Nonlinear Dyn (2010) 60: 63-79
DOI 10.1007/s11071-009-9580-2

ORIGINAL PAPER

Modeling intermittent contact for flexible multibody systems

Kishor D. Bhalerao - Kurt S. Anderson

Received: 11 May 2009 / Accepted: 7 August 2009 / Published online: 28 August 2009

© Springer Science+Business Media B.V. 2009

Abstract This paper consists of two parts. The first
part presents a complementarity based recursive
scheme to model intermittent contact for flexible
multibody systems. A recursive divide-and-conquer
framework is used to explicitly impose the bilateral
constraints in the entire system. The presented ap-
proach is an extension of the hybrid scheme for rigid
multibody systems to allow for small deformations in
form of local mode shapes. The normal contact and
frictional complementarity conditions are formulated
at position and velocity level, respectively, for each
body in the system. The recursive scheme preserves
the essential characteristics of the contact model and
formulates a minimal size linear complementarity
problem at logarithmic cost for parallel implementa-
tion.

For a certain class of contact problems in flexible
multibody systems, the complementarity based time-
stepping scheme requires prohibitively small time-
steps to retain accuracy. Modeling intermittent con-
tact for this class of contact problems motivated the
development of an iterative scheme. The second part
of the paper describes this iterative scheme to model
unilateral constraints for a multibody system with rel-
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atively fewer contacts. The iterative scheme does not
require a traditional complementarity formulation and
allows the use of any higher order integration meth-
ods. A comparison is then made between the tradi-
tional complementarity formulation and the presented
iterative scheme via numerical examples.

Keywords Intermittent contact - Flexible multibody
systems - Complementarity - Divide and conquer -
Iterative scheme

1 Introduction

Modeling intermittent contact is an important and dif-
ficult engineering problem, and a significant amount
of literature already exists on the subject. The difficult
aspect of modeling contact is developing a physically
correct and computationally efficient method. For ex-
ample, FEM based models [1] are physically accu-
rate but too computationally expensive to be used in
most multibody applications. The two other compet-
ing families of methods to model intermittent contact
in multibody systems are penalty methods and com-
plementarity formulation based methods. In penalty
methods, the normal contact force is modeled using
a spring—damper model with the frictional force be-
ing in the tangential plane at the point of contact. This
is a popular approach [2] and is widely used in many
multibody applications. However, for certain applica-
tions, where the local dynamic behavior of the system
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is unimportant, the use of penalty methods is undesir-
able. For example, in modeling a metal-metal contact,
penalty methods capture the ringing of the metal. This
results in stable integration time-steps of the order of
10~° being required to capture phenomenon occurring
at a much larger time scale (10-20 seconds). In such
applications, a better approach to model the contact
is to treat it as a kinematic constraint and compute
the impulsive changes in state during contact. Such
an approach results in a set of complementarity con-
ditions governing the contact process [3—7]. Proximal
point formulation [8] is an alternative to the comple-
mentarity based methods. In this approach, equivalent
variational inequalities are used to represent the cor-
responding complementarity conditions and an itera-
tive process is used to solve the inequalities. Proximal
point formulations are comparable to complementar-
ity based methods in terms of computational time and
accuracy of the solution [9]. In the rest of this pa-
per the discussion is limited to complementarity based
formulation. Best part of the existing literature is tar-
geted at modeling contacts for rigid bodies. However,
for several applications, it is crucial to model the bod-
ies as deformable. Contact modeling for deformable
bodies using a complementarity formulation has been
described in [9, 10]. In this paper we present a recur-
sive highly parallelizable approach to model unilateral
contact in flexible multibody systems using a comple-
mentarity formulation. The presented method is an ex-
tension of the hybrid scheme for rigid bodies [11] to
account for small deformations within the bodies.

The rest of the paper is organized as follows. First,
the basics of recursive flexible multibody dynamics in
presence of unilateral constraints are described. This is
followed by a brief discussion on the complementarity
based contact model which is then used to efficiently
formulate a traditional linear complementarity prob-
lem. Then, the alternative iterative scheme to model
intermittent contact is described and a numerical com-
parison is given between the traditional complemen-
tarity formulation and the iterative scheme followed
by conclusion.

2 Flexible body dynamics
There are several ways to model a flexible body and a

good review of existing methods can be found in [12].
In this paper we use the modal superposition method
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where large rotations and translations in the system
are modeled as rigid body degrees of freedom while
the deformation within each body is approximated us-
ing superposition of appropriately selected [13] modal
shape functions. The divide-and-conquer scheme for
flexible multibody systems (FDCA) as presented in
[14] is used to describe the dynamics of the system
with appropriate modifications to allow for a comple-
mentarity formulation. FDCA is briefly described in
this section and the interested reader can refer to the
original manuscript for more details.

Figure 1 shows a body k of a multibody system
in its deformed and undeformed configurations. The
body k interacts with its environment via points re-
ferred to as handles. Body k has two handles, Hlk and
Hé‘ , connecting it to bodies k — 1 and k 4 1 via joints
JK=1 and J*, respectively. A rigid body-fixed refer-
ence frame is attached to handle H f‘ and the body k
deforms elastically with respect to this frame. The ref-
erence frame at handle H{‘ moves relative to the ref-
erence frame at handle Hé‘_l via the free modes of
motion permitted by joint J*¥~1.

Py is an arbitrary differential volume dD in the
undeformed configuration and is mapped to P after
the body k undergoes the elastic deformation. The
displacement vector (§) between these two points in
body-fixed reference frame at H lk is expressed in terms
of space-dependent shape functions {<plk} evaluated at
P and time-dependent modal coordinates {q{‘ }asd =

;)k: | (pfqﬂ p. Here v is the number of modal coor-
dinates selected for body k. The orientation of body
k is then described in terms of generalized coordi-
nates needed for the orientation of the body-fixed ref-
erence frame at handle H lk and the modal coordinates
required for the elastic deformation of the body.

2.1 Divide-and-conquer scheme

The divide-and-conquer algorithm (DCA) for multi-
body systems is an efficient algorithm to solve the
equations of motion for different topologies. Origi-
nally presented for rigid bodies [15-17], the method
was later extended to include flexible bodies [14].
The framework to manipulate the equations is simi-
lar for both rigid and flexible multibody systems and
is briefly discussed here.

Consider bodies k and k + 1 connected together via
joint J¥. The goal here is to combine these two bodies
to form a fictitious body & : k + 1 whose equations of
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Fig. 1 Deformed and
undeformed configurations
of body k

Deformed Configuration

motion are in a form identical to that of the individ-
ual component bodies k and k + 1. This is achieved
by using the kinematic relationship linking the spatial
quantities of the handles connected via joint J*. This
process, also referred to as assembly, of combining ad-
jacent bodies is now continued until one has a single
all-encompassing body for the entire multibody sys-
tem. At this point, there are equal number of equations
and unknowns. Once the unknown spatial quantities
of the terminal handles are computed, the process of
combining bodies is reversed. This stage is referred to
as the disassembly process. In the disassembly phase,
the known spatial quantities of the terminal handles
are used to compute the unknown spatial quantities at
the intermediate joints/handles. This is continued un-
til all the unknowns in the system are solved for. In the
following discussion we will briefly look at the divide-
and-conquer scheme for flexible multibody systems.

2.1.1 Kinematics of body k

Let rp denote the position vector (see Fig. 1) of the
differential volume at P in body k. Let the angular
and linear velocities of the differential volume at P in
body k, be denoted by w? and v”, respectively. In the
subsequent equations, the superscript (or subscript) P
is replaced by 1 or 2 to denote the kinematic quanti-
ties associated with the handles H]k and Hé‘ , respec-
tively. The expression for the spatial velocity of this
differential element at P (Vﬁ = [w®, vP]T) can then

65
-~-._  Differential Volume dD
P
Undeformed Configuration
be written as
Vi
T .
Vi=(87) Vi efdit| . (1a)
i=1
k_ 1.k k1T (1b)
¢; = [1//1 % ] )
S = [% ”’X} . (1c)
= v (6x6)

In (1), ¥* and <p£‘ refer to the rotational and transla-
tional modal shape functions, respectively. U isa3 x 3
identity matrix. Similarly, if «” and a” denote the an-
gular and linear accelerations of the differential vol-
ume at P, respectively, then the expression for spatial
acceleration (Al;, =[a?,a?]T) of the differential vol-
ume P can be written as

vk
T A .
Ap = (S7) AL+ A+ it (2a)
i=1
1 Vk koo k
Ak — w XZ[;] vitgi©lp 1. b
P [a)l x (@' xrp) + 20! x Y7 | okg* (2b)

2.1.2 Dynamics of body k

Using Kane’s method [18], the equations of motion for
body k can be written as

[FRR FRF] |:A]f:| _ |:V1Ri|‘7_—k
Trr Trp || df yir] !
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V2R | ok o, | Br
|:V2F:|f2 + |:,3F:|
KIR | 4k K2R | .k 0
+|:K1F}AN+|:K2F}AF—|:O] 3)
In (3), G contains all the modal coordinates for the
body k. Also, Fj k [r1 , f1 and ]—'é‘ are the spa-
tial constraint forces acting on handles Hlk and Hé‘ ,
respectively. The terms Ay and Ap are the unknown
normal contact force and the corresponding frictional
force acting on the body &, respectively. The subscripts
(R, RR) and (F, F F) are used to denote the rigid and
flexible modes of motion, respectively, while the sub-
scripts (RF, FR) are used to denote the coupling be-
tween the flexible and rigid body modes of motion.
The terms Bg and BF contain all the known forces act-
ing on the body k including the stiffness and damping

terms. From (3), the expression for ¢* can be obtained
as

i = 1AL + GoFt + Gy FE + Ga+ G52k + Gork.
€]

Henceforth G; would refer to intermediate known
quantities. Substituting (4) into (3), an expression for
the spatial acceleration of handle Hlk can be obtained

Fig. 2 Fictitious body
formed in the assembly
process
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in terms of the unknown spatial constraint forces act-
ing on handles H lk and Hé‘. Also, using the kinematic
relationship given in (2), the expression for the spatial
acceleration of handle Hé‘ can be obtained. Thus, the
equations for spatial acceleration for handles Hlk and
Hé‘ can be written as

A=l FE el P+ el + ol + o5 G
A5 =03 FL + 005 + 85y + gy + Oshp. (5b)

Equation (5) is henceforth referred to as the two-
handle equation for body k. Thus, (4) and (5) together
describe the dynamics for body k. Similarly, the two-
handle equation for body k + 1 can be written as

A/]H—l — §1 'ka'H + §'1+1.7‘—k+1 + é_11{3-{—1 +§.]I<:—1)Lk+l

+§k+lkk+l (62)
AIZC—H — §.2+1fk+1 + §2+1}—k+1 + §2k’5+1 + {é{:lkk_H
+§.k+l)tk+l (6b)

We next look at the assembly—disassembly process.

Assembly As discussed before, the goal in the assem-
bly process is to combine the two adjacent bodies to
form a fictitious body as shown in Fig. 2, by using the
kinematic relationship linking the spatial acceleration

Joint Motion Subspace

Body k+1

Fictitious assmebled body
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of the handles connected via joint J*. The kinematic
relationship for joint J¥ can be written as

A gk = gl A" %)

In (7), P isa 6 x fk matrix, whose columns corre-
spond to the spatial partial velocity of the f* degree-
of-freedom joint J* and 0’ “is a list of time deriva-
tive of generalized speeds of the joint. A;’ * contains
all remaining acceleration terms which are completely
known. Substituting the expressions for A’é and AII'H
from (5b) and (6a), respectively, and using the fact that
fé‘ = —.7-'{‘“, after some manipulation, the expres-
sion for spatial constraint force acting on handle Hé‘
can be written as

F§ = GrFf 4+ Gs FA™ 4 Go + Gioak, + Giiak,
+ glzllfvﬂ + Giarkt 3

Substituting (8) into (5a) and (6b), the two-handle
equation for the combined fictitious body can be writ-
ten as

A =g FF v enFt 161

+E AR g s AR (9a)
A =6 FF 4 e A5 s
FEUARKH ey ARKFT (9b)

In (9), A';jk“ and A%’kﬂ are lists containing the
normal contact force and corresponding frictional
force, respectively, acting on bodies k and k + 1. This
process is now continued until we get a single all-
encompassing fictitious body for the entire system. If
the multibody system consists of nb bodies, then the
two-handle equation for the entire assembly can be
written as

A% — élllinbfll + S]lénb]:gb + E]lénb

+€114inbA11\]:nb + EllénbA%‘:nb, (loa)
AP = el R el
+5214:‘,nbA11\11nb + i:zlénbA%?:nb. (IOb)

The two-handle equations for the entire assembly can
now be solved for different constraints on the terminal
handles following the procedure described in [17] to
obtain the expression for the spatial quantities at the

terminal handles. Thus, the expression for the spatial
constraint force acting on the terminal handles can be
written as

Fl =G+ GisA"™ + GisAF™, (11a)
Fob =G+ GisAR™ + GroAL™. (11b)

Using (11), (10) can be reduced to the following form:

Al =Gao + G AN™ + G AL, (12a)
AP = Goz + Goa AR™ + Gos AF™. (12b)

Disassembly In the disassembly process, the goal is
to compute the spatial quantities at intermediate han-
dles regarding AX™ and AL™ as parameters. Con-
sider the fictitious assembly k : kK + 1 as shown in
Fig. 2. If the spatial quantities at the terminal handles
H¥ and szJrl are known in terms of the parameters
Ali\j“b and A;ﬁ“b, then these can be used in the two-
handle equations of the constituent bodies k and k + 1
to obtain the spatial constraint force and acceleration
of handles Hé‘ and Hé‘“. Now, if we were to imag-
ine the bodies k and k + 1 themselves as assemblies or
subsystems, then the spatial quantities of their terminal
handles are now known and the disassembly process
can continue until all the unknown quantities in the
system are computed in terms of the contact parame-
ters. Thus at the end of the disassembly process, the
spatial acceleration and constraint force for a body &
can be written as

AL = Gog + G AN™ + Gos AF™, (13a)
Ab = Goo + GaoAN™ + Ga1 AF™, (13b)
Tt =G0+ GnA™ + GuAp™, (13¢c)
F¥ = G35 + GaeAK™ + G AF™. (13d)

Using (13) in (4), ¥ can be written as
i = Gas + G0 AN™ + Gao AF™. (14)

Since at this point the contact forces are unknown, the
matrices Gy to G49 must be stored for each body to be
used later when the contact force is computed using a
complementarity formulation. Equations (13) and (14)
are in a form suitable to allow a traditional comple-
mentarity formulation which we discuss in the follow-
ing section.
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3 Contact model

The contact model consists of a set of complementar-
ity conditions enforcing the kinematic non-penetration
constraint with dry friction at the point of contact. The
contact model described in this paper is identical to
the one described in [19] and is only briefly discussed
here.

Consider two bodies approaching each other with
impending contact as shown in Fig. 3. The minimal
distance between the two approaching bodies is repre-
sented by gu. It is assumed that a signed gy can be
calculated by existing softwares given the state of the
system. Then the non-penetration constraint between
the two bodies can simply be stated as gy > 0. If the
corresponding normal contact force between the two
bodies is represented by XAy, then the complementar-
ity relationship between the normal contact force and
minimal distance can be stated as 0 < gy L Ay > 0.
Next, the frictional force A at the point of contact lies
in the tangential plane opposing the relative tangential
motion. In addition to this, the magnitude of the fric-
tional force must satisfy the relationship Ar < uiy,
where  is the coefficient of friction. In order to avoid
anonlinear complementarity problem, a linear approx-
imation of the friction cone is used resulting in the
contact force which takes the form

F={inn+rrDec| Ay =0, ip 20, e"Ap < puin}.

s)

In (15), D, is a matrix whose columns consist of 7 unit
vectors positively spanning the possible directions of
frictional force at the point of contact. n is the nor-
mal at the point of contactand e =[1, 1, ..., 117 emn,
Next we proceed to writing the complementarity con-
ditions to calculate the normal contact force and tan-
gential frictional force.

Fig. 3 Impending contact
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3.1 Complementarity formulation

Let the ¢ denote the current time. Then, to ensure non-
penetration constraint in the time step ¢/ — t/*!, the
complementarity condition which must be enforced is

0<ght 1alr! >0. (16)

In (16), Alj\j'l is the normal contact force acting in the
time step ¢/ — /1, gva is approximated using the fol-
lowing expression:

5
gg;rlzg;,+hn-v£+l+%+e. (17)

In (17), v, is the relative contact velocity vector, ‘s‘g—tN
accounts for the prescribed motion between the two
bodies in normal direction, % is the constant time-step
of integration and € is the first-order error.

The frictional force requires two sets of comple-
mentarity conditions, the first one to set the direction
opposing the relative motion in tangential plane at the
point of contact and the second set to ensure that the
magnitude of the frictional force lies within the lin-
earized friction cone. These can be written as

8
0<8*e4+ DL (vi“ +%> 1A >0, (18a)
0 < pualft —eTalH L s > 0. (18b)

In (18), S is an approximation of the relative tangen-
tial contact speed and ‘S§—tT is the prescribed motion in
the tangential direction. Equation (18a) sets the direc-
tion of the frictional force while (18b) ensures that the
magnitude of the frictional force does not exceed Ay .

The complementarity conditions in the current
form describe an inelastic contact. It is easy to extend
these conditions to include coefficient of restitution
based models as has been described in [11]. However,
such an approach is most appropriate only when the
behavior of the body is close to that of rigid bodies.
It is shown in [20, 21] that the coefficient of restitu-
tion in case of impulsive response of a flexible multi-
body system has a different interpretation than a rigid
body impact and on use of sufficient number of modal
shape functions, the actual value of this coefficient be-
comes irrelevant. In the present work, it is assumed
that all the important modal shape functions are in-
cluded while deriving the equations of motion and the
energy loss is achieved via structural damping instead
of a restitution based model [22].
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3.2 Linear complementarity problem for intermittent
contact

Equations (16) and (18) must be solved along with
equations of motion for each body with impending
or current contact. Clearly, an expression for vi‘“ in
terms of the state at time ¢/ is required to solve the
complementarity conditions. This is obtained in the
following manner.

Following the procedure described in Sect. 2, the
expression for ijk (see (14)) and the spatial acceler-
ation (see (13)) of all the handles of the constituent
bodies of a flexible multibody system can be obtained
in terms of the unknown parameters )ij and )J;. Us-
ing (13) and (14), (2) can be reduced to the following
form:

AL = Gat + G AR™ + Gz AF™. (19)

The location of point P on body k, in this case, cor-
responds to the point of impending contact and is al-
ready known based on the state of the system at time
t!. Then (19) can be discretized as

YR ="VE + h(Ga1 + G AN™ + GasAF™). (20)

Then £ vﬁ“ can be obtained from (20) by premul-
tiplying both sides of the equation by matrix D =
[Z Ulsxe, where Z and U are zero and identity ma-
trices respectively of size 3 x 3. The expression for
ky+1 can then be written as

‘Ut = Gua + GasAR™ + Gas AF™. @n

While computing an expression for the relative contact
velocity vector, it was assumed that the obstacle was
stationary. This however is not a limiting assumption
and a similar calculation can be done for a moving ob-
stacle and the expression for relative contact velocity
vector modified accordingly.

The procedure described above can be used for all
bodies with impending contact to calculate the relative
contact velocity vector. These equations can be sum-
marized as

POV = Gag + Gas AR™ + Gao AF™. (22)

In (22), L“"VLH is a list of relative contact velocity
vectors for the impending contacts of all the bodies in
the system. The complementarity conditions given in

(16) and (18) can now be written for each contact, re-
sulting in the following linear complementarity prob-
lem (LCP) for the entire system:

An ! hnGyg  hnGyy 0
0<| Ar L DIGis DIGiwy e
S i M —e' 0
AN gN + hnGyy + 28N
x| Ar | +| DIGa+2%) |]=0
S 1:nb Q

(23)

In (23), u is a diagonal matrix with diagonal entries
corresponding to the coefficients of friction for each
contact. Equation (23) is in the standard LCP form and
can be solved for using any of the existing well es-
tablished algorithms to yield )ij and k’; for the entire
system. These values can now be used in (20) to obtain
the spatial velocity of all the handles in the multibody
system at the next time step. Similarly, a discretized
form of (14) can be used to obtain the time derivative
of the modal coordinates (‘+14%) at the next time step.
Following this procedure, the simulation can now pro-
ceed.

3.3 Computational efficiency

Simulating intermittent contact involves two steps, the
first being the formulation of an LCP (or mixed com-
plementarity problem (MCP)) and the second involves
solving the LCP using established algorithms. Of these
two steps, solving the LCP is the slowest step which
in turn dictates the speed of the simulation. In the ap-
proach presented in [10], the bilateral constraints are
implicitly imposed and appended to the equations of
motion for the entire system. In flexible multibody sys-
tems involving multiple bilateral constraints, the size
of the resulting MCP is then directly dependent on the
number of bilateral constraints. This in turn signifi-
cantly increases the cost of solving the MCP. The size
of the complementarity problem to be solved at each
time step can be decreased by eliminating the system-
wide mass matrix and the constraint equations result-
ing in a minimal size LCP. While formulating an LCP
from the MCP, an O(n?) expense is encountered at
each time step, where n is the number of generalized
coordinates associated with the bilateral constraints in
the system. This can be prohibitive for certain applica-
tions.
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The method presented in this paper is specially ad-
vantageous when there are bilateral constraints in the
system. In this work, the bilateral constraints in the
system are imposed exactly via use of relative joint
coordinates. The formulation of LCP from (13) which
is obtained at the end of the assembly—disassembly
process does not require any additional computational
expense. Potentially, the largest matrix which must be
inverted in FDCA is T 7 (see (3)) which is a vk x vk
matrix. This matrix, however, is time invariant and
the cost of its inversion only adds to the preprocess-
ing cost. The other matrix manipulations in (4) in-
volve multiplying the matrices of dimension vy X vi
and v; x 6 which is a O(v?) process. The divide-
and-conquer framework to yield the relationship given
in (13) in itself is of logarithmic complexity [14] for
parallel implementation and is an O (log(n)) process.
Thus the LCP can be formulated in a minimal cost of
O (log(n) + v?).

The substructured approach of the DCA framework
can be effectively exploited in situations where there
is an impending contact on only a few bodies in the
system. For example, consider a flexible multibody
system having 8 bodies as shown in Fig. 4, with im-
pending contact on bodies 3 and 7. During the assem-
bly process, the bodies which do not have an impend-
ing contact are assembled first to form sub-assemblies.
The assembly process is now continued to form a sin-
gle fictitious body for the entire system. Once the two-
handle equations for the entire system are solved in
terms of the unknown contact force parameters, the
disassembly process can now be stopped at the stage
when the spatial quantities of the handles on the bod-
ies involving a unilateral constraint are known in terms
of the contact force parameters. In the current exam-
ple, the disassembly process can be stopped at the first
step as shown in Fig. 4. The data generated by this
step of the disassembly process is sufficient to for-

Fig. 4 Order of assembly is
modified to minimize data
storage

First Step

mulate and solve the LCP given in (23). Once the
LCP is solved, the contact force is completely known
and the disassembly process can now continue with-
out having to store the matrices Gg - - - Gao for the re-
maining bodies. This helps in minimizing the data that
must be stored (see (13), (14)) at each time step. Ad-
ditionally, during the course of the simulation, if the
impending contact shifts from one body to another,
the order in which the bodies are assembled and dis-
assembled can easily be changed. Such a capability
is easy to build into the simulation code due to the
underlying substructured approach used to formulate
the LCP.

4 An alternative approach to contact problems
4.1 Motivation

The traditional complementarity formulations or time-
steppers for intermittent contact are almost without
exception first-order integration methods (an iterative
complementarity formulation resulting in higher or-
der integration methods is described in [9, 22]). These
methods formulate an LCP whose solution yields the
integral of the contact force acting over the fixed
time-step. The resulting impulsive contact force (1)
is such that it avoids interpenetration between inter-
acting bodies. However, since a first-order discretiza-
tion (see (20)) is used for the equations of motion to
calculate the contact impulse (1.), it can be written as
I. = f F.dt ~ F.At, where F, is the constant con-
tact force acting over the fixed time-step Az. From
this, it can be directly argued that, although the LCP
solvers compute the values of contact impulse acting
over the fixed time-step, the effect of this impulse is
identical to that of a constant force F, = I./At act-
ing on the system over the fixed time-step for the se-
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Fig. 5 A time step cannot

be large due to contact

considerations

nlt+l

lected first-order discretization of the equations of mo-
tion.

The size of the fixed time-step has some additional
constraints due to the nature of the contact problem.
For example, in Fig. 5, the initial and final positions
of a body during the time step ' — r/*! are shown
for three different cases. Figure 5(a) shows the case
when the contact normal changes over the course of
the current time-step. Similarly, in Fig. 5(b), the di-
rection of relative motion changes during the current
time-step. As discussed before, complementarity for-
mulations require that the contact force during the cur-
rent time-step be applied in a fixed direction. This in
turn requires that the size of the selected time-step be
sufficiently small so that the contact normal and the
direction of relative motion during contact does not
change significantly during the course of the time step.
The other case (Fig. 5(c)) is when the contact is estab-
lished in the current time-step. If the time step is too
large, the contact force gets applied on the system too
soon, which is undesirable. Thus, the time steps during
the actual contact have to be sufficiently small to retain
the accuracy of the simulation. The use of small time-
steps with these contact considerations in turn reduces
the error introduced into the equations of motion due
to a first-order discretization.

The solution to the LCP ensures that the con-
tact forces satisfy the complementarity conditions (see
(16) and (18)) which in turn depend upon the expres-
sion for the relative contact velocity (vﬁ“) at time
t'+1. This expression is obtained by a first-order dis-
cretization of the expression for the acceleration at
the point of contact (see (19)—(21)). Thus, the accu-
racy of the contact forces obtained is limited by this
first-order discretization. For small time-steps, this ap-
proach gives satisfactory results for most applications.
However, as previously discussed, for certain appli-
cations, it is desirable to model deformations occur-
ring within the bodies via superposition of local modal

yitl

t O (1
T Q
A

(b) (©

shape functions. Some of these mode shapes could po-
tentially have a high natural frequency which could
result in incorrect computation of contact forces. For
example, consider a system with n generalized coor-
dinates (¢) and corresponding generalized speeds (u).
Then, the relative acceleration of the point of contact
can be written as dd”t’ = f(t, q,u). Using a Taylor se-
ries expansion, the expression for vf“'l can be written
as

A2 df AP d*f

A TR IR
df f ~=03f dgi ~— Of du;

i i) i) 24
- 8Z+Z +) (24b)

aq; dt ou; dt '

i=1 i=1

For the high frequency modes, the time derivatives of
gi and u; are significant and can no longer be ignored.
If these terms are not included in the expression for
vi‘“, the computed contact force could differ signifi-
cantly from the correct value. Calculating % and %
for flexible multibody system with bilateral constraints
is a non-trivial task.

Thus, certain contact problems in flexible multi-
body systems motivated the development of an alter-
native approach which would not depend on a first-
order discretization to obtain an expression for vi*!
and allow the use of higher order integration routines
to improve accuracy. The iterative scheme is specially
targeted at applications with relatively fewer contacts
as encountered in certain applications in robotics and
biomechanics, among others. The applications of the
alternative iterative scheme are not limited to the flex-
ible domain and it can be readily applied to rigid body
contact problems. The iterative scheme is however not
optimal for contact problems in which a simultaneous
frictional contact is possible between any two bodies
in the system. We next look at the iterative scheme and
numerically compare the results with the traditional

complementarity problems.
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4.2 Iterative scheme

This scheme consists of three main steps. The first
step involves iteratively computing the required con-
tact force, given the other forces acting on the system,
to prevent interpenetration. The second step involves
calculating the regimes of motion (stick or slide) based
on the calculated normal force and the third step in-
volves calculating the corresponding frictional force.
These three steps are repeated until the convergence
criteria is met.

4.2.1 Normal contact force

In the traditional LCP formulations, the magnitude of
the contact force required to prevent interpenetration
is unknown. This makes the forward dynamics prob-
lem implicit in nature. To make use of higher order in-
tegration methods, we assume a value for the normal
contact force Ay and then the forward dynamics prob-
lem becomes explicit. If x is the state vector for the
entire system, a function x = f (¢, xl, AN, AF) can be
written using any appropriate method. Ay and A are
assumed to be either zero or assigned a value from the
previous iteration. The value of Ar is left unchanged
in the first step and Ay is computed iteratively as fol-
lows. The system is advanced from current time 7/ to
¢'*1 using any of the higher order integration meth-
ods. At time /11, the distance function giv (see Fig. 3)
is computed, where the superscript i is the iteration
counter. Interference will be indicated by a negative
value of gjv. Next, a new value of )\’}\}H is assumed and
the system is again advanced from time ' to r'+1, as
before. After the first two iterations we have two sets
of the ordered pair (Ay, gN)i . The next value of Ay,
corresponding to gy = 0, is calculated first by a linear
interpolation and subsequently by polynomial approx-
imation and the process is repeated until the calculated
gn 1is less than the preselected tolerance levels. The
normal along which the contact force is applied is re-
calculated based on the state vector generated at time
¢*1 in each iteration. This process is equivalent to the
nonlinear case described in [19].

While it is not possible to mathematically prove
convergence for the above process, it has been ob-
served that these iterations converge rapidly to yield a
value of Ay which results in gy =~ 0. The explanation
for the observed behavior is as follows. Due to rea-
sons described in the previous section, the time step
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during contact must be sufficiently small. One direct
consequence of using a small time-step is that the be-
havior of the system within this time step is largely
linear. While, the first two values of Ay must be as-
sumed or taken from previous step, it has been ob-
served that a single linear interpolation is usually suffi-
cient to yield the correct Ay corresponding to gy ~ 0.
Figure 6 gives the graphical representation of the iter-
ative approach used to compute Ay .

4.2.2 Regimes of motion

The contact force obtained from the iterative scheme
given in Fig. 6 corresponds to frictionless case when
Ar = 0. The tangential velocity (vi“) at the point of
contact then gives the direction of impending motion
in absence of friction at time ¢/*!. The basic idea of
finding the regime of motion is as follows. Apply a
frictional force Ar = pAy in a direction opposing the
impending motion and then recompute the relative tan-
gential velocity at time 7/, If the recomputed relative
tangential velocity (vﬁ“) at the point of contact has a
positive projection on the applied frictional force, then
this is a case of sticking and Lp < uhy, else one gets
a sliding regime with Ay = uAy. For the first itera-
tion with A = 0, when either vf or vf“ is zero, the
direction of frictional force is chosen opposing the di-
rection of the non-zero tangential velocity. In the situa-
tion when both vg and vf“ are non-zero, the direction
of frictional force is chosen to oppose the mean di-
rection of relative tangential velocities during the time
step. Similarly, if both vf and vg‘H are zero for A =0,
then the frictional force acting at the point of contact is
zero. For the sliding regime, this direction of applied
frictional force is kept fixed during subsequent itera-
tions.

If the detected regime is sliding, no further treat-
ment is required and the current estimate of Ap = iy
is used as an external force and iterations are continued
from the first step. If the detected regime is sticking,
obtaining an estimate for the frictional force requires

some additional treatment.
4.2.3 Sticking frictional force
To calculate the frictional force which will prevent any

relative motion in the tangential direction at the point
of contact, the following two cases are considered.
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Fig. 6 Iterative approach to
obtain an estimate of the

( Set Ap , Ay =0 or assign value from previous iteration}

normal contact force Ay for
the time step /- +1

|

Higher order Integration Scheme
e.g. fourth order Runge—Kutta
Advance system from t / to t/+/

Assume a new value of 7»

|

Higher order Integration Scheme
Advance system from t / to t/+/

abs(gy)<Tol

|

NO Use linear or polynomial approximation
—> | to calculate the new estimate of Ay
corresponding to gn=0

(Exit scheme

vf =0: If the tangential velocity of the point of con-
tact at time ¢’ is zero, then to ensure a no-slip con-
dition, the additional constraint of a zero tangential
acceleration at the point of contact must be enforced.
The goal is then to calculate an external frictional force
which will ensure a zero tangential acceleration at the
point of contact. If the body under consideration does
not have any additional bilateral constraints, comput-
ing the frictional force corresponding to zero tangen-
tial acceleration at point of contact is straightforward.
For a body k with additional bilateral constraints (see
Fig. 7), the equation of the spatial acceleration (AP )
at the point of contact P can be written as

P = GsoFf + Gs1 FX + Gsarr + Gss. (25)

Define a matrix D? whose columns form the basis
of the tangential plane at the point of contact. Then
(DP)T AP = 0 is the tangential acceleration at the
point of contact. Using this relationship, the frictional
force can be expressed in terms of the bilateral con-
straint forces as

AF = GsaF¥ + Gss F + Gse. (26)

Body k

K K
F K K )
— o , H®

F,

Cc

Fig. 7 No-slip condition at point P

Equation (26) can now be used to obtain the two-
handle equation for the body k and initiate the divide-
and-conquer scheme to compute the state derivatives
for the entire system and advance the simulation from
time ¢! to t'*!. During this process, an estimate for Az
is obtained corresponding to a zero relative tangential
acceleration at the point of contact which can be used
an in input in the first step.

vf # 0: In this case, the initial tangential velocity is
non-zero. However, during the current time-step, the
frictional force is sufficient to prevent any relative mo-
tion in tangential direction. This suggests that the rela-
tive tangential velocity of the body at the point of con-
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tact is instantaneously reduced to zero. This amounts
to a applying a true frictional impulse (/) at the point
of contact which would remove any relative tangen-
tial velocity at the point of contact. Computing this
frictional impulse for a body which does not have any
bilateral constraints is straightforward. For a system
of bodies connected via bilateral constraints, the fric-
tional impulse can be computed using the procedure
described in [23] and [24] for rigid and flexible multi-
body systems respectively. Once the relative tangential
velocity of the body is reduced to zero, the procedure
described previously can be used to advance the sys-
tem from time # to t'*! to obtain an estimate for A .
Thus, having an estimate for /r and A, the first step
can now be repeated.

The entire approach can be briefly summarized as
follows. In the first step, an estimate for Ay is obtained
via a linear or polynomial approximation (see Fig. 6).
During the first step, the value of the frictional force is
assumed to be constant. The estimate of Ay from the
first step is then set as constant for the second and third
steps. In the second step, the regime of motion is cal-
culated by applying a frictional force corresponding to
the estimate of the normal contact force obtained in
the first step. If the detected regime is sliding, the ob-
tained estimate of A r is directly used as an input to the
first step. If the detected regime is sticking, some ad-
ditional treatment is required to obtain an estimate of
the frictional force Ay which is then used as an input
to the first step. These three steps are repeated till the
value of Ay in subsequent iterations is within a preset
value. In each iteration, the value of Ay is updated and
consequently it is advisable to check if this affects the
regime of motion calculated for the current contact. It
has, however, been observed that, if the value of Ay
does not change by an order of magnitude, the calcu-
lated regime of motion does not change.

The iterative scheme described in this paper has
some significant differences from the one presented in
[9, 22]. The iterative approach presented in [9, 22] re-
quires solving an LCP at each iteration and formulat-
ing the LCP is dependent on the type of integration
method used. The iterative scheme presented in this
paper does not require a traditional linear complemen-
tarity formulation. In effect, the iterative scheme ends
up satisfying the same conditions as imposed by the
linear complementarity formulation. On convergence,
the first step of the scheme ensures that 0 < gy L
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An > 0. For convergence, gradient information be-
tween gy and Ay is generated iteratively. The second
and third steps ensure that, for the sliding regime, the
direction of frictional force approximately opposes the
relative tangential velocity at the point of contact dur-
ing the course of the time step under consideration and
for the sticking regime, frictional force applied is suf-
ficient to prevent any relative tangential motion at the
point of contact. The iterative scheme does not require
discretization of the relative contact acceleration equa-
tions to obtain an expression for vﬁ“ (see (24)) which
is an essential component of the LCP formulation. Any
fixed time-step based higher order integration methods
can be used with this scheme, since the value of the
normal contact force and the corresponding frictional
force are assumed/interpolated or generated iteratively
which makes the problem of advancing the system
from time ¢/ to #/*! explicit. For an intermittent con-
tact involving bodies with simple geometries, the use
of higher order integration method also allows the use
of larger time-steps which would normally result in
significant errors in the traditional LCP formulations.

If there are multiple contacts in the system, each
contact in the system is given a similar treatment. In
the frictionless case, the iterative scheme is expected
to give optimal results for multiple contacts. However,
the multiple frictional contacts could potentially cre-
ate scenarios in which the iterative scheme would ei-
ther fail to converge or slow down significantly. This
could happen due to frequent changes in the detected
regimes of motion when the values of the normal con-
tact forces are updated. This could potentially make
the iterative scheme inadequate or inefficient for sys-
tems in the which a frictional contact is simultaneously
possible between any combination of bodies within the
system. However, the iterative scheme is ideally suited
for a certain class of contact problems in robotics, bio-
mechanics, MEMS and molecular dynamics, among
others.

5 Numerical examples

In this section, some numerical examples are pre-
sented and a comparison is made between the results
from the iterative scheme and traditional complemen-
tarity formulation for a rigid double pendulum. Then,
a contact simulation of a two-link flexible robotic ma-
nipulator is described in which the traditional comple-
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mentarity approach results in prohibitively small time-
steps. This problem is, however, overcome on using
the iterative scheme.

5.1 Iterative scheme

The iterative scheme is used to simulate a rigid 3D
double pendulum [11] falling on a half-plane under
the action of gravity as shown in Fig. 8. Body A and
body B are connected via a spherical joint and a in-
elastic contact is defined between point P; on body A
and the xy plane. Gravity acts along the negative z
direction as shown in the figure. The fixed parame-
ters of the system are as follows: L, = L, =m,; =
mp =1, I, = I, = diag(l, 2, 3), where I, and I}, are
the inertia matrices for bodies A and B respectively
and diag is a diagonal matrix with the diagonal entries
listed in the parentheses. The spatial orientation of the
body is modeled using relative body-fixed Euler-123
transformations.

-2 2

Fig. 8 Inelastic contact defined between point P; on body A
and the xy plane

In the first case, the spatial orientation vector of the
system is set as g, = [0, 2, 0], g» = [2, 0, 0]. The point
P is located at (x, y, z) = (0, 0, 0) and the entire sys-
tem is given an initial velocity V, = V, = 1. Coeffi-
cient of friction in this case is « = 0.2 and the sys-
tem is simulated for 3 seconds. Figure 9 gives a plot
of the orientation angles for both the bodies generated
via a traditional LCP formulation, the iterative scheme
described previously and Autolev. For the purpose of
comparison, a first-order Euler integration is used in
the iterative scheme. Next, to demonstrate the regimes
of motion, the orientation vector of the system is set
to g, = g» = [0, 1, 0] and the system is released from
rest with point P; located at (x, y, z) = (0,0, 0.1) and
with the same coefficient of friction as in the previous
case. The system is simulated for 30 seconds. As can
be clearly seen from Fig. 10, the iterative scheme can
capture different regimes of motion.

---LcP
0.8/ Iterative Scheme |

o 06f 1
5 Sliding
& 04f ]
S z
8 02 y/ ]
©
£
el
S 0
o
(]
N -0.2 |
e}
5 o4 ]
x 0 /

-0.6 Sticking X

-0.8 ‘ ‘ ‘ ‘ ‘

0 5 10 15 20 25 30
Time

Fig. 10 Iterative scheme can capture transitions between differ-
ent regimes of motion

Fig. 9 Comparison 4 3
between traditional LCP 35}
formulation, iterative sl 2
scheme and Autolev
2‘5 [ 1 F
2
0
15 ---LcP
Iterative Scheme
1 Autolev -1t
05f 1 ---1LcP
-2r Iterative Scheme
0 1 Autolev
0% —=o5 1 15 2z 25 3 %05 1 15 2 25 3

Time

(a) Plot of orientation vector (gq )for body A

Time
(b) Plot of orientation vector (qp) for body B
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Fig. 11 Dirift in x and y coordinates of the center of mass for
the system for At = 1073 s

Next, to demonstrate an improvement in the solu-
tion, an explicit fixed time-step fourth order Runge—
Kutta method is used with the iterative scheme. The
orientation vector of the system is set as g, = [0, 2, 0],
qp = [2,0, 0] and coefficient of friction is set to zero.
The system is released from rest with point P; lo-
cated at (x,y,z) = (0,0, 1) and simulated for 3 sec-
onds with Az = 1073 s. Since there is no frictional
force acting on the system, the center of mass of the
system is not expected to move in x or y direction. Fig-
ure 11 gives the plot of the drift in the center of mass
of the system calculated using the iterative scheme and
an LCP formulation. The significant improvements in
the results on using the iterative scheme can directly
be explained by the integration scheme employed. As
mentioned previously, the LCP formulation employs a
first-order explicit Euler integration while the iterative
scheme uses an fixed time-step fourth order Runge—
Kutta integration.

5.2 Flexible robotic manipulator

The two-link robotic manipulator undergoing inter-
mittent contact has already been simulated without a
contact in [14, 25, 26] and shown in Fig. 12. All the
joints in the system are revolute and the fixed parame-
ters of the are as follows: m; = 1 kg, L1 = 0.545 m,
E; =7.3x10'"N/m?, p; =2700 kg/m3, I} = 1.69 x
108 m™, A =9 x 107 m?, my =3 kg, Ly =
0.675 m, E; = 7.3 x 10'% N/m?, p, = 2700 kg/m3,
L=333x10"" m™ A =4x10"* m?, g =
9.81 m/s2, where all the symbols have the standard
meaning.
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Fig. 12 Flexible robotic manipulator

A contact is defined between point P and the plane
y = 0.5. The system starts from an undeformed con-
figuration and undergoes a prescribed motion given in
(27) for 0.5 seconds after which it is allowed to oscil-
late under the influence of gravity for 1.5 seconds.

p1=—7/4-1<0
=m/4(—14728)---0<t <1/6
=7 /4(—18¢ + 1081 — 144¢%) .- 1/6 <t < 1/3
= 1/4(—8 + 541 — 1081* +72°)
- 1/3<t<1/2
=m/4--t>1/2
¢ = —¢1. (27

The modal shape functions used to model the deforma-
tion field within each body are given in (28). A single
shape function is used to model the longitudinal and
transverse deformations in each body.

(x/L)* (28a)
1.5(x/L)* = 0.5(x/L)>. (28b)

Longitudinal:

Transverse:

It should be noted that these shape functions are se-
lected to conform with those describing a highly sim-
ilar problem in the existing literature [14, 25, 26] and
to demonstrate the proposed methods. This very lim-
ited set of shape functions will not generally be ade-
quate for representing the deformation of the flexible
bodies given the combined transverse loads, concen-
trated moments and axial loads which are experienced.
In general, greater care is needed in the selection of
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Fig. 14 Comparison between LCP formulation and the iterative
scheme for fixed time-step Ar = 10~*

acceptable set of shape functions so that the defor-
mations are adequately captured without requiring and
excessive number of modes. If the expected deforma-
tion in the elements is significant and grossly nonlin-
ear, then it is preferable to use the absolute nodal co-
ordinate formulation [27, 28]. In the current approach
of using superposition of local mode shapes, it is pos-
sible to capture this large deformation by substructur-
ing each link and using an adequate set of deformation
modes.

Due to the nature of the problem and the selected
mode shape functions, the longitudinal vibrations in
each body are of a significantly higher frequency than
the transverse vibrations. Figure 13 gives the plot of
the modal coordinates of both the bodies when there
is no contact. Geometric stiffness has been accounted
for in all the simulations involving flexible bodies.

Time
(b) Transverse modal coordinate

Due to the presence of the high frequency compo-
nent in the longitudinal modal coordinates, the higher
order terms in (24) are significant. As a first attempt,
both the transverse and longitudinal deformation fields
are included in the LCP formulation with Az = 107%s.
It is observed that after the first impact, the simula-
tion fails due to unrealistic value of the contact force
computed by the LCP solver. This can be explained
as follows. Suppose the contact occurs in the time
step 1! — /1. The computed contact force satisfies
the complementarity conditions and the discretization
given in (20). However, due to the presence of the high
frequency longitudinal modal coordinates, their cor-
responding time derivatives are significant. Thus, the
first-order approximation used (see (24)) in the expres-
sion for H‘IVP is no longer accurate. This is evident,
when +1Vp is recomputed from the updated values
of the modal coordinates at time ¢/*!. This recom-
puted value differs significantly from the correspond-
ing value computed using (20) based on the contact
force and the modal coordinates at time #/. To alleviate
this problem, the high frequency longitudinal compo-
nent is eliminated and a single transverse deformation
field is used. The contact force now obtained on im-
pact is two orders of magnitude smaller than in the
previous case. Indeed, the high frequency longitudinal
component of the deformation field, in the selected test
case, plays a minimal role in the global behavior of the
entire system. However, it significantly affects the dis-
cretization of equations which are a necessary part of
the LCP formulation. The iterative scheme discussed
in previous section does not require discretization of
any kind and hence both the transverse and longitudi-
nal deformation fields can be used to simulate the im-
pact. Figure 14 gives the plot of point P on impact us-

@ Springer



78

K.D. Bhalerao, K.S. Anderson

ing the iterative scheme and the LCP formulation. The
iterative scheme used to generate the plot uses both the
longitudinal and transverse components of the defor-
mation field while the LCP formulation models could
only be run successfully when using the low frequency
transverse deformation field.

6 Conclusion

There are several engineering applications where one
encounters the problem of simulating intermittent con-
tact for flexible multibody systems. Certain applica-
tions like industrial assembly robots, MEMS devices
and coarse-grain molecular systems, among others, are
characterized by the presence of a large number of bi-
lateral constraints in the system. The existing approach
to deal with flexible multibody systems with intermit-
tent contact results in either a large MCP or an expen-
sive O(n?) calculation in dealing with system-wide
mass matrix and the bilateral constraint equations to
yield a minimal size LCP.

This paper presents a recursive scheme for flexible
multibody systems involving intermittent contact re-
sulting in a minimal size LCP at logarithmic cost for
parallel implementation. The presented method is ex-
pected to be more efficient than other LCP approaches
in presence of bilateral constraints in the systems.
The recursive approach is an extension of the hybrid
scheme for rigid bodies [11] to allow for small de-
formations within each body. The presented recursive
scheme inherits all the properties of the underlying
complementarity contact model and does not require
a precise collision detection. The use of divide-and-
conquer framework makes the scheme ideal for ap-
plication to flexible multibody systems with different
topologies.

The LCP contact formulation requires a first-order
discretization to obtain an expression for the relative
contact velocity at time 7/ based on the state at time
t!. This could be undesirable in certain class of prob-
lems involving flexible bodies. Additionally, the tradi-
tional LCP approach does not allow the use of higher
order integration scheme. To overcome these issues,
an iterative scheme is presented which does not re-
quire a traditional LCP formulation. The contact force
values are initially assumed and iteratively updated,
which makes the problem of advancing the simula-
tion from time ¢/ to t/*! explicit. This allows the use
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of any fixed time-step based higher order integration
routine with the iterative scheme. The iterative scheme
is insensitive to the high frequency components in the
state vector of the system and is expected to be optimal
for multibody systems involving relatively fewer con-
tacts. Additionally, in applications involving contact
between bodies with relatively simple geometries, this
alternative approach allows the use of larger time-steps
and demonstrates improved accuracy, when compared
to the more traditional LCP formulations.
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