio of
α > 1.2. Note that the maximum difference of all cases
in this figure between linear and nonlinear solutions
occurs at F = 30000 N and at α = 1.2 (see Fig. 4c).

Figures 5a–d show time histories for normalized
dynamic deflection of mid-point of the beam for differ-
ent values of beam’s inclination angle (θ = 0◦, 22.5◦,
45◦, 67.5◦, and 90◦) vs. nondimensional time vt/ l,
where t denotes the time duration of the moving load

from the time it enters over the beam and for differ-
ent velocity ratios (α = 0.25, 0.5, 1, 1.5). A close in-
spection of each figure in Figs. 5a–d reveals that by
increasing the beam’s inclination angle the dynamic
displacement of mid-point of the beam decreases and,
for example, at θ = 90◦, the dynamic lateral displace-
ment becomes zero as expected. Furthermore, it can be
seen from each figure that the peak point of each curve
occurs at the same vt/ l, no matter what the beam in-
clination angle would be.

Here, in order to give a an initial feeling to the read-
ers about the CPU time for solution of the coupled
differential equations, we ran the MATLAB code on
a computer with the following specification: Intel (R)
core 2 Duo CPU, E4500 @ 2.20 GHz and 1.00 GB
RAM and the following corresponding CPU times
were obtained for some cases regarding to this figure:

case 1: for α = 0.25, θ = 0◦; we got: CPU time =
6.9688 s.
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Fig. 6 Time history for
deflection of the beam’s
mid-point vs. vt/ l for
different values of α,
l = 8 m, F = 20000 N,
P = 0, μ = 0, θ = 36◦

case 2: for α = 1.5, θ = 0◦; we got: CPU time =
1.7031 s.

It should be further noted that the interval of [0, l/v]
was divided into 1000 (number of time steps) intervals.

Figure 6 illustrates the variation of w/l of mid-
point of the beam vs. vt/ l for beam’s inclination an-
gle of θ = 36° for different load traveling velocity
ratios. From the same figure, one can conclude that
the results from the nonlinear dynamic analysis rep-
resent larger values for the lateral dynamic displace-
ment of the beam compared to those calculated by lin-
ear analysis. Also, it can be seen that the peak value
of each curve does not occur at the same vt/ l, chang-
ing the values of these peak points have an increas-
ing trend up to the load velocity ratio of α = 1.2 and
a reverse trend afterward. For the load velocity ratio
of α ≥ 0.75, the position of the peak point shifts to
the right as α increases. In addition, it is seen that
for higher velocity ratio, i.e., α ≥ 3, the lateral dy-
namic displacement of the beam’s mid-point yields
to a very small value which means that the beam
does not have enough time to respond accordingly
against the load action. Another interesting observa-
tion from Fig. 6 is related to the interaction between
beam’s mid-point displacement and load speed when
one deals for example with the load velocity of α =
0.75 in which, there is a reverse (upward) displace-
ment for the mid-point which happens usually when
the load leaves the beam. Finally, the maximum down-
ward beam’s mid-point dynamic displacement occurs

while the force leaves the beam with velocity ratio of
α = 1.5.

Case study: accuracy of targeting of a projectile
leaving the tip of an inclined beam

The general application of this study can be addressed
to the military and aerospace industries; more specifi-
cally, to the dynamic analysis of any kind of low size to
high size caliber ammunition used in different types of
fire arms weaponry. Consider a planar motion of a sim-
ple projectile having a known velocity when it leaves
the tip of an inclined beam (see Fig. 7). In practice,
the analysis of projectile motion is done using the rigid
beam model, whereas in reality the beam is a flexible
structure. Usually at a situation like this, the accuracy
of expected collision point is the most principal objec-
tive for this kind of motion. Since we are not going
to consider the beam as a rigid continuum, therefore,
one deals with a specific beam slope at the end support
when the projectile leaves the beam. Indeed, the size
of this slope will play a significant role in the target
accuracy. We intend to show the effect of this slope on
the target accuracy using nonlinear analysis. Suppose
that point p1 is the position of collision predicted by
the rigid (classical) type of analysis and point p2 the
same point predicted by the nonlinear analysis under
beam’s inclination angle of θ rigid and beam’s end slope
of θendslope, respectively (see Fig. 7).
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Fig. 7 Prediction of a
planar motion of a
projectile using different
theories

Table 1 δ distance in
targeting of planar
projectile on an inclined
steel beam for various
moving load velocity ratios
(I = 171 × 10−8 m4,
A = 10.3 × 10−4 m2,
l = 5 m, μ = 0,
F = 3000 N, P = 0,
vf = 64.54 m/s)

Velocity ratio δ (+ or −) (m) due to F = 3000 N

α θ = 36° θ = 45° θ = 54°

4.25 48.95 −1.33 −37.60

4.5 52.14 −1.35 −39.95

4.75 56.09 −1.39 −42.89

5 60.59 −1.47 −46.28

5.25 63.22 −1.44 −48.17

5.5 64.01 −1.34 −48.59

As a classical case study, Table 1 shows the cal-
culated results for the difference in target position
δ (δ = Rnonlinear −Rrigid) vs. the velocity ratios α for a
beam with different inclination angles of θ rigid = 36°,
45°, and 54°, respectively. The following data is used
for this case study: I = 171 × 10−8 m4, A = 10.3 ×
10−4 m2, l = 5 m, μ = 0, F = 3000 N, P = 0.

To illustrate the effect of considering the slope of
the beam at the time when the projectile leaves the
tip of the beam, consider an instance where α = 5.5
and θ rigid = 36°, and keeping all other parameters the
same, the difference in target position with respect
to the rigid beam assumption is: Rnonlinear − Rrigid =
64.01 m about 0.53% error (see Fig. 7). As it is seen
from Table 1 under considered range for the veloc-
ity ratios, the maximum absolute values of δ occur at
α = 5.5 at θ = 36°. Moreover, this table further re-
veals that the comparison of the δ values for three dif-
ferent inclination angles, has its absolute least values
for θ = 45°at any velocity ratios.

5 Frequency and stability analysis of forced
oscillations of an inclined beam

In this section primarily we try to obtain the differen-
tial equations for the time varying part of motion equa-
tions of an inclined beam with linear viscous damping

under the act of traveling load using multiple scales
method. Then the internal-external primary resonance
analysis of the forced response considering coupled
longitudinal and transverse oscillations will be carried
out.

To make this analysis more convenient, following
dimensionless variables are defined [16]:

X = x

l
, τ = rg

l2

√
E

ρ
t, N = P l2

r2
gEA

W = w

l
, U = u

l
, r = rg

l

where rg is the radius of gyration of the beam. Conse-
quently, the dimensionless forms of (10) and (11) can
be written as

ξ̈n + 2νn

r2
ξ̇n + λ2

nξn

= g sin(nπV τ)

r2
− nπ3κ

4r2

∞∑

m=1

mηm

[|n − m|η|n−m|

+ (m + n)ηm+n

]
(12)

η̈n + 2μnη̇n + ω2
nηn

= f sin(nπV τ)

r2
− nπ3κ

4r2

∞∑

m=1

mξm

[|n − m|η|n−m|

+ (m + n)ηm+n

]
(13)
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where f = −2F cos θ
EA

, g = −2F sin θ
EA

, κ = 1−r2N , ωn =
nπ × (n2π2 + N)

1
2 and λn = nπ/r . Let us define pa-

rameter ε then we introduce the following new para-
meters as

ξ̂n = ξn

ε
, η̂n = ηn

ε
, εν̂n = r−2νn

εμ̂n = μn, εĝn = r−2gn (14)

εf̂n = r−2fn, and κ̂ = π3κ
(
4r2)−1

in which fn = f sin(nπV τ) and gn = g sin(nπV τ).
After substituting ξn, ηn, νn, μn, and κ from above re-
lation into (12) and (13) and for the simplicity drop-
ping the hats sign in the results, one would get the
quadratic nonlinear mode equations as [16]

ξ̈n + λ2
nξn = ε

[
−2νnξ̇n − nκ

∞∑

m=1

mηm(pηp + qηq)

]

− εg cos(nπV τ + π/2) (15)

η̈n + ω2
nηn = ε

[
−2μnη̇n − nκ

∞∑

m=1

mξm(pηp + qηq)

]

− εf cos(nπV τ + π/2) (16)

where p = |n−m| and q = n+m. We use the method
of multiple scales and seek an approximate solution
of (15) and (16) for small but finite amplitudes in the
form of

ξn(τ, ε) = ξn0(τ0, τ1) + εξn1(τ0, τ1) + O
(
ε2

)

ηn(τ, ε) = ηn0(τ0, τ1) + εηn1(τ0, τ1) + O
(
ε2

) (17)

where τn = εnτ , i.e., τ0 = τ and τ1 = ετ , represents
different independent time scales. Substituting (17)
into (15) and (16) and noting that d/dτ = D0 +εD1 +
· · ·, d2/dτ 2 = D2

0 +2εD0D1 +· · ·, where D0 = d/dτ ,
D1 = d/dτ1 and equating coefficients of like powers
of ε, we obtain the following set of second-order ordi-
nary differential equations:

O
(
ε0) :

{
D2

0ξn0 + λ2
nξn0 = 0

D2
0ηn0 + ω2

nηn0 = 0
(18)

O(ε) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2
0ξn1 + λ2

nξn1

= −2D0D1ξn0 − 2νnD0ξn0

− nκ

∞∑

m=1

mηm0(pηp0 + qηq0)

− g cos(Ωnτ + π/2)

D2
0ηn1 + ω2

nηn1

= −2D0D1ηn0 − 2μnD0ηn0

− nκ

∞∑

m=1

mξm0(pηp0 + qηq0)

− f cos(Ωnτ + π/2)

(19)

where Ωn = nπV (n = 1,2,3, . . .). The solution of
(18) can be written in the form [16]:

ξn0 = An(τ1) exp(iλnτ0) + c.c.

ηn0 = Bn(τ1) exp(iωnτ0) + c.c.
(20)

Now by substituting ξn0, ηn0 from (20) into (19) one
would get

O(ε) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2
0ξn1 + λ2

nξn1

= −2iλn(D1An + νnAn) exp(iλnτ0)

− nκ

∞∑

m=1

mBm

{
pBp exp

[
i(ωm + ωp)τ0

]

+ pB̄p exp
[
i(ωm − ωp)τ0

]

+ qBq exp
[
i(ωm + ωq)τ0

]

+ qB̄q exp
[
i(ωm − ωq)τ0

]}

− g

2
exp

[
i(Ωnτ + π/2)

] + c.c. (21)

D2
0ηn1 + ω2

nηn1

= −2iωn(D1Bn + μnBn) exp(iωnτ0)

− nκ

∞∑

m=1

mAm

{
pBp exp

[
i(λm + ωp)τ0

]

+ pB̄p exp
[
i(λm − ωp)τ0

]

+ qBq exp
[
i(λm + ωq)τ0

]

+ qB̄q exp
[
i(λm − ωq)τ0

]}

− f

2
exp

[
i(Ωnτ + π/2)

] + c.c. (22)

The c.c. symbol and equivalently bar sign over any
parameters indicate that parameter is a complex con-
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jugate term. It can be proven that when λn � ωm ± ωp

or λn � ωm ± ωq in (21) and (22), an extra link exists
which connects ξn1 and ηn1. Under this condition, an
internal resonance will be formed.

To analyze the particular solutions of (21) and (22),
we need to distinguish between the internal resonant
case and the nonresonant case. These special cases are
described in the next sections.

5.1 The nonresonant condition

In this case, the only terms that produce secular terms
are the terms proportional to exp(iλnτ0) in (21) and
the terms proportional to exp(iωnτ0) in (22), thus the
solvability conditions become

D1An + νnAn = 0 and D1Bn + μnBn = 0 (23)

it follows that

An = an exp(−νnτ1) and
(24)

Bn = bn exp(−μnτ1)

where an and bn are complex constants and

ξn = exp(−ενnτ)
[
an exp(iλnτ) + c.c.

] + O(ε)

ηn = exp(−εμnτ)
[
bn exp(iωnτ) + c.c.

] + O(ε)
(25)

the steady-state solutions can be obtained when τ → ∞,
i.e.,

ξn = ηn = 0 (26)

5.2 The resonant condition

In this section, we consider two different resonance
conditions, namely:

(a) The longitudinal primary external resonance.
(b) The internal–external longitudinal primary reso-

nance.

(a) Longitudinal primary external resonance

Let us consider a case where Ωn is near the λn. Fur-
thermore, we introduce an external detuning parameter
σ1 such that

Ωn = λn + εσ1 (27)

By introducing above Ωn into (21) and (22), it can be
seen that none of the nonlinear terms produce a secular
term, and the solvability conditions are

−2iλn(D1An + νnAn)

−g

2
exp

[
exp i(σ1τ1 + π/2)

] = 0 and (28)

D1Bn + μnBn = 0

the solutions of above relations yield to

An = 1

2
an exp(−νnτ1 + iαn) + ig

4(νn + iσ1)λn

× exp
[
i(σ1τ1 + π/2)

]

Bn = 1

2
bn exp(−μnτ1 + iβn)

(29)

where αn and βn are constants. As τ → ∞, then
τ1 → ∞, so we have

An → ig

4(νn + iσ1)λn

exp
[
i(σ1τ1 + π/2)

]
and

(30)
Bn → 0

Substituting (30) into (20) and (17) and expressing the
result in terms of the original variables, one would get
the following steady-state response:

ξn = ξn0 + O(ε) = − g

2(ν2
n + σ 2

1 )1/2λn

× sin

[
Ωnτ + π/2 − arctan

(
σ1

νn

)]
+ O(ε)

ηn = ηn0 + O(ε) = 0

(31)

A close inspection of above solution reveals that in the
case of no internal resonance, i.e., λn �= ωm ± ωp or
λn �= ωm ± ωq , the first approximation will not be af-
fected by the nonlinear terms, hence the resulting rela-
tion represents essentially the solution of a linear prob-
lem.

(b) Internal–external primary resonance in longitudi-
nal excitation

Internal resonance could be described by [16]:
λn

∼= ωm ± ωp and or λn
∼= ωm ± ωq and longitudi-

nal primary External resonance condition would be
defined when Ωn

∼= λn. As a case study, we consider
the condition for internal resonance as λn

∼= ωm + ωp
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and external resonance as defined before the solvabil-
ity conditions of (21) and (22) are

−2iλn(D1An + νnAn) − nκ

∞∑

m=1

mpBmBp

× exp(−iσ2τ1) − g

2
exp

[
i(σ1τ1 + π/2)

] = 0
(32)

−2iωn(D1Bn + μnBn)

− nk

∞∑

m=1

mpAmB̄p exp(iσ2τ1) = 0

where

Ωn = λn + εσ1 and λn = ωm + ωp + εσ2 (33)

in which σ2 is the internal detuning parameter. We in-
troduce the polar notation for amplitudes as

An = 1

2
an exp(iαn) and Bn = 1

2
bn exp(iβn) (34)

where an, bn, αn, and βn are real function of τ1. Now,
to have a better intuition of what is happening, we in-
put n = 1, m = 2 and p = 3 in (32)–(34), after do-
ing some manipulations, separating real and imagi-
nary parts, and mathematical simplifications the fol-
lowing differential algebraic equations (DAEs) are ob-
tained [16]:

a′
1 = −ν1a1 + 3κ

2λ1
b2b3 sinγ2 − g

2λ1
sinγ1

= f1(a1, b2, b3, γ1, γ2)

b′
2 = −μ2b2 − 3κ

2ω2
a1b3 sinγ2

= f2(a1, b2, b3, γ1, γ2)

b′
3 = −μ3b3 − 3κ

2ω3
a1b2 sinγ2

= f3(a1, b2, b3, γ1, γ2) (35)

γ ′
1 = σ1 − 3κ

2λ1a1
b2b3 cosγ2 − g

2λ1a1
cosγ1

= f4(a1, b2, b3, γ1, γ2)

γ ′
2 = σ2 + 3κ

2

(
b2b3 cosγ2

λ1a1
− a1b3 cosγ2

ω2b2

− a1b2 cosγ2

ω3b3

)
+ g

2λ1a1
cosγ1

= f5(a1, b2, b3, γ1, γ2)

in which

γ1 = σ1τ1 − α1 + π/2 and
(36)

γ2 = σ2τ1 + α1 − β2 − β3

where other cases could be treated the same. For the
steady-state response, we set a′

1 = b′
2 = b′

3 = γ ′
1 =

γ ′
2 = 0 in (35) and (36). Note that the prime over

any parameter denotes the first derivative with respect
to τ1.

To check the stability condition of the steady-state
solution, we linearize (35) and (36) near the singular
(or steady-state) points. This will lead to a set of lin-
ear equations having constant coefficients multiplied
by unknown disturbance terms. In other words, this
is a typical case known as eigenvalue problem. If the
real part of each eigenvalue of the coefficient matrix
is not positive then the point is stable otherwise is un-
stable. Having on hand the values of a1, b2, b3, γ1,
and γ2, we assume that each of them is comprised of
two parts; i.e., a steady-state part (fixed point or sin-
gular point) and a disturbance part. By employing this
technique, we have a1 = a10 + a11, b2 = b20 + b21,
b3 = b30 + b31, γ1 = γ10 + γ11 and γ2 = γ20 + γ21,
in which a10, b20, b30, γ10, and γ20 are the singular
points in which their first derivative with respect to τ1

are zero, and a11, b21, b31, γ11 and γ21 are the distur-
bance parts of a1, b2, b3, γ1 and γ2, respectively.

Now, to determine the nature of any various sin-
gular points we substitute the new forms a1, b2, b3,
γ1 and γ2 and their derivatives into (35) and (36),
expanding the relations one can solve the linearized
form of equations such as {Ẋ} = [A]{X} to obtain
the eigen-values where �X = �a11 b21 b31 γ11 γ21 
and Aij = ∂fi (a1,b2,b3,γ1,γ2)

∂xj
|(a10,b20,b30,γ10,γ20) with i,

j = 1,2, . . . ,5 (i.e. Aij is the coefficient matrix de-
fined about fixed points). Afterwards by solving:
det([A] − λ[I]) = 0, the eigenvalues (λi) to check the
stability near singular points will be on hand, where [I]
is identity matrix. Note that dot over the vector func-
tion of amplitude and phase denotes the first derivative
with respect to τ1.

In order to obtain the amplitude and frequency re-
sponse curves, we need to solve (35) and (36). It
follows that there are two possible solutions: either
a1 �= 0 and b2 = b3 = 0, or a1, b2 and b3 are all
nonzero. When b2 = b3 = 0, the analytical solution
of a1 will be in the form: a1 = g

λ1(ν
2
1+σ 2

1 )1/2 which is
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Fig. 8 Variation of a1, b2
and b3 (Amplitude
response) vs. g for an
inclined pinned-pinned
beam-longitudinal primary
resonant case:
μ2 = μ3 = 0.165, ν1 = 0.1,
r = 0.0245, ε = 0.2,
λ1 ∼= πV ; (a) σ1 = 1,
σ2 = 0, (b) σ1 = σ2 = 0

(a)

(b)

essentially the solution of the linear problem. More-
over, when a1, b2, and b3 are all nonzero quantities by
doing some mathematical simplifications the solution
for a1 amplitude becomes: a1 = 2

3κ
{μ2μ3ω2ω3[1 +

( σ1+σ2
μ2+μ3

)2]}1/2. It should be mentioned that similar re-

lations exist for b2 and b3 and only for brevity we are
not listing them. Nevertheless, the steady-state solu-
tions for the b2 and b3 amplitudes are obtained implic-
itly using MATLAB solver package.

The variations of a1, b2, and b3 amplitudes are plot-
ted vs. parameter g, i.e., the amplitude of longitudinal
excitation in Figs. 8 and 9. In Fig. 8, the so called sat-
uration phenomenon for a1 (a1s) and jump phenom-
enon for a1, b2, and b3 are shown. Moreover, the ef-
fect of nonlinearity for b2 and b3 curves is seen for
g values around 0.21 (see Fig. 8a). In addition, varia-
tions for a1, b2, and b3 represent multivaluedness in all
g regions in this figure. In Fig. 8a, while the internal
resonance is perfectly tuned, there is a small detun-

ing of the external resonance, however, in Fig. 8b both
of external resonance and internal resonance are per-
fectly tuned and that is why the unstable part (dashed
regions) of b2 and b3 curves are converged to a sin-
gle point around g = 0.006. The trend of a1, b2, and
b3 amplitudes changes vs. g can be pursued from two
ways, i.e., from g = 0 to higher values and vise versa.
These trends are chased in Figs. 8a and 8b by track-
ing red and blue arrows, respectively. As g increases
from zero, so does a1 until g = 0.21 where a1 reaches
to the value of a1s, while b2 and b3 are still zero. This
trend very well agrees with the results given by solu-
tion of the problem with the linear behavior. At this
point, i.e., g = 0.21, any further increase in g will not
produce further increase in a1 because it makes (30)
unstable.

To avoid instability condition beyond the g = 0.21,
steady-state solutions should follow the nonzero so-
lutions of (35) and (36). From this point onward, the
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Fig. 9 Variation of nonzero
b2 and b3 (amplitude
response) vs. g for different
σ1 values μ2 = μ3 = 0.165,
ν1 = 0.1, r = 0.0245,
σ2 = 0, ε = 0.2, λ1 ∼= πV ;
(a) b2, (b) b3

(a)

(b)

solution for a1 yields to a flat line with the value of a1s

and for b2 and b3 it suddenly jumps from zero value to
their upper corresponding curves, accordingly. Further
increase in g causes a continuous increase in b2 and
b3 as shown in Fig. 8a. When g decreases slowly from
higher values to g = 0, primarily a1 follows along a
flat line which has a constant value of a1s and the val-
ues of b2 and b3 decrease continually along their cor-
responding curves until g = 0.08. Further decrease in
the value of g, causes the values of b2 and b3 to jump
down from their corresponding bend points to a point
on a flat line of g = 0 obtained by the linear solution
given by (30). More reduction of g values will guide
b2 and b3 to approach to the origin. At the same time,
when a1 by continuous decrease of g reaches to the
point of g = 0.08, further reduction of g will cause the
a1 to jump down and then follow the appropriate ramp
type variation. Upon further g reduction, a1 moves to-
ward the origin. These mechanisms of up and down
variations of a1, b2, and b3 are also depicted by direc-
tional arrows in Figs. 8a and 8b.

In the next step, we try to see the effect of σ1 vari-
ation on the amplitude response of b2 and b3 curves.
The results of this variation are illustrated in Fig. 9. It
can be observed from this figure that any increase in
the value of σ1 will cause the significant displacement
of the bent point to the higher value of g and corre-
sponding amplitude.

There is still another parameter, σ2, which its vari-
ation on the amplitude response should be considered.
Figure 10 shows the effect of σ2 variation on the am-
plitude response of b2 and b3 curves. It can be ob-
served from this figure that a higher value of σ2 has
insignificant effect on the variation of b2 and b3.

In order to study the symmetric or unsymmetrical
behavior frequency-response curve of nonlinear sys-
tems, one can analyze the variation of response curves
vs. external resonance detuning parameter for a given
g value. Figures 11a, 11b, and 11c represent these
types of variations.

As it is seen from the Fig. 11a, when the internal
resonance is perfectly detuning, i.e., σ2 = 0, the sym-



Nonlinear dynamics of an inclined beam subjected to a moving load 291

Fig. 10 Variation of
nonzero b2 and b3
(amplitude response) vs. g

for different σ2 values
μ2 = μ3 = 0.165, ν1 = 0.1,
r = 0.0245, σ1 = 0,
ε = 0.2, λ1 ∼= πV

metric configuration is seen for the steady-state so-
lutions with respect to the line σ1 = 0. The nonzero
value of σ2 will cause the unsymmetrical conditions in
frequency-response curves, more specifically in b2 and
b3 curves as shown in Figs. 11b and 11c. Moreover, the
jump phenomenon associated with the variation of the
excitation frequency of the moving load is indicated
by the directional arrows only in the Fig. 11a.

6 Conclusions

The nonlinear coupled longitudinal-transversal PDEs
equations of motion of a pinned-pinned inclined
Euler–Bernoulli beam subjected to a moving force are
solved and the outcome results are as the following:

1. It can be seen that by increasing the beam’s incli-
nation angle the dynamic transverse displacement of
the beam’s mid-point decreases and, for example, at
inclination angle of θ = 90°, the dynamic lateral dis-
placement becomes zero as expected.

2. It can be observed that at any velocity ratio, the
dynamic displacement response of the linear and non-
linear solutions are almost the same for small values of
the moving force and the maximum dynamic magnifi-
cation factor (Dd) for linear and nonlinear solutions
are the same, however, for larger values of the moving
force the dynamic response of the beam using nonlin-
ear theory has higher value than those given by linear
theory, hence the difference between the dynamic dis-
placement responses of the nonlinear and linear theo-
ries increase vividly.

3. By increasing the value of structural damping
coefficient, the dynamic transverse displacement (w)

decreases which is generally a natural phenomenon in
any structural system.

4. It is concluded that the dynamic mid-point dis-
placement of the beam using linear and nonlinear solu-
tions are almost the same for the moving force values
of F ≤ 10000 N. However, for values of F ≥ 10000 N,
the magnitude of the transverse deflection (w) of the
linear and nonlinear solutions differs and the differ-
ence becomes more as F increases. Also, it can be ob-
served that the difference between the linear and the
nonlinear solutions has an increasing trend up to the
load velocity ratio of α = 1.2 and a reverse trend for
the load velocity ratio of α > 1.2.

5. It has been noticed that by neglecting the nonlin-
ear nature of the motion in an inclined beam and also
the effect of the end slope one would get some error in
the final target collision position.

6. Due to the existence of the quadratic nonlinear-
ity nature of the coupled PDEs governing equations
of motion, the system trend is like a soft spring. That
is by increasing the magnitude of the moving load, the
dynamic deflections become larger than those from so-
lution of linear system.

7. Under steady-state condition and in the case of
internal-external longitudinal primary resonance, out
of amplitude-response curves there are two possible
solutions: either longitudinal amplitude is nonzero and
transversal amplitudes are zero, or both longitudinal
and transversal amplitudes are all nonzero. That is, we
have a jump phenomenon associated with this motion.
In addition to the jump phenomenon, the saturation
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Fig. 11 Variation of a1, b2
and b3 (frequency-
response) vs. σ1 for an
inclined pinned-pinned
beam under first
longitudinal primary
resonance case,
μ2 = μ3 = 0.165, ν1 = 0.1,
r = 0.0245, ε = 0.2,
λ1 ∼= πV , g = 0.2;
(a) σ2 = 0, (b) σ2 = 1,
(c) σ2 = −1

(a)

(b)

(c)
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phenomenon is also associated with this motion. This
means that by increasing either of external detuning
or internal detuning parameters the stable region cor-
responded to the zero solutions for transverse ampli-
tudes will be extended accordingly.
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