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Abstract It is possible that self-excited vibrations in
turbomachine blades synchronize due to elastic cou-
pling through the shaft. The synchronization of four
coupled van der Pol oscillators is presented here as a
simplified model. For quasilinear oscillations, a stabil-
ity condition is derived from an analysis based on lin-
earizing the original equation around an unperturbed
limit cycle and transforming it into Hill’s equation.
For the nonlinear case, numerical simulations show
the existence of two well-defined regions of phase re-
lationships in parameter space in which a multiplicity
of periodic attractors is embedded. The size of these
regions strongly depends on the values of the oscilla-
tor and coupling constants. For the coupling constant
below a critical value, there exists a region in which
a diversity of phase-shift attractors is present, whereas
for values above the critical value an in-phase attrac-
tor is predominant. It is observed that the presence of
an anti-phase attractor in the subcritical region is as-
sociated with sudden changes in the period of the cou-
pled oscillators. The convergence of the coupled sys-
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tem to a particular periodic attractor is explored us-
ing several initial conditions. The study is extended to
non-identical oscillators, and it is found that there is
synchronization even over a wide range of difference
among the oscillator constants.
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1 Introduction

Synchronization among self-excited oscillators has
long been studied [1–3]. Common examples are bi-
ological [4], chemical [5], thermal [6], and electri-
cal [7] oscillators. There are few mechanical systems,
however, that have been analyzed. One prominent ex-
ception is that of pendulums swinging from a com-
mon structure that was studied by Huygens who, in
1665, noticed that they eventually entered into syn-
chrony due to interaction through the structure [8, 9].
Since vibrations in mechanical systems are ubiquitous,
it can be expected that this phenomenon is much more
common than it appears from the literature. Though
there are many other examples, rotating machinery is
one place where one can expect to find self-excited
oscillations which could be potentially problematic. It
is known that unbalanced rotating shafts, such as in
turbomachines, that are connected to a common struc-
ture may synchronize [10]. This system is, however,
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forced by the mass imbalance in each shaft rather than
being individually self-excited [11]. It is also possible
that the motion of turbomachine blades synchronizes
in some way due to interaction between them. It has
been found, for instance, that there is phase-locking
of the turbines in a wind farm [12]. Since the rotation
of each turbine is determined by the wind, there is no
external frequency that is being imposed. We propose
here that, even for turbomachines with a single rotor
on a shaft, the vibrations of the blades can become
synchronized among themselves by coupling through
the fluid or the elasticity of the shaft. Observations
of this have not been recorded in the literature, but
the present is a theoretical argument for making these
measurements.

A cantilever beam in the presence of a cross-flow
undergoes self-excited oscillations due to the inter-
action between vortex shedding in the wake and the
beam itself. The frequency of vortex shedding f be-
hind a circular cylinder of diameter D in the presence
of a uniform flow of velocity U is quantified by the
Strouhal number f D/U ≈ 0.21 over a wide range
of Reynolds numbers. Computation of the vortex-
induced vibration of a slender flexible structure can
be carried out using direct numerical simulation. The
problem of multiple cylinders attached to a single shaft
has not been attempted so far. In the simplest model
possible that captures the essentials, one can take each
cylinder to be a system of a single degree of free-
dom, and couple them all by linear elastic interaction
through the shaft. Modeling the fluid–mass interaction
is extremely complicated and should, strictly speak-
ing, involve the numerical solution of the Navier–
Stokes equation on the fluid side [13]. At this stage, to
demonstrate the possibility of synchronization, a sim-
ple reduced-order approach will be sought. There is
some support for the use of a van der Pol term to repre-
sent the fluid–structure interaction, though this may be
done in several different ways [14–18]. In the present
work, the interactive force will be modeled as a van
der Pol damping term.

The van der Pol equation has long been studied
as a quintessential example of a self-excited oscilla-
tor [19] and has been used to represent oscillations in
a wide variety of applications. The study of coupled
oscillators provides information on emergent proper-
ties of the coupled system [20], such as synchroniza-
tion, clustering, oscillatory modes and stability, all of
which are of interest to the problem of blade oscil-
lation. The most common coupling between van der

Pol oscillators that has been examined is that between
a pair of oscillators [21–23]. Studies of three cou-
pled oscillators are not common [24], but the prob-
lem of four coupled van der Pol oscillators has been
looked at by several authors. We are interested in
four oscillators for two reasons: the presence of four
blades on a rotating shaft is not uncommon, and four
is the smallest number for which the governing equa-
tion for the motion of a single oscillator coupled with
its immediate neighbors does not include the motion
of all the others and can thus be expected to have
some generality. The oscillatory modes of rings of
three and four coupled quasilinear van der Pol oscil-
lators with errors in their parameters have been ana-
lyzed through the averaging method [25, 26]. For the
four-oscillator ring, a lack of synchronization between
two single-oscillation modes is reported as a result of
the asymmetry introduced by the errors. A weakly-
coupled ring of identical oscillators has been exper-
imentally studied, and some authors report the pres-
ence of oscillatory modes in which the phase cannot be
precisely determined [27]. In their theoretical analy-
sis they assume that the coupled and uncoupled am-
plitudes are the same, an assumption that is not cor-
rect as is shown in [28, 29] and corroborated in the
present work. The synchronization of a ring of four
identical quasilinear van der Pol oscillators has also
been studied by linearization around the unperturbed
limit cycle [7]. Three domains of stability were re-
ported, and the numerical results were experimentally
corroborated in a later work [30]. Unfortunately, the
method is only valid for a small region of parameter
space where the values of the oscillator constant are
near zero. In a recent work [31], the presence of nu-
merous phase-locked motions in an array of four cou-
pled phase-only oscillators was reported. An impor-
tant drawback of this work is in the difficulty of corre-
lating phase-only oscillators with systems of practical
interest such as turbomachine blades and thermal sys-
tems.

It is clear that many aspects remain to be clarified
for four coupled oscillators. In this work the influence
of system parameters on attractor multiplicity and syn-
chronization behavior is addressed. The rest of the pa-
per is structured in the following way. In the first part a
mathematical model of coupled self-excited oscillators
is presented and non-dimensionalized. In the second,
a small value of the oscillator constant is assumed to
enable linearization of the equations and the quasilin-
ear behavior to be obtained. The third part deals with
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Fig. 1 Ring of four masses coupled by springs

larger values of the constant for which the problem is
nonlinear and must be numerically explored. Finally,
the issue of non-identical oscillators is addressed.

2 Mathematical model

Consider four masses in the form of a ring connected
by springs as shown in Fig. 1. Each of the masses is a
self-excited van der Pol oscillator. In this representa-
tion the coupling between adjacent masses is through
a spring between them, so that the stretching of the
spring provides the coupling force. We will assume the
spring to be linear, so that

mẍ∗
i + c

(
x∗
i

2 − a2)ẋ∗
i + kx∗

i

= σ
(
x∗
i−1 − 2x∗

i + x∗
i+1

)
, (1)

for i = 1, . . . ,4, where x∗
i is the linear displacement

of each oscillator, and the derivatives are with respect
to time t∗. Since the four masses form a ring, the
displacement x∗

0 = x∗
4 and x∗

5 = x∗
1 . Similar models

have been analyzed for electrical oscillators [7]. For
the moment the four oscillators are all identical, with
m being the mass and k the spring constant. The pa-
rameters c and a define the nonlinear van der Pol
damping; damping is positive or negative depending
on whether the oscillations are large or small, respec-
tively, and thus regulates the amplitude of the limit cy-
cle which is of O(2a) [32]. σ is the strength of the
coupling between the oscillators; the interaction is as-
sumed to be linear, and since its sum is zero, there is

no net external force on the system due to the interac-
tion.

The non-dimensional time and displacement vari-
ables can be defined as t = t∗(k/m)1/2 (based on the
undamped natural period) and xi = x∗

i /a (based on the
amplitude of the oscillations). Thus, we get

ẍi + A
(
xi

2 − 1
)
ẋi + xi

= B(xi−1 − 2xi + xi+1), (2)

where the two non-dimensional parameters are A =
ca2/(mk)1/2 and B = σ/k. We will refer to A as
the oscillator constant, and B the coupling con-
stant. Initial conditions xi(0) and ẋi (0) are also
needed.

The four terms in (2), from the left to right, are in-
ertial force F 1

i = ẍi , van der Pol damping force F 2
i =

A(xi
2 − 1)ẋi , elastic force F 3

i = xi , and coupling
force F 4

i = B(xi−1 − 2xi + xi+1), all per unit mass.

The total energy of the system is E = ∑4
i=1(ẋ

2
i +

x2
i )/2, being the sum of the kinetic and potential en-

ergies, respectively. Multiplying (2) by ẋi , summing
and then integrating over a period, we find that the
terms corresponding to F 1

i , F 3
i and F 4

i vanish, indi-
cating that over one period the energy coming in due
to van der Pol damping is also equal to that going
out.

The periods and phase shifts can be determined
from the numerically-calculated long-time results. In
this work the periodic motions obtained in this way
are considered to be attractors [33]. T0 is the un-
coupled period of any of the oscillators for B = 0,
and TB is the coupled period for any other value
of B . In all the examples treated here (except possi-
bly when the oscillators are non-identical) it is found
that, for the same parameter A, the coupled period
is the same for all four oscillators and thus indepen-
dent of i. In order to measure the extent of change
in the oscillator period by the coupling phenomena,
a relative period is introduced as R = TB/T0. The
phase shift �φij , being the phase shift in degrees be-
tween oscillators i and j , is also found. �φij > 0 in-
dicates that the peaks of oscillator i are reached be-
fore those of oscillator j . If two oscillators have the
same phase, we will say that they belong to the same
cluster. The term synchronization will be taken to
mean that the oscillators have the same period, while
full synchronization implies that they are also all in
phase.
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3 Quasilinear analysis for small A

For small values of the oscillator constant, a quasilin-
ear behavior can be assumed and the nonlinear equa-
tions can be linearized around an unperturbed sinu-
soidal limit cycle; powerful analytical tools are avail-
able for this. For example, through a variable transfor-
mation, the linearized equations can be changed into
the canonical form of a Hill’s equation, ẍ +p(t)x = 0,
where p(t) is a periodic function. From this equa-
tion, stability and synchronization conditions can be
derived.

In order to analyze the stability and synchroniza-
tion of the four coupled van der Pol oscillators for
small values of A, the steps described in [7] for a ring
of quasilinear van der Pol oscillators are employed.
Equation (2) is linearized around a sinusoidal limit
cycle, and after diagonal variables are introduced, a
homogeneous second-order ordinary differential equa-
tion

d2zN

dt2
+ a1N(t)

dzN

dt
+ a0N(t)zN = 0 (3)

arises, where the main variable and the coefficients are
defined as

zN =
N∑

i=1

δiζi, (4)

a1N(t) = A
(
A2

m cos2 ωt − 1
)
, (5)

a0N(t) = 1 + 4B − A
(
A2

mω sin 2ωt
)
. (6)

In (3) and (4), zN is N th diagonal variable (for the
present case N = 4), δi is a parameter equal to 1 if
i is even and −1 if i is odd, ζi is the ith linearized
variable. In addition, in (5) and (6), Am and ω are
the amplitude and frequency of the unperturbed sinu-
soidal limit cycle, respectively. Using the transforma-
tion [34]

zN = ρN exp

(
−1

2

∫ t

0
a1N(s) ds

)
, (7)

the canonical Hill’s equation

d2ρN

dt2
+ p(t)ρN = 0 (8)

is obtained, where the periodic function p(t) is defined
as

p(t) = a0N(t) − 1

4
a2

1N(t) − 1

2

da1N

dt
. (9)

Fig. 2 Dynamics of the quasilinear oscillators with A = 0.1.
B = −0.2 (stable, thick line) and B = −0.3 (unstable, thin line);
similar behavior is exhibited by x2, x3, and x4

Stability analysis can be carried out by means of
periodic and non-periodic terms. Equation (8) can be
written as [35]

d2ρN

dt2
+ (

λ + Q(t)
)
ρN = 0, (10)

where λ is the non-periodic term given by

λ = 1 + 4B, (11)

and where Q(t) is the periodic term expressed as

Q(t) = −1

4
A2(A2

m cos2(ωt) − 1
)2

− 1

2
AA2

mω sin(2ωt). (12)

Under the assumption that the periodic term Q(t)

vanishes due to the small value of A in (12), the sta-
bility of the coupled quasilinear oscillators depends
on the value of the non-periodic term λ. If λ > 0 the
coupled system is oscillatory and becomes stable. If
λ = 0 the coupled system is not oscillatory, and if
λ < 0 the coupled system is unstable. Then, in accor-
dance with (11), in order for oscillations of the cou-
pled oscillators to be stable, the following condition
must be satisfied: B ∈ S, where S = (−0.25,∞). For
example, for A = 0.1 the stable and unstable behav-
iors of the coupled oscillators are shown in Fig. 2
when B = −0.2 and B = −0.3, respectively. In the
first case B ∈ S, whereas in the second B /∈ S. It is
important to remark that fulfillment of this condition
does not imply that full synchronization is guaran-
teed.
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Table 1 Classification of
periodic attractors for
small A

Case Attractor type Clusters Phase shifts

1 In-phase 1 �φij = 0 ∀ i, j

2 Anti-phase 2 �φ31 = �φ42 = 0,�φ21 = 180◦

3 Anti-phase 0 �φ31 = 180◦,�φ42 = 180◦

Table 2 Examples of
initial conditions for
different periodic attractors
for small A; A = 0.1,
B = 0.1

Case x1(0) ẋ1(0) x2(0) ẋ2(0) x3(0) ẋ3(0) x4(0) ẋ4(0)

1 5 0 5 0 5 0 5 0

2 10 −10 −10 10 10 −10 −10 10

3 5 0 8 0 −5 0 −8 0

3 9 8 7 6 5 4 3 2

1 0.2 0.2 1 1 1 1 1 1

2 2 −5 3 5 −8 1 9 −3

1 2 3 4 5 6 7 8 9

By applying Floquet theory and determining its
corresponding Fourier modes, the following synchro-
nization domains are reported [7, 36]:

D1 = (−0.25,−0.0011] ∪ [0.004,∞), (13)

D2 = (−0.0011,−0.0006] ∪ [0.002,0.004), (14)

D3 = (−0.0006,0) ∪ (0,0.002). (15)

In accordance with [7], for B ∈ D1 the four cou-
pled quasilinear van der Pol oscillators exhibit full
synchronization; for B ∈ D2 the oscillators are in
a correlated state, i.e. they present a tight—both in
strength and direction—linear relationship. Besides,
for B ∈ D3 the desynchronization is complete but sta-
ble.

Table 1 shows the type of attractors found. Three
types of periodic attractors are detected for A = 0.1
and B = 0.1, as is shown in Fig. 3: a full synchro-
nization and two anti-phase attractors; no other phase-
shifted attractors are detected. The type 1 attractor
illustrates full synchronization between all 4 oscilla-
tors. The type 2 anti-phase attractor exhibits two clus-
ters, namely �φ13 = �φ24 = 0, respectively, with one
of the clusters in anti-phase with the other one, i.e.
�φ12 = �φ23 = 180◦. Thus oscillators x1 and x3 ex-
hibit full synchronization with each other and an out-
of-phase state with oscillators x2 and x4. Similar full-
synchronization behavior is exhibited by x2 and x4

and anti-phase behavior with respect to x1 and x3.
On the other hand, the type 3 anti-phase attractor ex-
hibits no clusters, i.e. �φ13 = �φ24 = 180◦. Table 2

Fig. 3 Periodic attractors of the quasilinear case for A = 0.1
and B = 0.1. There are three types of stable behavior: full syn-
chronization (top graph), 2 pairs of oscillators in full synchro-
nization with �φ13 = �φ24 = 0 (middle graph), and synchro-
nization only and out-of-phase for pairs of oscillators (bottom
graph)

shows some initial conditions from diverse regions of
the state space and the corresponding type of attrac-
tor.
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4 Numerical analysis for A not small

The value of A in an actual application depends on pa-
rameters of the system, and could vary over a wide
range. It is important to know, for design purposes,
what the possible dynamic behaviors are so as to avoid
undesirable operation. For this reason, it is important
to understand the response of the system for different
values of A. A strong limitation of the analysis in the
previous section is that the value of the oscillator con-
stant must be small. For other values of A, the coupled
system is strongly nonlinear and the analysis is invalid.
Therefore, this analysis has to be done using numerical
simulations. Integration is carried out using the fourth-
order Runge–Kutta method. It is found that the short-
and long-term dynamical behaviors of the coupled os-
cillators are very sensitive to the time step-size and the
final integration time. Sometimes, quasiperiodic mo-
tions and unexpected attractors are obtained, particu-
larly for time steps ≤10−2 and for integration times
less than 25 cycles of the coupled system. Due to this,
double precision calculations, time steps of 10−4 time
units, and integration times above 103 cycles are em-
ployed in the computer simulations in order to prevent
undesirable parasitic dynamics and attractors induced
by the numerical procedure.

4.1 Parametric study

We will look at the range A ∈ [1,10] corresponding to
strongly nonlinear behavior. In the numerical simula-
tions the following procedure is employed: initially,
the four oscillators are maintained at a condition in
which xi(0) = ẋi (0) = 1; then, the first oscillator is
perturbed to x1(0) = ẋ1(0) = 0.2 and the equations are
integrated until steady oscillations are achieved. The
coupling constant, B , is gradually increased from 0 up
to a critical value Bc , which depends on the oscilla-
tor constant, above which all the oscillators are fully
in-phase.

Figure 4 shows the relative period, R, as a func-
tion of B for A = 1. As B increases in the interval
B ∈ [0,0.12], it can be observed that R decreases. The
corresponding phase-shift is shown in Fig. 5. This re-
gion corresponds to a phase-shift attractor with phase-
locking between oscillators 1 and 3, and between 2
and 4, the two sets of oscillators being in anti-phase,
i.e. �φ13 = �φ24 = 0 and �φ12 = �φ23 = �φ34 =
�φ41 = 180◦. However, there is a sudden change in

Fig. 4 Relative period, R, as a function of the coupling con-
stant, B , for A = 1.0; B ≥ 0.2, R = 1

Fig. 5 Phase shifts for A = 1.0; empty circles �φ31, black cir-
cles �φ21 = �φ41; B ≥ 0.2, �φ31 = �φ21 = �φ41 = 0

R from 0.81 to 0.99 at B ≈ 0.12. This is associated
with a change in the qualitative nature of the mo-
tion: from an anti-phase attractor the coupled system
goes to a phase-shifted attractor. There are three sud-
den changes of this kind until B reaches a value of
Bc = 0.20. Above this, there is phase-locking of all
oscillators so that R = 1.

Figures 6 and 7 show R and the phase shifts, re-
spectively, for A = 5.0. Two small intervals are de-
tected, B ∈ [0.14,0.15] and B ∈ [0.18,0.19], in which
an anti-phase attractor with two clusters emerges. It is
found that Bc = 0.75 for A = 5.0.

The relative periods and phase shifts for A = 10.0
are shown in Figs. 8 and 9. It is found that Bc = 0.85.
When B ∈ [0.85,∞), the in-phase attractor is present
and the coupled system exhibits full synchronization
regardless of the value of A. It is observed that as
the coupled system becomes strongly nonlinear, the
sudden changes in the period and phase shifts tend
to disappear. Given that sudden changes in the period
are seemingly associated with the emergence of anti-
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phase attractors, it is expected that for strong nonlin-
earity of the coupled system the anti-phase attractors
are unlikely to rise.

A parametric diagram is constructed using the
above information, and is shown in Fig. 10. The thick

Fig. 6 Relative period of coupled oscillators for A = 5.0;
B ≥ 0.8, R = 1

Fig. 7 Phase shifts for A = 5.0; empty circles �φ31, black cir-
cles �φ21 = �φ41; B ≥ 0.8, �φ31 = �φ21 = �φ41 = 0

black line in this figure is Bc(A), above which the cou-
pled oscillators are in-phase for the initial conditions
described before. In this diagram, the region below Bc

is a subcritical region, whereas the region above Bc

is supercritical. In the subcritical region, one can find
a mix of phase-shift attractors, anti-phase attractors

Fig. 8 Relative period of coupled oscillators for A = 10.0

Fig. 9 Phase shifts for A = 10.0; empty circles �φ31, black
circles �φ21 = �φ41

Fig. 10 Regions of
periodic attractors for
coupled identical oscillators
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Table 3 Classification of
periodic attractors for A not
small

Case Attractor type Clusters Phase shifts

1 In-phase 1 �φij = 0 ∀i, j

2 Anti-phase 2 �φ31 = �φ42 = 0,�φ21 = 180◦

3 Anti-phase 0 �φ31 = 180◦,�φ42 = 180◦

4 Phase-shifted 1 �φ42 = 0,�φ21 > 0,�φ31 > 0

5 Phase-shifted 1 �φ42 = 0,�φ21 < 0,�φ31 < 0

6 Phase-shifted 1 �φ31 = 0,�φ21 < 0,�φ41 > 0

7 Phase-shifted 1 �φ31 = 0,�φ21 > 0,�φ41 < 0

Table 4 Examples of
initial conditions for
different periodic attractors
for A not small; A = 8.0,
B = 0.4

Case x1(0) ẋ1(0) x2(0) ẋ2(0) x3(0) ẋ3(0) x4(0) ẋ4(0)

1 5 0 5 0 5 0 5 0

2 10 −10 −10 10 10 −10 −10 10

3 5 0 8 0 −5 0 −8 0

4 9 8 7 6 5 4 3 2

5 0.2 0.2 1 1 1 1 1 1

6 2 −5 3 5 −8 1 9 −3

7 2 3 4 5 6 7 8 9

or in-phase attractors, depending on the values of the
coupling and oscillator constants. In the supercritical
region, the coupled oscillators are fully synchronized.
As will be explained later, for certain initial conditions
in small regions of the state space, some anti-phase at-
tractors may appear in the supercritical region.

4.2 Attractors in the subcritical region

Up to seven different periodic attractors are found in
the nonlinear subcritical region, and Table 3 shows
the types detected. Each attractor has its own basin
of attraction, so that the appearance of a particular
attractor will depend on the initial condition chosen.
For these numerical simulations, initial conditions are
randomly selected from every corner of phase space.
As an example, Table 4 shows the initial conditions
to get the attractors shown in Table 3 with parame-
ter values A = 8.0 and B = 0.4. The corresponding
time series are shown in Fig. 11, in which for cases
4–5 x2 is in phase with x4, and for cases 6–7 x1 is in
phase with x3. Type 1 is an in-phase attractor in which
all the four coupled oscillators are in full synchroniza-
tion. The period of the coupled system, as mentioned
before, depends on the particular values of the oscil-
lator and coupling constants, A and B . The type 2 at-
tractor exhibits two clusters: one of them between the

first and the third oscillators, and the other between
the second and the fourth oscillators. The two clusters
stay in an anti-phase state. More complex is the be-
havior of the type 3 attractor, in which the first oscilla-
tor is in anti-phase with the third one, and the second
one is in anti-phase with the fourth one. On the other
hand, the remaining four cases in Fig. 11 are of the
phase-shifted type. This means that some oscillators
have a phase difference of neither zero nor 180◦. Be-
sides, every attractor presents some kind of clustering.
In type 4 and 5 attractors, the second and fourth oscil-
lators are locked in phase. However, in the type 4 at-
tractor the second and the third oscillators are delayed
from the first one, whereas in the type 5 attractor the
opposite holds. As a matter of fact, the type 5 attrac-
tor is a mirror-image of the type 4 attractor. For type 6
and 7 attractors, the first and the third oscillators are in
phase. In the type 6 attractor the second and the fourth
oscillators are ahead or behind the first oscillator, re-
spectively. The opposite occurs in the type 7 attractor
where the second oscillator is delayed and the fourth is
ahead of the first. It is observed that phase-shift attrac-
tors, in addition to changes in the phase, present small
but perceptible differences in the amplitude, shown in
Fig. 12, as has been previously reported [28].
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Fig. 11 Periodic attractors for A = 8.0 and B = 0.4 with initial
conditions indicated in Table 4; in cases 4–5 x2 (thin line) is in
phase with x4; in cases 6–7 x1 (thick line) is in phase with x3

Fig. 12 Difference in amplitudes in a phase-shift type 5 attrac-
tor for A = 8.0 and B = 0.4; the thick, thin and dotted lines
correspond to the first, second and third oscillators, respectively

4.3 Attractors in the supercritical region

In the supercritical region of the phase diagram in
Fig. 10, numerical simulations showed the presence of
a predominant in-phase, type 1, periodic attractor. Two

Fig. 13 Relative period of periodic anti-phase attractor in the
supercritical region; initial conditions corresponding to case 2
in Table 4 were employed

anti-phase, type 2 and 3, periodic attractors, not shown
in Fig. 10, with small basins of attraction are also de-
tected. The in-phase attractor is undoubtedly that with
the largest basin of attraction, as was corroborated us-
ing the same initial conditions for the subcritical at-
tractors shown in Table 2. From the seven initial con-
ditions considered in Table 4, those corresponding to
type 1, 4, 5, 6 and 7 attractors drove the coupled sys-
tem with A = 8.0 and B = 2.0 to the in-phase attrac-
tor, rather than to the phase-shifted attractors. Besides,
initial conditions that carried the coupled attractors to
the type 2 and 3 anti-phase attractors are also shown in
Table 4. The type 2 anti-phase attractor in the super-
critical region is characterized by a small period com-
pared with the period of an uncoupled oscillator, as
can be observed in Fig. 13. The period of the attractor
depends both on the values of the oscillator and cou-
pling constants. However, it is the coupling constant
that affects mostly the period of the system.

5 Non-identical oscillators

Synchronization would not be of practical interest if it
occurred only when all the oscillators were exactly the
same. In order to analyze the behavior of non-identical
oscillators in the strongly nonlinear region, the con-
stant of one of the oscillators is perturbed as

Ap = A(1 + h) , (16)

where Ap is the perturbed value of the oscillator
constant and h is the detuning parameter. Although
in practice more than one oscillator could be differ-
ent, we will, for simplicity, restrict ourselves to just
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Fig. 14 Period-shift of oscillators 1 and 2 as a function of h,
for A = B = 1.0; h > 4, �T21 → −∞

one. For identical oscillators with the initial conditions
xi = 5 and ẋi = 0 for i = 1, . . . ,4, it is verified that
x1 = x2 = x3 = x4 for h = 0 and B = 1, i.e. the cou-
pled system exhibits full synchronization. The oscil-
lator i = 1 is arbitrarily chosen to be perturbed, and
the values A = B = 1 are assumed. Similarly to the
phase-shift, a period-shift �Tij is defined as the dif-
ference in period between oscillators i and j . No mul-
tiple periods of individual oscillators are detected. Fig-
ure 14 depicts the behavior of �T21 as a function of h,
where it can be observed that the synchronization of
the attractor is conserved for h ∈ [−1,3.92]. This kind
of behavior has been observed before in the synchro-
nization of other oscillators [2, 37]. Figure 14 shows
that for h = 4, �T21 = −0.3, but for h > 4, �T21 be-
comes very large. It is important to remark that for
non-identical oscillators, �Tij = 0 does not imply that
�φij = 0 even for B > Bc .

6 Conclusions

A study of the coupled behavior of four van der Pol
oscillators has been carried out, starting with identical
oscillators. Using a small A approximation, a stabil-
ity condition was analytically derived and no phase-
shifted attractors were detected. For larger A, com-
puter simulations in parameter space show the pres-
ence of a multiplicity of periodic attractors divided
into two well-defined regions. A critical value of the
coupling constant, Bc , as a function of the oscillator
constant A was observed above which the coupled sys-
tem is in full synchronization. Even though the four
oscillators are identical, computer simulations show a
complex behavior due to coupling.

For non-identical oscillators, it was shown that syn-
chronization in frequency occurred even when the os-
cillator constant of one of the oscillators was almost
four times that of the others. This raises the possibility
that blades which are not absolutely identical could be-
come vibrationally frequency-locked. The stresses on
the shaft would then depend on how much each blade
was out of phase with respect to its neighbors, with the
consequent dangers of long-term fatigue effects.

Future work will include the continuum nature of
turbomachine blades, the infinite degrees of freedom
that each blade has, and the synchronization between
them. It is also recommended, on the basis of this
study, that experiments be conducted to establish this
phenomenon.
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