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Abstract Recursive matrix relations concerning the
kinematics and the dynamics of a constrained robotic
system, schematized by several kinematical chains,
are established in this paper. Introducing frames and
bases, we first analyze the geometrical properties of
the mechanism and derive a general set of relations.
Kinematics of the vector system of velocities and ac-
celerations for each element of robot are then obtained.
Expressed for every independent loop of the robot,
useful conditions of connectivity regarding the relative
velocities and accelerations are determined for direct
or inverse kinematics problem. Based on the general
principle of virtual powers, final matrix relations writ-
ten in a recursive compact form express just the ex-
plicit dynamics equations of a constrained robotic sys-
tem. Establishing active forces or actuator torques in
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an inverse dynamic problem, these equations are use-
ful in fact for real-time control of a robot.
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List of symbols
ak,k−1 orthogonal relative transformation

matrix
a general transformation matrix of

moving platform
�u1, �u2, �u3 three orthogonal unit vectors
ϕk,k−1 relative rotation angle of Tk rigid

body
�ωk,k−1 relative angular velocity of Tk

�ωk0 absolute angular velocity of Tk

ω̃k,k−1 skew symmetric matrix associated
with the angular velocity �ωk,k−1

�εk,k−1 relative angular acceleration of Tk

ε̃k0 absolute angular acceleration of Tk

ε̃k,k−1 skew symmetric matrix associated
with the angular acceleration �εk,k−1

�rA
k,k−1 relative position vector of the

center Ak of joint
�vA
k,k−1 relative velocity of the center Ak

�γ A
k,k−1 relative acceleration of the center Ak

mk mass of Tk rigid body
Ĵk symmetric matrix of tensor of inertia

of Tk about the link-frame Akxkykzk

fq,q−1,mq,q−1 force or torque of the actuator Tq−1
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1 Introduction

Parallel robots are planar or spatial closed-loop mech-
anisms presenting high speed, greater rigidity and abil-
ity to manipulate large loads.

Generally, this kind of robots consists of two sig-
nificant bodies coupled by several legs. One body is
arbitrarily designated as fixed and is called base, while
the other is connected by several legs to the fixed base
and is called moving platform. The elements of the ro-
bot are connected one to the other by spherical joints,
revolute joints or prismatic joints. Typically, a parallel
mechanism is said to be symmetrical if it satisfies the
following conditions: the number of legs is equal to
the number of degree of freedom (DOF) of the mov-
ing platform, one actuator controls every limb and the
location and the number of actuated joints in all the
limbs are the same (Tsai [1]).

For two decades, parallel robots attracted the atten-
tion of many researches that consider them as valuable
alternative design for robotic mechanisms [2, 3]. Other
types of architecture [4] have therefore recently been
studied, and are being more and more regularly used
within the industrial world such as machine tools [5]
and industrial robots [6]. Parallel robots can be found
in technical applications in which it is desired a high-
speed displacement of a rigid body in space. Accuracy
and precision in the execution of the tasks are essen-
tial since the robot is intended to operate on fragile
objects; any error in the positioning of the tool could
lead to expensive damage.

Parallel robots could be equipped with hydraulic or
pneumatic actuators. They have a robust construction
and can move bodies of considerable masses and di-
mensions with high speeds. This is why the mecha-
nisms, which produce a translation or spherical mo-
tion to a platform, are based on the concept of parallel
robot.

Compared with the serial robots, parallel robots
have some special characteristics: greater structural
rigidity, stable functioning, larger dynamic charge ca-
pacity and suitable position of the actuating systems.
On the other hand, parallel kinematics machines of-
fer essential advantages over their serial counterparts:
lower moving masses, higher natural frequencies, sim-
pler modular mechanical construction and possibility
to mount all actuators at or near the fixed base. How-
ever, most existing parallel robots have a limited and
complicated workspace volume with singularities and
highly non-isotropic input–output relations [7, 8].

Recently, much effort has been devoted to the kine-
matics studies and dynamics analysis in parallel robots
and hybrid serial and parallel architecture. Many com-
panies have developed them as high precision machine
tools. The class of robots known as Stewart platform
focussed great attention (see [7, 9, 10]). They are used
in flight simulators and more recently for parallel kine-
matical machines. The prototype of Delta parallel ro-
bot [11, 12], Tsai’s mechanism [13], as well as the Star
parallel robot [14], are equipped with three actuators
and move its platforms in a three-degrees-of-freedom
general translation. Gosselin and Angeles [15] devel-
oped the direct kinematics and dynamics of the Agile
Wrist spherical parallel robot, which has three concur-
rent rotations.

The kinematics of parallel robots has been studied
extensively during the last two decades. When good
dynamic performance and precise positioning under
high load are required, the dynamic model is impor-
tant for their control. The dynamic analysis of paral-
lel robots is usually implemented through analytical
methods in classical mechanics [16], in which projec-
tion and resolution of equations on the reference axes
are written in a considerable number of cumbersome,
scalar relations and the solutions are rendered by large
scale computation together with time consuming com-
puter codes.

Many works have been focussed on the dynamics
of Stewart platform. Dasgupta and Mruthyunjaya [17]
used the Newton–Euler approach to develop closed-
form dynamical equations of Stewart platform, con-
sidering all dynamic and gravity effects as well as vis-
cous friction at joints. Tsai [1] presented also an algo-
rithm to solve the inverse dynamics for a Stewart plat-
form, using Newton–Euler procedure. It is commonly
known that this approach results in an efficient set of
equations, but they are very difficult to use for deriving
of the advanced control laws.

Meanwhile, quite few of special approaches have
been conducted for dynamic modeling of specific par-
allel mechanism configurations. Kane and Levinson
[18] obtained some recursive relations concerning the
equilibrium of the generalized forces that are applied
to a serial robot arm. Kane’s dynamical equations are
described with an example of Stanford robot, and they
did not propose a general algorithm for constrained ro-
botic systems. Sorli et al. [19] conducted the dynam-
ics modeling for Turin parallel robot, which has three
identical legs but 6 DOFs.
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Under some simplifying assumptions on the geom-
etry and inertia distribution of the robot, Geng et al.
[20] and Tsai and Stamper [13] developed the La-
grange formalism in equations of motion. The analyt-
ical calculi involved in the Lagrange method are too
long for every scheme of robots and they have error
risk. Also, it is proved that the time for numerical cal-
culus grows with the number of bodies in the robotic
systems. Computationally, it is impossible to utilize
this elegant approach for real-time command, unless
the numerous final equations are simplified.

Recursive matrix relations for the kinematics and
the dynamics of a general constrained robotic system,
schematized by closed kinematical chains, are estab-
lished in this paper. Based on the general principle of
virtual powers, final matrix relations written in a recur-
sive compact form express just the explicit dynamics
equations of a constrained robotic system.

The methodology developed in this paper can be
available for kinematics analysis and nonlinear dy-
namics of a multi-body systems consisting of intercon-
nected rigid and, eventually, deformable bodies, each
of which may undergo large translation and rotational
displacements. Examples of mechanical structures that
can be modeled as constrained robotic systems are:
mechanisms, machines, parallel robots, mobile robots,
gear trains for robotics and spatial robotic hybrid ar-
chitectures.

2 Geometric model of the robot

Generally, a serial leg of a robot consists of a base link
T0 and n movable links connected by N joints. The
kinematical joints constrain the virtual position of the
mechanism and transmit the relative motion from one
body to the other.

To describe the geometry of links, starting from the
base link T0 we number the movable links sequentially
from T1 to Tn and the joints from O1 to ON . Thus,
except for the base link, every link has two joints; the
link Tk has the joint Ok at its proximal end and the
joint Ok+1 at the distal end.

We now introduce several frames. First, the fixed
frame O0 − x0y0z0 is attached to the base T0 at a
convenient location. Consider the set of moving bod-
ies Tk (k = 1,2, . . . , n) attached to the moving frames
Ok − xkykzk . Along the zk-axis, an arbitrary Tk body
has a relative helical motion with respect to Tk−1 (see

Fig. 1 Geometry and forces exerted on link Tk

Fig. 1). A combination of translation along and rota-
tion about the same axis is called screw displacement
(Tsai [1]).

In what follows we apply the concept of successive
screw displacements to geometrical analysis of closed-
loop chains and we note that a joint variable is the dis-
placement required to move a link from initial location
to actual position. But, a variable associated to an ac-
tive joint is denoted as input variable of active joint.

The geometric parameters describing the relative
position of Tk with respect to adjacent link Tk−1 shall
be uniquely determined: the translation displacement
O ′

k−1Ok = λk,k−1 of the origin Ok and the joint angle
ϕk,k−1 of rotation about the positive zk-axis accord-
ing to the right-hand rule. These variables represent in
fact the distance of translation and the angle of rotation
needed to bring a link from its reference configuration
to the next configuration and should not be confused
with the Denavit–Hartenberg parameters [1, 7]. But,
their relation to the D–H parameters can be derived
from these two coordinates by creating relative dis-
placements with respect to the reference configuration
and performing some simple matrix operations [21].

Linked to rigid body Tk , the moving frame Ok −
xkykzk makes either translation, rotation or simultane-
ously a complex motion of rotation-translation along
the common axis zx of the connecting joint between
the two adjacent bodies Tk and Tk−1. Any vector or
tensor is expressed by its components about the axes
of the attached frame Ok − xkykzk .

For a revolute joint the displacement λk,k−1 is con-
stant and the angle ϕk,k−1 is a variable that measures
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the relative rotation of link Tk with respect to the near
link Tk−1. For a prismatic joint, ϕk,k−1 is constant and
λk,k−1 is a variable that measures the relative transla-
tion between two links. We note that a universal joint
can be modeled by two intersecting revolute joints
and that for a spherical joint three successive rotations
about three orthogonal concurrent axes can be consid-
ered.

The two independent coordinates, λk,k−1 and
ϕk,k−1, determine the position of the vector

�rk,k−1 = �r ′
k−1 + λk,k−1a

T
k−1 �u3, �u3 = [0 0 1]T

(1)

and give the variable orthogonal transformation 3 × 3
matrix a

ϕ
k,k−1 for relative rotation of link Tk around the

zk-axis, where

�rk,k−1 =
⎡
⎣

xk,k−1

yk,k−1

zk,k−1

⎤
⎦ ,

−−−−−−→
Ok−1O

′
k−1 = �r ′

k−1 =
⎡
⎣

x′
k−1

y′
k−1

z′
k−1

⎤
⎦ , (2)

a
ϕ
k,k−1 =

⎡
⎣

cosϕk,k−1 sinϕk,k−1 0
− sinϕk,k−1 cosϕk,k−1 0

0 0 1

⎤
⎦ .

The above matrix product ak−1 = aθ
k−1a

ψ

k−1 of two

constant orthogonal matrices, aθ
k−1 and a

ψ

k−1, allows
expressing any vector and tensor from frame Tk−1 to
the next frame which is fixed at O ′

k−1 in the same rigid
body [21, 22]:

aθ
k−1 =

⎡
⎣

cos θk−1 0 − sin θk−1

0 1 0
sin θk−1 0 cos θk−1

⎤
⎦ ,

a
ψ

k−1 =
⎡
⎣

cosψk−1 sinψk−1 0
− sinψk−1 cosψk−1 0

0 0 1

⎤
⎦ .

(3)

Now, the position of the permanent axis of relative
helical motion is completely determined by the con-
stant vector �r ′

k−1 and the constant matrix ak−1. After
one translation and two orthogonal rotations followed
by one relative rotation or translation about zx -axis, a
change of coordinates between Tk−1 and Tk frames is
completely given by the relations (1), (2), (3). If every

link is connected to at least two other links, finally the
chain forms one or more independent closed-loops.

Some matrix equations, relating the location of a
link Tσ and the position of the end-effector to the inde-
pendent joint variables, should be expressed in a geo-
metrical modeling of robot systems. Recursive form of
position vector for origin Oσ

�rσs = �rσ−1,s + aT
σ−1,s�rσ,σ−1,

�rss = �0, ass = I, σ ≥ s + 1
(4)

and following transformation matrices [23]

aσs =
σ−s∏
j=1

aσ−j+1,σ−j ,

aT
σs =

σ∏
j=s+1

aT
j,j−1, aj,j−1 = a

ϕ
j,j−1aj−1

(5)

can give the relative position of the link Tσ in the
frame Ts . When the change of coordinates is taken in
succession, the corresponding matrices are multiplied.
These can be thought of as the resultant of a series of
coordinate transformations, starting from base Ts and
ending at link Tσ .

In the forward kinematics, the joint variables are
given and the problem is to find where the end-effector
is with respect to the base coordinate system. In the in-
verse kinematics, the position of end-effector is given.
Here, the problem is to compute the joint displace-
ments needed to bring the end-effector to the desired
location.

If the reference point in the movable platform Tn is
located at its center G, the location of Tn with respect
to O0 − x0y0z0 can be described along every leg by
the position vector �rG

0 of the origin G and the absolute
rotation matrix an0 as follows:

�rG
0 = �r10 +

n−1∑
k=1

aT
k0�rk+1,k + aT

n0�rG
n ,

an0 =
n∏

k=1

an−k+1,n−k.

(6)

These loop-closure equations constitute the geometri-
cal model of a parallel robot. Generally, the number of
the relations that can be established for a mechanism
is equal to the number of independent closed-loops.
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3 Velocities and accelerations

Relative helical motion of the Tk link of the robot is
determined by the linear relative velocity �vk,k−1 of the
origin Ok and by the angular velocity vector �ωk,k−1:

�vk,k−1 = λ̇k,k−1 �u3, �ωk,k−1 = ϕ̇k,k−1 �u3. (7)

We note that a very useful skew-symmetric matrix
3 × 3 associated to vector �ωk,k−1 is obtained:

ω̃k,k−1 = ak,k−1ȧ
T
k,k−1 = ϕ̇k,k−1ũ3,

ũ3 =
⎡
⎣

0 −1 0
1 0 0
0 0 0

⎤
⎦ , det ω̃k,k−1 = 0.

(8)

To describe the kinematical state of each link Tσ

with respect to Ts frame, we compute the angular ve-
locity �ωσs and the linear velocity �vσs of the reference
point Oσ in terms of vectors of preceding body. Start-
ing from the first moving link Ts and ending at last link
Tσ , both vectors can easily be expressed in a recursive
manner:

�vσs = aσ,σ−1
{�vσ−1,s + ω̃σ−1,s�rσ,σ−1

} + λ̇σ,σ−1�u3,

�ωσs = aσ,σ−1 �ωσ−1,s + ϕ̇σ,σ−1�u3.

(9)

The kinematical conditions of connectivity shall be
given through constraint relations written in a forward
computation between relative velocities of each inde-
pendent closed-loop of the mechanism. Starting from
the base T0 and going to moving platform Tn, the ab-
solute velocities �vA

n0 and �ωA
n0 are computed along first

leg A, for example. These vectors coincide both with
the two velocities, �vB

n0 and �ωB
n0, of the same platform,

but computed into direction of the second leg, B . The
following system of equations is obtained:

�uT
i aT

n0 �ωA
n0 = �uT

i bT
n0 �ωB

n0 = �uT
i �ω0

n (i = 1,2,3),

�uT
i aT

n0

{�vA
n0 + ω̃A

n0�rGA
n

}
(10)

= �uT
i bT

n0

{�vB
n0 + ω̃B

n0�rGB
n

} = �uT
i �̇rG

0 ,

where �u1, �u2 and �u3 are three orthogonal unit vectors
pointing, respectively, along the x0-, y0- and z0-axes.
The characteristic relative velocities and the conven-
tional Jacobian are immediately obtained. This square
invertible matrix is an essential element in analysis of
singularities loci existing in the robot workspace.

Performing the derivatives with respect to time
upon (9), we obtain the recursive form of accelerations
�γσs and �εσs :

�γσs = aσ,σ−1
{ �γσ−1,s + (

ω̃2
σ−1,s + ε̃σ−1,s

)�rσ,σ−1
}

+ λ̈σ,σ−1�u3 + 2λ̇σ,σ−1aσ,σ−1

× ω̃σ−1,sa
T
σ,σ−1�u3,

�εσs = aσ,σ−1�εσ−1,s + ϕ̈σ,σ−1�u3

+ ϕ̇σ,σ−1aσ,σ−1ω̃σ−1,sa
T
σ,σ−1�u3

(11)

and two useful square characteristic matrices [12, 24]:

ω̃σ s = aσ,σ−1ω̃σ−1,sa
T
σ,σ−1 + ϕ̇σ,σ−1ũ3,

ω̃2
σs + ε̃σ s = aσ,σ−1

{
ω̃2

σ−1,s + ε̃σ−1,s

}
aT
σ,σ−1

+ ϕ̇2
σ,σ−1ũ3ũ3 + ϕ̈σ,σ−1ũ3

+ 2ϕ̇σ,σ−1aσ,σ−1ω̃σ−1,sa
T
σ,σ−1ũ3.

(12)

The conditions of connectivity with accelerations
are

�uT
i aT

n0�εA
n0 = �uT

i bT
n0�εB

n0 = �uT
i �ε0

n

�uT
i aT

n0

{ �γ A
n0 + (

ω̃A
n0ω̃

A
n0 + ε̃A

n0

)�rGA
n

}
(13)

= �uT
i bT

n0

{ �γ B
n0 + (

ω̃B
n0ω̃

B
n0 + ε̃B

n0

)�rGB
n

} = �uT
i �̈rG

0 .

These formulas give all relative linear and angular ac-
celerations of the robot. Equations (10) and (13) con-
stitute the matrix kinematics model of the constrained
robotic system.

4 Equations of motion

The dynamic analysis of parallel robots is complicated
by existence of a spatial kinematical structure, which
possesses a large number of passive degrees of free-
dom, dominance of the inertial forces, frictional and
gravitational components, and by the problem that is
linked to real-time control in the inverse dynamics.

Three different methods lead to the same results.
The first one is the Newton–Euler approach, which
consists in applying the free-body diagram procedure
for each body where all joint forces and moments are
unknown [16, 17, 25]. Writing Newton–Euler equa-
tions once for each body of the mechanism, results
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in a large system of equations that must be solved si-
multaneously for all the forces of constraints between
two adjacent links. The second method is based on
the Lagrange formalism, which introduces scalar mul-
tipliers for each kinematical closure equation [20, 27].
Because of the numerous constraints imposed by all
closed-loops of parallel robot, deriving explicit equa-
tions of motion in terms of a set of independent gen-
eralized coordinates becomes a prohibitive task. The
third method for the dynamic analysis, which shall be
applied in the present paper, is based on the principle
of virtual powers (see [28–31]). Finally, we obtain the
explicit dynamics equations of parallel robots.

Consider the link Tτ of the mechanism connected to
other two neighboring bodies by two types of joints: a
prismatic joint or a revolute joint. The displacement of
Tτ with respect to the last link Tτ−1 is described by
two variables: translation coordinate λτ,τ−1 and joint
angle of rotation ϕτ,τ−1. In the first case, the rigid
body Tτ moves in relative translation along the zτ -axis
under the action of the force �fτ,τ−1 = fτ,τ−1 �u3 that is
applied by a hydraulic or pneumatic system located in
the neighboring frame Tτ−1. In the second case, it ro-
tates by an electric motor developing a torque of mo-
ment �mτ,τ−1 = mτ,τ−1 �u3, pointed about the positive
zτ -axis. We note that for a parallel robot, a single ac-
tuator that exerts a force or a torque between two ad-
jacent links, drives each limb.

Applying the free-body diagram procedure, Fig. 1
depicts the forces and moments acting on a typical link
Tτ that is connected to link Tτ−1 by joint Oτ and to
other link Tτ+1 by joint Oτ+1. The forces acting on
link Tτ by Tτ−1 can be reduced about Oτ to a force
�f ′
τ,τ−1 and a moment �m′

τ,τ−1. Similarly, the forces act-
ing on link Tτ by Tτ+1 are reduced about Oτ+1 to a
resultant force (−aT

τ+1,τ
�f ′
τ+1,τ ) and a resultant mo-

ment (−aT
τ+1,τ �m′

τ+1,τ ), both converted into Tτ frame.

Note that the vectors �fn,n−1 and �mn,n−1 represent the
force and the moment exerted on the platform Tn by
the link Tn−1, for τ = n. When a robot carries an ob-
ject, the weight of the object becomes a known load
to the end-effector. Assuming that frictional force at
the joints is negligible, two vectors, �f ∗

τ and �m∗
τ , of the

wrench about the point Oτ express the action of exter-
nal and internal forces, including the weight mτaτ0 �g
of rigid body Tτ .

Now, we compute the inertia force and the resultant
moment of inertia forces exerted at the jointOτ :

�f in
τ = −mτ

{ �γτ0 + (
ω̃2

τ0 + ε̃τ0
)�rC

τ

}
,

�min
τ = −mτ r̃

C
τ �γτ0 − Ĵτ ε̄τ0 − ω̃τ0Ĵτ �ωτ0,

(14)

where mτ is the mass of link Tτ . Introducing a 3 × 3
skew-symmetric matrix r̃i associated with the vec-
tor �ri

r̃i =
⎡
⎣

0 −zi yi

zi 0 −xi

−yi xi 0

⎤
⎦ , �ri =

⎡
⎣

xi

yi

zi

⎤
⎦ , (15)

we can express the symmetrical tensor of inertia Ĵτ =∑
mir̃i r̃

T
i of link Tτ , defined in a matrix form in [22].

Knowing the kinematics state of each link and the
external forces acting on the robot, this paper derives
the final form of explicit dynamics equations of a con-
strained robotic system, using the principle of virtual
powers. Finally, the actuator forces and torques, re-
quired in a given motion of the end-effector, will be
computed using a recursive procedure.

The parallel robot can artificially be transformed
into a set of open chains, subject to the constraints.
This is possible by cutting each joint for a moving plat-
form, and it takes into account the effect by introduc-
ing the corresponding constraint conditions. The first
and more complicated open tree system includes the
acting link and ends with the moving platform.

The virtual displacements should be compatible
with the virtual motion imposed by all kinematical
constraints and joints at a given instant of time. Con-
sidering several independent virtual motions of the ro-
bot, which are compatible with the constraints, con-
nectivity equation (10) will generate expressions of
virtual velocities. By intermediate of the Jacobian ma-
trix, absolute virtual velocities �vv

τ0, �ωv
τ0, associated

with all moving links, are related to relative virtual ve-
locities associated with the actuated joints �vv

q,q−1 =
vv
q,q−1 �u3 and �ωv

q,q−1 = ωv
q,q−1 �u3.

The principle of virtual powers states that a robot
is under dynamic equilibrium if and only if the virtual
powers developed by all external, internal and inertia
forces vanish during any general virtual displacement,
which is compatible with the kinematical constraints.

Assuming that frictional forces at the joints are neg-
ligible, the virtual power produced by the forces of
constraint at the joints is zero. So, the virtual powers
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contributed by the active force �fq,q−1 and the actua-
tor torque �mq,q−1, the known external forces and the
moments �f ∗

τ and �m∗
τ , and by the inertia forces and the

moments of inertia forces �f in
τ and �min

τ , can be written
as follows:

�vvT
q,q−1

�fq,q−1 + �ωvT
q,q−1 �mq,q−1

+
l∑

p=1

np∑
τ=1

{�vvT
τ0

( �f ∗
τ + �f in

τ

) + �ωvT
τ0

( �m∗
τ + �min

τ

)} = 0,

(16)

where l denotes the number of serial independent legs
fictitiously separated beginning from the fixed base
and ending at the moving platform. We isolate the vir-
tual powers developed by the active force �fq,q−1 or the
actuator torque �mq,q−1 from these of the other known
forces and inertia forces applied to all legs of the robot.

Absolute virtual velocities �vv
τ0 and �ωv

τ0 can be
related to the virtual relative velocities �vv

k,k−1 and
�ωv

k,k−1:

�vv
τ0 =

τ∑
k=1

vv
k,k−1aτk �u3 +

τ−1∑
k=1

ωv
k,k−1aτkr̃

T
τk �u3,

�ωv
τ0 =

τ∑
k=1

ωv
k,k−1aτk �u3, r̃σ τ =

σ−1∑
υ=τ

aT
υτ r̃υ+1,υaυτ .

(17)

Introducing the following notations,

�fτ =
n∑

σ=τ

aT
στ

�f 0
σ ,

�mτ =
n∑

σ=τ

aT
στ

{
�m0

σ +
σ−1∑
υ=τ

aσυ r̃υ+1,υaT
συ

�f 0
σ

}
, (18)

�f 0
σ = − �f ∗

σ − �f in
σ , �m0

σ = − �m∗
σ − �min

σ ,

it may be observed that (16), (17) and (18) will be
written in the following recursive compact form, only
based on the relative virtual velocities �vv

τ,τ−1 and
�ωv

τ,τ−1:

vv
q,q−1fq,q−1 + ωv

q,q−1mq,q−1

= �uT
3

l∑
p=1

np∑
τ=1

{
vv
τ,τ−1

�fτ + ωv
τ,τ−1 �mτ

}
, (19)

where

�fτ = �f 0
τ + aT

τ+1,τ
�fτ+1

�mτ = �m0
τ + aT

τ+1,τ �mτ+1 + r̃τ+1,τ a
T
τ+1,τ

�fτ+1.

(20)

The dynamics model expressed by the recursive
matrix equations (19) and (20) represents the explicit
dynamics equations of a constrained robotic system
[28, 29, 33]. These equations are valid for any vir-
tual displacement, giving the active forces fq,q−1 or
the actuator torques mq,q−1 in terms of output forces.
Using the initial values �fnp+1 = �0 and �mnp+1 = �0, ex-
pressions and time-history graphs of active forces and
actuator torques are immediately obtained. Thus, for
the force fq,q−1 we make vv

q,q−1 = 1 and ωv
q,q−1 = 0,

and for the torque mq,q−1 we consider vv
q,q−1 = 0 and

ωv
q,q−1 = 1. This new approach is useful for real-time

control of the robots and computationally is more ef-
ficient than the Newton–Euler procedure or Lagrange
formalism.

In what follows we can apply the Newton–Euler
procedure to establish the set of analytical equations
for each compounding rigid body of the mechanical
system. These equations give all connecting forces in
the external and internal joints. Several relations from
the general system of equations could eventually con-
stitute verification for the input forces or active torques
obtained by the method based on the principle of vir-
tual work. Now, we can calculate the friction forces
and the friction torques in the joints, based on the fric-
tion coefficients and the maximum of the connecting
forces in the joints. We apply again the explicit equa-
tions (19) and (20), where the contribution of the vir-
tual work of friction forces in joints is added. The new
active torques and input forces are compared to the
values obtained in the first calculus.

The introduced method can be quickly applied in
the inverse dynamics modeling of parallel robots and
then the above recursive matrix equations become pure
algebraic relations. But, in the direct problem of dy-
namics, in the same developed matrix relations there
are presented many angular velocities, angular accel-
erations, velocities and accelerations of the mass cen-
ters, expressed as functions of the input variables of
active joints and their first and second derivatives of
these independent variables with respect to time.

If the input forces or the active torques are all
known, the set of differential equations established
for the direct dynamics simulation is numerically inte-
grated and lead to the solutions representing the gener-
alized coordinates of the mechanism, which determine
the instantaneous position and the motion of the mov-
ing platform.
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Compared with Tsai’s analytical method based on
the principle of virtual work [1, 13, 30], the novelties
of the present approach are the following:

– Geometrical constraint relations, under matrix form,
generate through successive recast the connectivity
conditions that will supply all the relative veloci-
ties and relative accelerations, which characterize
the independent kinematical chains.

– The accelerations of the mass centers, the angular
accelerations and the twists of the inertia forces are
expressed through matrix formulae, which contain
the kinematical characteristics of the relative motion
of the building elements of the manipulator.

– A single matrix relation supplies all the virtual ve-
locities.

– The explicit dynamics equation represents a defini-
tive formula, obtained by the transformation of the
general expression of the virtual work where the rel-
ative virtual velocities only appear, generated by re-
cursive relations.

– All intermediate analytical calculations were elim-
inated and the numerical computation is achieved
through the numerical code, for each active force or
torque applied by the driving system.

5 Advantage of the present method

Most of dynamical models based on the Lagrange for-
malism neglect the weight of intermediate bodies and
take into consideration only the active forces or mo-
ments and the wrench of applied forces on the mov-
ing platform. The number of relations given by this
approach is equal to the total number of the position
variables and Lagrange multipliers inclusive. Also, the
analytical calculi involved in these equations are very
tedious, thus presenting an elevated error risk.

The commonly known Newton–Euler method,
which takes into account the free-body-diagrams of
the mechanism, leads to a large number of equations
with unknowns, among which are also the connect-
ing forces in the joints. Finally, the actuating forces or
torques could be obtained.

Within the inverse kinematic analysis some ex-
act conditions of connectivity given in (10) and (13),
which define in real-time the position, velocity and ac-
celeration of each element of the parallel robot, have
been established in this paper. The dynamics model

takes into consideration the masses and forces of iner-
tia introduced by all component elements of the paral-
lel robot.

The new approach based on the principle of virtual
powers can eliminate all forces of internal joints and
establishes a direct determination of the time-history
evolution of torques required by the actuators. The re-
cursive matrix equations (19) and (20) represent the
explicit equations of the dynamics simulation and can
easily be transformed into a model for automatic com-
mand of a parallel robot.

In conclusion, the novel matrix model may success-
fully be applied in forward and inverse mechanics of
parallel robots, the end-effectors of which participate
in a translation motion or a mixed motion.

6 Two examples

6.1 Parallel cube-robot

As the first application in what follows, some recur-
sive matrix relations for the kinematics and dynamics
of a three translational DOFs parallel cube-robot are
established. The concurrent actuators are arranged ac-
cording to the Cartesian coordinate system with fixed
orientation, which means that the actuating directions
are normal to each other (Fig. 2). For this reason this
type of mechanism is called a cube-robot.

Fig. 2 The parallel cube-robot
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This prototype of the robot [32] has technologi-
cal advantages such as: symmetrical design, regular
workspace shape properties with a bounded velocity
amplification factor and low inertia effect.

6.1.1 Inverse geometric model

The mechanism input of the robot is made up of three
actuated orthogonal prismatic joints. The output body
is connected to the prismatic joints through a set of
three identical kinematical chains (Fig. 3).

The architecture of one of the three parallel closed
chains of the cube-robot consists of an active prismatic
system, a passive revolute joint, an intermediate mech-
anism with four revolute links that connect four bars,
which are parallel two by two, ending with a passive
revolute link connected to the moving platform. In-
side each chain, the parallelogram mechanism is used
and oriented in a manner that the end-effector is re-
stricted to translation movement only. The arrange-
ment of the joints in the chains has been defined to
eliminate any constraint singularity in the Cartesian
workspace [2, 3].

Let us locatea fixed reference frameO−x0y0z0(T0)

(see Fig. 3) at the intersection point of three axes of ac-
tuated prismatic joints, about which the three-degrees-
of-freedom robot moves. It has three legs of known
dimensions and masses. To simplify the graphical im-
age of the kinematical scheme of the mechanism, in
the following we will represent the intermediate ref-
erence systems by only two axes, as is given in most

of literature [1, 7, 26]. The zk-axis is represented, of
course, for each component element Tk . We mention
that the relative rotation or relative translation with
ϕk,k−1 angle or λk,k−1 displacement of Tk body must
be always pointing about or along the direction of the
zk-axis.

The first element of the leg A is one of the three
active sliders of the upside-down robot. It is a homo-
geneous rod of the length A1A2 = l1 and the mass m1,
moving horizontally along the zA

1 -axis with a displace-
ment λA

10. The center of the transmission rod A3A6 =
l2 is denoted by A2. This link is connected to the frame
A2 −xA

2 yA
2 zA

2 (called T A
2 ) and it has a relative rotation

about the zA
2 -axis with the angle ϕA

21, so that ωA
21 = ϕ̇A

21
and εA

21 = ϕ̈A
21. It has the mass m2 and the central ten-

sor of inertia Ĵ2. Moreover, two identical and parallel
bars A3A4 and A6A7 with the same length l3 rotate
about the T A

2 frame with the angle ϕA
32 = ϕA

62. They
have also the same mass m3 and the same tensor of
inertia Ĵ3. The four-bar parallelogram is closed by an
element T A

4 which is identical with T A
2 . Its tensor of

inertia is Ĵ4. This element rotates with the relative an-
gle ϕA

43 = ϕA
32.

The center A5 of the interval between the two rev-
olute joints connects with the moving platform A5 −
xA

5 yA
5 zA

5 (T A
5 ). The platform of the robot can be a cube

of mass m5, central tensor of inertia Ĵ5 and side di-
mension l, which rotate relatively by an angle ϕA

54 with
respect to the neighboring body T A

4 . Finally, another

Fig. 3 Kinematical scheme
of the leg A of the
upside-down cube-robot



226 S. Staicu et al.

reference system G − xGyGzG is located at the cen-
ter G of the cubic moving platform.

Due to the special arrangement of the four-bar par-
allelograms and the three prismatic joints at points
A1,B1 and C1, the mechanism has three translation
degrees of freedom. This unique characteristic is use-
ful in many applications, such as a x − y − z position-
ing device. The angle α gives the initial orientation of
the three upper arms about their guide-ways.

The three concurrent displacements, λA
10, λ

B
10 and

λC
10, of the actuators A1,B1 and C1 are the input vari-

ables of active joints that give the input vector �λ10 of
the instantaneous position of the mechanism. But, the
objective of the inverse geometric problem is to find
the vector �λ10 and the position of the robot with the
given three absolute coordinates of the center G of the
platform xG

0 , yG
0 and zG

0 .
Pursuing the three legs A,B and C, we obtain the

following transformation matrices:

a10 = a1, a21 = a
ϕ
21aαa2, a32 = a

ϕ
32a3,

a43 = a
ϕ
32a4, a54 = a

ϕ
54aαa2, a62 = a32,

b10 = a5, b21 = b
ϕ
21aαa2, b32 = b

ϕ
32a3,

b43 = b
ϕ
32a4, b54 = b

ϕ
54aαa2, b62 = b32,

c10 = a6, c21 = c
ϕ
21aαa2, c32 = c

ϕ
32a3,

c43 = c
ϕ
32a4, c54 = c

ϕ
54aαa2, c62 = c32,

(21)

where we denote [22]

a1 =
⎡
⎣

0 0 −1
0 1 0
1 0 0

⎤
⎦ , a2 =

⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦ ,

a3 =
⎡
⎣

0 0 −1
−1 0 0
0 1 0

⎤
⎦ , a4 =

⎡
⎣

−1 0 0
0 1 0
0 0 −1

⎤
⎦ ,

a5 =
⎡
⎣

−1 0 0
0 0 1
0 1 0

⎤
⎦ , a6 =

⎡
⎣

0 −1 0
1 0 0
0 0 1

⎤
⎦ ,

(22)

aα =
⎡
⎣

cosα sinα 0
− sinα cosα 0

0 0 1

⎤
⎦ ,

a
ϕ
k,k−1 =

⎡
⎣

cosϕA
k,k−1 sinϕA

k,k−1 0

− sinϕA
k,k−1 cosϕA

k,k−1 0
0 0 1

⎤
⎦ ,

ak0 =
k∏

j=1

ak−j+1,k−j (k = 1,2, . . . ,5).

The translation conditions for the platform are ex-
pressed by the following identities:

a◦T
50 a50 = b◦T

50 b50 = c◦T
50 c50 = I, (23)

where

a◦
50 =

⎡
⎣

0 −1 0
−1 0 0
0 0 −1

⎤
⎦ ,

b◦
50 =

⎡
⎣

0 0 −1
0 −1 0

−1 0 0

⎤
⎦ , (24)

c◦
50 =

⎡
⎣

−1 0 0
0 −1 0
0 0 1

⎤
⎦ .

From these relations, one obtains the following re-
lations between angles:

ϕA
54 = ϕA

21, ϕB
54 = ϕB

21, ϕC
54 = ϕC

21. (25)

For the inverse geometric analysis, the position
of an end-point P(xP

0 , yP
0 , zP

0 ) is treated as known
and the goal is to find the joint variables λA

10, λ
B
10

and λC
10 that yield the given location of the tool. If

the aim is to generate a sequence of points to move
the tool along an arc, care must be taken to avoid
branch switching during motion, which may cause
inefficient or impossible robot motions. Moreover,
leg singularities may occur at which the robot loses
DOF and the joint variables become linearly depen-
dent.

Suppose, for example, that the rectilinear motion of
the mass center G of the platform is expressed by the
following relations:
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�rG
0 = [

xG
0 yG

0 zG
0

]
,

xG
0 = xG∗

0

(
1 − cos

2π

3
t

)
,

yG
0 = yG∗

0

(
1 − cos

2π

3
t

)
,

zG
0 = zG∗

0

(
1 − cos

2π

3
t

)
,

(26)

the inputs λA
10, λ

B
10 and λC

10 of the robots and the vari-

ables ϕA
21, ϕ

A
32, ϕ

B
21, ϕ

B
32, ϕ

C
21, ϕ

C
32 will be given by the

following geometrical conditions:

�rA
10 +

4∑
k=1

aT
k0�rA

k+1,k + aT
50�rGA

5

= �rB
10 +

4∑
k=1

bT
k0�rB

k+1,k + bT
50�rGB

5

= �rC
10 +

4∑
k=1

cT
k0�rC

k+1,k + cT
50

⇀
r

GC

5 = �rG
0 , (27)

where, for example, one denotes

�u1 =
⎡
⎣

1
0
0

⎤
⎦ , �u2 =

⎡
⎣

0
1
0

⎤
⎦ , �u3 =

⎡
⎣

0
0
1

⎤
⎦ ,

ũ3 =
⎡
⎣

0 −1 0
1 0 0
0 0 0

⎤
⎦ ,

�rA
10 =

(
λA

10 − l1 − l3 cosα − l

2

)
aT

10 �u3,

�rA
21 = l1 �u3, �rA

32 = − l2

2
�u3,

�rA
43 = −l3 �u2, �rA

54 = l2

2
�u1,

�rGA
5 =

[
l3 sinα − l

2
0

]T

.

(28)

Actually, these equations mean that there is only one
inverse geometric solution for the robot:

sinϕA
32 = −zG

0

l3
, sin

(
ϕA

21 + α
) = yG

0 + l3 sinα

l3 cosϕA
32

,

λA
10 = xG

0 + l3 cosα − l3 cos
(
ϕA

21 + α
)

cosϕA
32,

sinϕB
32 = −xG

0

l3
, sin

(
ϕB

21 + α
) = zG

0 + l3 sinα

l3 cosϕB
32

,

(29)

λB
10 = yG

0 + l3 cosα − l3 cos
(
ϕB

21 + α
)

cosϕB
32,

sinϕC
32 = −yG

0

l3
, sin

(
ϕC

21 + α
) = xG

0 + l3 sinα

l3 cosϕC
32

,

λC
10 = zG

0 + l3 cosα − l3 cos
(
ϕC

21 + α
)

cosϕC
32.

6.1.2 Robot kinematics

We develop the inverse kinematics problem and de-
termine the velocities and accelerations of the robot,
supposing that the translation motion of the moving
platform is known.

The kinematics of the component elements of each
leg (for example, the leg A) are characterized by an-
gular velocities �ωA

k0 and linear velocities �vA
k0 of the

joints Ak , given by (9):

�ωA
k0 = ak,k−1 �ωA

k−1,0 + ωA
k,k−1 �u3, ωA

k,k−1 = ϕ̇A
k,k−1,

�vA
k0 = ak,k−1

{�vA
k−1,0 + ω̃A

k−1,0�rA
k,k−1

}
, (30)

�vA
10 = λ̇A

10 �u3.

If the other two kinematical chains of the robot are
pursued, analogous relations can be easily obtained.

Equations (23) and (27) of geometric constraints
can be differentiated with respect to time to obtain the
following matrix conditions of connectivity [23]:

ωA
21 �uT

i aT
20 �u3 + ωA

54 �uT
i aT

50
⇀
u 3= 0,

vA
10 �uT

i aT
10 �u3 + l3ω

A
21�uT

i aT
20ũ3a

T
32�u2 (31)

+ l3ω
A
32 �uT

i aT
30ũ3 �u2 = �uT

i �̇rG

0 (i = 1,2,3),

where ũ1, ũ2, ũ3 are skew-symmetric matrices asso-
ciated to the three orthogonal unit vectors �u1, �u2, �u3.
From these equations, relative velocities vA

10,ω
A
21,ω

A
32

and ωA
54 = ωA

21 result as functions of the transla-
tion velocity of the platform. Equation (31) gives
the complete Jacobian matrix of the robot. This ma-
trix is a fundamental element for the analysis of the
robot workspace and the particular configurations
of singularities where the robot becomes uncontrol-
lable.

Rearranging, the above nine equations in (29) of the
cube-robot can be immediately written as follows:

(
xG

0 + l3 cosα − λA
10

)2 + (
yG

0 + l3 sinα
)2 + zG2

0 = l2
3 ,
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(
yG

0 + l3 cosα − λB
10

)2 + (
zG

0 + l3 sinα
)2 + xG2

0 = l2
3,

(
zG

0 + l3 cosα − λC
10

)2 + (
xG

0 + l3 sinα
)2 + yG2

0 = l2
3,

(32)

where the “zero” position �r0G
0 = [0 0 0]T corresponds

to the joints’ variables �λ0
10 = [0 0 0]T . The derivative

of conditions (32) with respect to time leads to the ma-
trix equation

J1 �̇λ10 = J2 �̇rG

0 . (33)

Matrices J1 and J2 are, respectively, the inverse and
forward Jacobian of the robot and can be expressed as

J1 = diag{α1 α2 α3},

J2 =
⎡
⎣

α1 β2 zG
0

xG
0 α2 β3

β1 yG
0 α3

⎤
⎦ ,

(34)

with

α1 = xG
0 + l3 cosα − λA

10,

α2 = yG
0 + l3 cosα − λB

10,

α3 = zG
0 + l3 cosα − λC

10,

β1 = xG
0 + l3 sinα,

β2 = yG
0 + l3 sinα,

β3 = zG
0 + l3 sinα.

(35)

We assume a virtual motion of the robot with the
generalized velocities vAv

10a = 1, vBv
10a = 0, vCv

10a = 0.
The characteristic virtual velocities are expressed

as functions of the position of the mechanism by the
kinematical constraint equations of two independent
loops, A − B and B − C:

�uT
i aT

50�vAv
50a = �uT

i bT
50�vBv

50a = �uT
i cT

50�vCv
50a (i = 1,2,3),

ωAv
54a = ωAv

21a, ωBv
54a = ωBv

21a, ωCv
54a = ωCv

21a.

(36)

Some other relations of connectivity can be ob-
tained if one considers successively that vBv

10b = 1,
vCv

10b = 0, vAv
10b = 0, vCv

10c = 1, vAv
10c = 0, and vBv

10c = 0.
As for the relative accelerations γ A

10, ε
A
21, ε

A
32 and

εA
54 = εA

21 of the robot, the derivatives of (31) give the

other following conditions of connectivity:

εA
21 �uT

i aT
20 �u3 + εA

54 �uT
i aT

50 �u3 = 0,

γ A
10 �uT

i aT
10�u3 + l3ε

A
21 �uT

i aT
20ũ3a

T
32 �u2 + l3ε

A
32 �uT

i aT
30ũ3 �u2

= �uT
i �̈rG

0 − l3ω
A
21ω

A
21 �uT

i aT
20ũ3ũ3a

T
32 �u2

− l3ω
A
32ω

A
32 �uT

i aT
30ũ3ũ3 �u2

− 2l3ω
A
21ω

A
32 �uT

i aT
20ũ3a

T
32ũ3 �u2 (i = 1,2,3)

(37)

The angular accelerations �εA
k0 and the accelerations

�γ A
k0 of joints Ak are easily calculated by (11). Equa-

tions (31) and (37) represent the inverse kinematics
model of the parallel cube-robot.

6.1.3 Inverse robot dynamics

In the context of the real-time control, neglecting the
friction forces and considering the gravitational ef-
fects, the relevant objective of the dynamics is to de-
termine the input forces, which must be exerted by the
actuators in order to produce a given trajectory of the
effector.

Three independent mechanical systems, A1,B1,
and C1, that generate three spatial forces, �f A

10 = f A
10 �u3,

�f B
10 = f B

10 �u3, and �f C
10 = f C

10 �u3, which are concurrent in
O and oriented along the zA

1 -, zB
1 -, and zC

1 -axes, con-
trol the motion of the three sliders of the robot.

The force of inertia and the resultant moment of
the forces of inertia of an arbitrary rigid body Tk are
determined with respect to the joint’s center Ak . On
the other hand, the wrench of two vectors, �f ∗

k and
�m∗

k , evaluates the influence of the action of the weight
mk �g and the influence of other external and inter-
nal forces applied to the same element Tk of the ro-
bot.

Knowing the position and kinematics state of
each link, as well as the external forces acting on
the robot, in what follows one applies the princi-
ple of virtual powers for an inverse dynamic prob-
lem.

The active forces required in a given motion of the
moving platform will be determined in the inverse dy-
namic problem by using of the fundamental equations
(19) and (20) of parallel robot dynamics.

Thus, the force f A
10 of the first actuator A1 is ex-

pressed by a compact matrix formula
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f A
10 = �uT

3

[ �FA
1 + .ωAv

54a
�MA

5

+ ωAv
21a

�MA
2 + ωAv

32a

( �MA
3 + �MA

4 + �MA
6

)

+ ωBv
21a

�MB
2 + ωBv

32a

( �MB
3 + �MB

4 + �MB
6

)

+ ωCv
21a

�MC
2 + ωCv

32a

( �MC
3 + �MC

4 + �MC
6

)]
, (38)

where, for example, one denotes:

�FA
k0 = mA

k

[ �γ A
k0 + (

ω̃A
k0ω̃

A
k0 + ε̃A

k0

)�rCA
k

] − �f ∗A
k ,

�MA
k0 = mA

k r̃CA
k �γ A

k0 + Ĵ A
k �εA

k0 + ω̃A
k0Ĵ

A
k �ωA

k0 − �m∗A
k ,

�FA
k = �FA

k0 + aT
k+1,k

�Fk+1 (k = 6,5, . . . ,1),

�MA
k = �MA

k0 + aT
k+1,k

�Mk+1 + r̃T
k+1,ka

T
k+1,k

�Fk+1,

�f ∗A
k = 9.81mA

k ak0�u3, �m∗A
k = 9.81mA

k r̃CA
k ak0 �u3.

(39)

Equations (38) and (39) represent the inverse dynam-
ics model of the parallel cube-robot.

As application let us consider a robot which has the
following characteristics:

xG∗
0 = 0.10 m, yG∗

0 = 0.05 m,

zG∗
0 = −0.15 m,

l = 0.20 m, l1 = 0.15 m,

l2 = 0.08 m, l3 = 0.85 m,

l4 = l2, α = π

36
, �t = 3 s,

m1 = 0.35 kg, m2 = 0.2 kg, m3 = 2.5 kg,

m4 = m2, m5 = 15 kg, m6 = m3.

Depending of masses and inertias of all links, nu-
merically we obtain, for example, the time evolution
of forces f A

10 (Fig. 4), f B
10 (Fig. 5) and f C

10 (Fig. 6) of
three prismatic actuators.

6.2 A new space parallel robot

The mechanism input of the second case study is made
up of three actuated prismatic joints, while the output
body is connected to the fixed base through a set of
three legs (see Fig. 7). The first and second legs have
identical kinematical chains, which are two prismatic-
revolute-universal (PRU) chains. Being very different
from the two legs, the third leg is a prismatic-revolute-
cylindrical (PRC) chain. The robot has two translation
degrees of freedom and one rotation degree of free-
dom.

Fig. 4 Force f A
10 of the first actuator

Fig. 5 Force f B
10 of the second actuator

Fig. 6 Force f C
10 of the third actuator



230 S. Staicu et al.

Fig. 7 A new space parallel robot

In this section, the above recursive matrix method is
adopted to derive the kinematics model and the inverse
dynamics equations of this spatial parallel robot.

6.2.1 Geometric model

The motion of the platform is accomplished by three
sliders along the guide-ways. The mechanism contains
a moving platform A3B3C4 of mass m4 and the tensor
of inertia Ĵ4, which is an isosceles triangle described
by the sizes PC4 = L1 and PA3 = PB3 = r (Fig. 8).
The vertices of this platform are connected through
three legs to the sliders of a fixed base A0B0C0 =
A1B1C1, which is also an isosceles triangles described
by the sizes O0A1 = O0B1 = R and O0C1 = L3.

Each of three limbs consists of a lower link and an
upper arm. The lower links A1A2 and B1B2 of two
identical legs are connected to the fixed base through
active revolute joints A1 and B1 and to the upper arms
with passive revolute joints A2 and B2. These lower
links have also the same mass m1. The two identi-
cal upper arms, having the lengths A2A3 = R2 and
B2B3 = R2, the same mass m2 and the same tensor of
inertia Ĵ2, are then connected to the moving platform
by two universal or spherical joints, A3 and B3. The
third leg consists of an active prismatic system, a rev-
olute joint C2 that is attached to the third slider C1C2

of mass m1, an intermediary rod of length C2C3 = L2,
mass m2 and tensor of inertia Ĵ2, which is connected
to the moving platform by a cylindrical joint C3.

The motion of the moving platform A3B3C4 can be
accomplished with three input linear displacements,
λA

10, λ
B
10 and λC

10, which are given by the three pris-
matic actuators, A1,B1 and C1. A fixed global frame
O0 − x0y0z0 is located at the center of the side A1B1,
with thez0-axis normal to the base platform and the y0-
axis is pointing along A1B1. The 3-DOF robot is mov-
ing with respect to this Cartesian reference. Another
reference frame, P − xP yP zP , called the top frame, is
located at the center of the side A3B3. The zP -axis is
perpendicular to the output platform and the yP -axis
is directed along A3B3.

One of the three active elements of the robot is
the first body C1C2 of the third upside-down limb C

(leg 3), for example. Mounted on the guide-way, this
slider effects a vertical translation with the displace-
ment λC

10. A local leg frame C2 − xC
2 yC

2 zC
2 is attached

to a transmission rod with its origin at point C2, the
zC

2 direction along the horizontal rotating axis of the
revolute joint. This upper arm has a relative rotation
about the zC

2 -axis with the angle ϕC
21, angular velocity

ωC
21 = ϕ̇C

21 and angular acceleration εC
21 = ϕ̈C

21.
Further on, a fictitious frame C3 − xC

3 yC
3 zC

3 has a
relative translation along the horizontal zC

3 -axis with
the displacement λC

32 so that vC
32 = λ̇C

32 and γ C
32 = λ̈C

32.
Finally, a passive revolute joint C4 connects the

moving platform A3B3C4 to the frame C4 −
x4y4z4(T4), which rotates relatively about the zC

4 -axis
by the angle ϕC

43 and angular velocity ωC
43 = ϕ̇C

43.
Due to the arrangement of the links and joints, the

axes of the passive revolute joints in the first and sec-
ond legs are parallel to each other. In such a way, the
two legs can provide two constraints on the moving
platform with the rotation about thez0-axis and the
translation along the x0-axis. The third leg can pro-
vide two constraints on the rotation of moving plat-
form about z0 and x0 axes. This leaves the mechanism
with two translation degrees of freedom in O0 − y0z0

plane and one rotation degree of freedom about the y0-
axis.

The displacements λA
10, λ

B
10 and λC

10 of the three ac-
tuators, A1,B1 and C1, are considered as parameters,
which give the input vector �λ10 = [λA

10 λB
10 λC

10]T of
the instantaneous position of the robot. But, in the in-
verse geometric problem, one can suppose that the co-
ordinates yP

0 and zP
0 of the point P and the rotational

angle φ of the platform give the position of the mecha-
nism. Starting from the origin of the reference O0 and
pursuing the three serial chains, A1A2A3,B1B2B3 and
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Fig. 8 Kinematical scheme
of the upside-down
mechanism

C1C2C3C4, we obtains the following transformation

matrices:

a10 = θT
2 , a21 = a

ϕ
21aαθ1θ2,

b10 = θ2, b21 = b
ϕ
21aαθ1θ2,

c10 = θ4, c21 = c
ϕ
21aαθ1θ2,

c32 = aαθ3, c43 = c
ϕ
43,

(40)

where, for example,

θ1 =
⎡
⎣

0 0 −1
0 1 0
1 0 0

⎤
⎦ , θ2 =

⎡
⎣

0 1 0
−1 0 0
0 0 1

⎤
⎦ ,

θ3 =
⎡
⎣

−1 0 0
0 1 0
0 0 −1

⎤
⎦ , θ4 =

⎡
⎣

−1 0 0
0 −1 0
0 0 1

⎤
⎦ .

(41)

Rotation condition concerning the absolute orienta-
tion of the moving platform is given by the following
identity:

c◦T
40 c40 = a (42)

and by the matrices

c◦
40 =

⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦ ,

a = RT =
⎡
⎣

cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ

⎤
⎦ ,

(43)

where a is the rotation matrix about the yP -axis and
the resulting matrix c40 = c43c32c21c10 is obtained by
multiplying five basic matrices. From this relation, one
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obtains the first relation between the angles of rotation:

φ = ϕC
43 − ϕC

21 with

φ = φ∗
0

[
1 − cos

(
π

3
t

)]
. (44)

Consider, for example, that the platform moves

for six seconds and the motion of the characteristic

point P along vertical ellipses is expressed by the fol-

lowing functions:

�rP
0 = [0 yP

0 zP
0 ]T ,

yP
0 = yP∗

0 sin

(
π

3
t

)
, (45)

zP
0 = −h + zP∗

0

[
1 − cos

(
π

3
t

)]
.

The linear displacements λA
10, λ

B
10, λ

C
10, and λC

32,

and the angles ϕA
21, ϕ

B
21, ϕ

C
21 and ϕC

43 are given by the

following geometric constraint conditions:

�rA
10 + aT

20�rA
32 − aT �rA3 = �rP

0 ,

�rB
10 + bT

20�rB
32 − aT �rB3 = �rP

0 , (46)

�rC
10 + cT

20�rC
32 + cT

40�rP
4 = �rP

0 ,

where one denotes

�rA
10 =

⎡
⎣

0
−R

λA
10

⎤
⎦ , �rB

10 =
⎡
⎣

0
R

λB
10

⎤
⎦ ,

�rC
10 =

⎡
⎣

−L3

0
λC

10

⎤
⎦ , �rC

32 =
⎡
⎣

L2

0
−λC

32

⎤
⎦ ,

�rA
32 = �rB

32 = R2 �u1, �rA3 = −�rB3 = −r �u2,

�rP
4 = −L1�u1, h =

√
R2

2 − (R − r)2,

sinα = R − r

R2
, cosα = h

R2
.

(47)

There is only one inverse geometric solution for the
robot:

R2 sin
(
ϕA

21 + α
) = R − r + yP

0 ,

λA
10 = zP

0 + R2 cos
(
ϕA

21 + α
)
,

R2 sin
(
ϕB

21 + α
) = R − r − yP

0 ,

λB
10 = zP

0 + R2 cos
(
ϕB

21 + α
)
,

L2 sin
(
ϕC

21 + α
) = L3 − L1 cosφ,

λC
10 = zP

0 + L1 sinφ + L2 cos
(
ϕC

21 + α
)
,

λC
32 = yP

0 .

(48)

6.2.2 Velocities and accelerations

The linear velocities �vA
k0 (k = 1,2, . . . ,6) of centers

Ak of joints and the skew-symmetric matrices

ω̃A
k0 = ak,k−1ω̃

A
k−1,0a

T
k,k−1 + ωA

k,k−1ũ3, (49)

which are associated to absolute angular velocities
given by (25), characterize the kinematics of the el-
ements of each leg (for example, the leg A).

Equations of geometrical constraint, (42) and (46),
can be derivate with respect to time to obtain the fol-
lowing matrix conditions of connectivity established
for the relative angular velocities:

vA
10 �uT

i �u3 + ωA
21R2 �uT

i aT
20ũ3 �u1 = �uT

i �̇rP

0 ,

vB
10 �uT

i �u3 + ωB
21R2 �uT

i bT
20ũ3 �u1 = �uT

i �̇rP

0 (i = 2,3),

vC
10 �uT

j �u3 + ωC
21

{
L1 �uT

j cT
20ũ3c

T
32c

T
43 �u2 + �uT

j cT
20ũ3�rC

32

}

− vC
32 �uT

j cT
20 �u3 + ωC

43L1�uT
j cT

40ũ3 �u1 = �uT
j �̇rP

0

(j = 1,2,3),

ωC
43 = ωC

21 + θ̇ .

(50)

Equation (50) offers a closed-form matrix for the
velocities vA

10, v
B
10, v

C
10,ω

A
21,ω

B
21,ω

C
21, v

C
32,ω

C
43 and the

complete Jacobian matrix of the robot as functions of
translation velocity of the platform.

The above constraint (46) of the robot can be writ-
ten as follows:
(
R − r + yP

0

)2 + (
λA

10 − zP
0

)2 = R2
2,
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(
R − r − yP

0

)2 + (
λB

10 − zP
0

)2 = R2
2, (51)

(
λC

10 − zP
0 − L1 sinφ

)2 + (L3 − L1 cosφ)2 = L2
2.

The derivative with respect to time of (51) leads to the
matrix equation

J1 �̇ϕ10 = J2
[
φ̇ ẏP

0 żP
0

]T
. (52)

Matrices J1 and J2 constitute the inverse and for-
ward Jacobian of the new spatial parallel robot and can
be expressed as

J1 = diag{δA δB δC},

J2 =
⎡
⎣

βA
1 βA

2 βA
3

βB
1 βB

2 βB
3

βC
1 βC

2 βC
3

⎤
⎦ , (53)

with

δA = λA
10 − zP

0 ,

δB = λB
10 − zP

0 ,

δC = λC
10 − zP

0 − L1 sinφ,

βA
1 = 0, βA

2 = −R + r − yP
0 ,

βA
3 = λA

10 − zP
0 ,

βB
1 = 0, βB

2 = R − r − yP
0 , βB

3 = λB
10 − zP

0 ,

βC
1 = L1

[(
λC

10 − zP
0

)
cosφ − L3 sinφ

]
,

βC
2 = 0, βC

3 = λC
10 − zP

0 − L1 sinφ.

(54)

Let us assume that the robot has a virtual motion
determined by the velocities vCv

10c = 1, vAv
10c = 0, and

vBv
10c = 0. Characteristic virtual velocities are given by

the connectivity conditions (50).
Again, the relative accelerations γ A

10, γ
B
10, γ

C
10, ε

A
21,

εB
21, ε

C
21, γ

C
32 and εC

43 of the components of this robot
are given by some new connectivity conditions, which
are obtained from the time derivative of (50). The fol-

lowing relations’ results can be obtained:

γ A
10 �uT

i �u3 + εA
21R2 �uT

i aT
20ũ3 �u1

= �uT
i �̈rP

0 − ωA
21ω

A
21R2 �uT

i aT
20ũ3ũ3 �u1,

γ B
10 �uT

i �u3 + εB
21R2 �uT

i bT
20ũ3 �u1

= �uT
i �̈rP

0 − ωB
21ω

B
21R2ū

T
i bT

20ũ3ũ3 �u1 (i = 2,3),

γ C
10 �uT

j �u3 + εC
21

{
L1 �uT

j cT
20ũ3c

T
32c

T
43 �u2 + �uT

j cT
20ũ3�rC

32

}

− γ C
32 �uT

j cT
20 �u3 + εC

43L1 �uT
j cT

40ũ3 �u1

= �uT
i �̈rP

0 − ωC
21ω

C
21

{�uT
j cT

20ũ3ũ3�rC
32

+ L1�uT
j cT

20ũ3ũ3c
T
32c

T
43 �u2

}

− ωC
43ω

C
43L1 �uT

j cT
40ũ3ũ3 �u2

− 2ωC
21ω

C
43L1 �uT

j cT
20ũ3c

T
32c

T
43ũ3 �u2 (j = 1,2,3),

εC
43 = εC

21 + θ̈ .

(55)

Equations (50) and (55) represent the inverse kinemat-
ical model of the parallel robot.

6.2.3 Dynamics simulation

In the inverse dynamical problem, by using of the gen-
eral principle of virtual powers, some recursive matrix
relations for the torques of three active systems are es-
tablished.

The motion of the movable platform is controlled
by three independent pneumatic systems that generate
three forces

�f A
10 = f A

10 �u3, �f B
10 = f B

10 �u3 and

�f C
10 = f C

10 �u3 (56)

which train the sliders on the guide-ways A1z
A
1 ,B1z

B
1 ,

and CzC
1 .

The wrench of the weight mk �g and the forces of in-
ertia of an arbitrary rigid body Tk are determined with
respect to the center Ak of a joint.

Knowing the kinematics state of each link, as well
as all external forces acting on the robot, the active
forces required for a given motion of the moving plat-
form, will be easily computed applying (19) and (20).
The following compact matrix relation expresses the
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force of the first actuator:

f A
10 = �uT

3

{ �FA
1 + ωAv

21a
�MA

2 + ωBv
21a

�MB
2

+ ωCv
21a

�MC
2 + vCv

32a
�FC

3 + ωCv
43a

�MC
4

}
, (57)

with the following recursive notations:

�FA
k0 = mA

k

[ �γ A
k0 + (

ω̃A
k0ω̃

A
k0 + ε̃A

k0

)�rCA
k

] − �f ∗A
k ,

�MA
k0 = mA

k r̃CA
k �γ A

k0 + Ĵ A
k �εA

k0 + ω̃A
k0Ĵ

A
k �ωA

k0 − �m∗A
k ,

�FA
k = �FA

k0 + aT
k+1,k

�Fk+1 (k = 2,1),

�MA
k = �MA

k0 + aT
k+1,k

�Mk+1 + r̃T
k+1,ka

T
k+1,k

�Fk+1.

(58)

As the application, let us consider a spatial ro-
bot that has the following characteristics: φ∗ = π/15,
yG∗

0 = 0.04 m, zG∗
0 = 0.08 m, �t = 6 s, L1 = r =

0.1 m, L3 = R = 0.25 m, L2 = R2 = L = 0.4 m,
m1 = 0.9751 kg, m2 = 0.9803 kg, m4 = 8.1573 kg,

Ĵ2 =
⎡
⎣

0.0006
0.0524

0.0524

⎤
⎦ ,

Ĵ4 =
⎡
⎣

0.0658
0.0269

0.0501

⎤
⎦ .

Finally, we obtain the graphs of time-history of the ac-
tive forces f A

10 (Fig. 9), f B
10 (Fig. 10), f C

10 (Fig. 11) of
the three actuators.

7 Conclusions

A new dynamic analysis method based on the funda-
mental principle of virtual powers is introduced in this
paper. Two examples, which are two 3-DOF parallel
robots, are given as applications of the method. The
matrix equations for the real-time computation of po-
sition, velocity and acceleration of each link of the ro-
bots can be established. Knowing all external forces
acting on the robots, the forces required at the actu-
ators in a given motion of the moving platforms will
easily be computed applying the compact matrix equa-
tions. In the context of automatic control, the iterative
matrix relations given in the inverse dynamics model-
ing can be easily transformed into a robust model for
the computerized command of a robot. The methodol-
ogy developed in this paper can be available for kine-

Fig. 9 Force f A
10 of the first actuator

Fig. 10 Force f B
10 of the second actuator

Fig. 11 Force f C
10 of the third actuator
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matics analysis and nonlinear dynamics of a multi-
body systems consisting of interconnected rigid and,
eventually, deformable bodies.
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